Click or press any key to close help Help screen describing the interactive elements

The exponential distribution is a "waiting time" distribution. Suppose events occur independently and randomly through time with an average time between events of β. The time spent waiting for an event to occur is an exponential(β) random variable.

The exponential distribution is memoryless. This means that the probability of having to wait a further amount of time is independent of the time already spent waiting.

Parameter Range Description
β β > 0 Scale parameter

Probability Density Function

f ( x | β ) = 1 β e x / β

Support

0 x <

Mean

Variance

Example β
A radioactive substance emits two alpha particles every second on average. Let X be the waiting time for the next particle to be emitted. 0.5000
On a particular night, a shooting star occurs every five minutes on average. Let X be the waiting time for the next shooting star. 5.000
A hitchhiker sees one car every 10 minutes on average. Let X be the waiting time for the next car. 10.00

X ~ Exponential(β)

Chart of the exponential distribution Chart area for displaying the exponential pdf, cdf, visualization, and simulation

E(X) = , Var(X) =

Note that the standard deviation equals the expected value. All exponential distributions have the same shape, and differ only in scale.

The illustration above shows events occuring randomly in time independently of other events, with a mean time between events of β. The time at which the first event occurs has an exponential(β) distribution.

The simulation above shows an event occuring randomly in time independently of other events, with a mean time between events of β. The light blue line shows the time at which the first event occurs, which has an exponential(β) distribution. The histogram accumulates the results of each simulation.

Y = e-X ~ Beta(1/β, 1) Exponential(2) ~ Chi-Squared(2) min Xᵢ ~ Exponential(β/n) X₁/X₂ ~ F(2, 2) Σ Xᵢ ~ Gamma(n, β) ⌈X⌉ ~ Geometric(1 - e-1/β) limn→∞ max Xᵢ + μ - βlog n ~ Gumbel(μ, β) -log X ~ Gumbel(-log β, 1) X₁ - X₂ + μ~ Laplace(μ, β) eX ~ Pareto(1/β, 1) 1 - e-X/β ~ Standard Uniform X1/α ~ Weibull(α, β1/α)

Chart of the related distribution Chart area for displaying the related pdf, cdf, visualization, and simulation

E(Y) = , Var(Y) =