Publications
See also our Google Scholar profiles for articles that have been published and indexed.
Publications
[218] Vorberger, J.; Graziani, F.; Riley, D.; Baczewski, A. D.; Baraffe, I.;
Bethkenhagen, M.; Blouin, S.; Bohme, M. P.; Bonitz, M.; Bussmann, M.; Casner, A.;
Cayzac, W.; Celliers, P.; Chabrier, G.; Chamel, N.; Chapman, D.; Chen, M.;
Clerouin, J.; Collins, G.; Coppari, F.; Doppner, T.; Dornheim, T.; Fletcher, L. B.;
Gericke, D. O.; Glenzer, S.; Goncharov, A. F.; Gregori, G.; Hamel, S.; Hansen, S. B.;
Hartley, N. J.; Hu, S.; Hurricane, O. A.; Karasiev, V. V.; Kas, J. J.; Kettle, B.;
Kluge, T.; Knudson, M. D.; Kononov, A.; Konopkova, Z.; Kraus, D.; Kritcher, A.;
Malko, S.; Massacrier, G.; Militzer, B.; Moldabekov, Z. A.; Murillo, M. S.; Nagler, B.;
Nettelmann, N.; Neumayer, P.;
Ofori-Okai, B. K.; Oleynik, I. I.; Preising, M.; Pribram-Jones, A. P.; Ramazanov, T.;
Ravasio, A.; Redmer, R.; Rethfeld, B.; Robinson, A. P. L.; Ropke, G.; Soubiran, F.;
Starrett, C. E.; Steinle-Neumann, G.;
Sterne, P. A.; Tanaka, S.; Thompson, A. P.; Trickey, S. B.; Vinci, T.; Vinko, S. M.;
Wang, L.; White, A. J.; White, T. G.; Zastrau, U.; Zurek, E.; Panagiotis, T., ‘Physics
of Warm Dense Matter’, 2024.
[217] Szeto, K.; Taoufik, M.; Fayon, F.; Gajan, D.; Zurek, E.; Autschbach, J.;
Trebosc, J.; Delevoye, L.; Gauvin, R. M., ‘Evidence for Methylaluminoxane (MAO)
Molecular Structure and Reactivity from Ultra-High Magnetic Field 27Al MAS NMR
Spectroscopy Combined with DFT Calculations’, 2024.
[216] Han, S.; Zhang, X.; Wang, S.; Ding, S.; Zurek, E.; Guochun, Y., ‘Long-desired
Au-B Bonds and Their Role in Superconductivity: Stabilizing M2AuB6 Through
Electropositivity and Pressure’, 2024.
[215] Ocampo, D. I. K.
an Kim; Smith, R. F.; Coppari, F.; Racioppi, S.; Zurek, E.; Rygg, J. R.; Chin, D. A.;
Millot, M.; Eggert, J. H.; Duffy, T. S., ‘Atomic-level structure and pressure-density
response of Fe-O compounds at deep Earth and exoplanetary interior conditions’, 2024.
[214] Geng, N.; Zurek, E., ‘Theoretical Predictions of MB5N5: Atom-Stuffed Boronitride
Clathrate Cages Derived from the High-Pressure Superhydrides’, 2024.
[213] Toombs, A.; De La Cruz, M.; Hoosen, L. V.; Marr, Z. Y.;
Redington, M.; Zurek, E.; Pham, J., ‘The Crystal Structure of a Tetra-p-Tolyl Porphyrin
and its Zn-Metalated Analogue as Synthesized in an Undergraduate Teaching Lab’, 2024.
[212] Belli, F.; Zurek, E.; Errea, I., ‘A Chemical Bonding Based Descriptor for Predicting
the Impact of Quantum Nuclear and Anharmonic Effects on Hydrogen-Based
Superconductors’, 2024.
[211] Zurek, E.; Luo, X., ‘Designing Magnetic Carbon Allotropes: A Unified Framework
for Atomic Group-Based Magnetism’, 2024.
[210] Coleman, A. L.;
Sing, S.; Lockard, T.; Ocampo, I. K.; Lazicki, A. E.; Gorman, M. G.; Racioppi, S.;
Krygier, A. G.; Wehrenberg, C. E.; Ahmad, R.; Hamel, S.; Han, S.; Ginnane, M. K.;
Swift, D. C.; Bonev, S. A.; Zurek, E.; Duffy, T. S.; Eggert, J. H.; McNaney, J.;
Smith, R. F., ‘Body-centered cubic phase transformation in gold ramp compressed to
TPa pressures’, 2024.
[209] Hou, P.; Belli, F.; Bi, T.; Zurek, E.; Errea, I., ‘Effect of Quantum Anharmonicity
on the Superconductivity of 𝐼3𝑚 CH4-H3S at High Pressures: A First-Principles Study’,
Phys. Rev. B. 2025, 111, 144509.
[208] Bai, Z.; Redington, M.; Haldar, S.; Beck, N. B.; Sperling, J. M.; Scheibe, B.;
Brannon, J. P.; Zurek, E.; Gagliardi, L.; Albrecht, T. E., ‘High-Pressure Effects on an
Octa-Hydrated Curium Complex: An Experimental and Theoretical Investigation’, J.
Am. Chem. Soc. 2025, 147, 6137–6148.
[207] Bajaj, A.; Ramanantoanina, H.; Schacherl, B.; Schenk, S.;
Prussmann, T.; Tasi, A.; Fellhauer, D.; Thompson, A.; Terry, J.; Wang, X.; Zurek, E.;
Vitova, T.; Bagus, P. S.; Autschbach, J., ‘Actinide 5f Occupations: The Case of PuO2’,
2024.
[206] Racioppi, S.; Zurek, E., ‘Looking at High Pressure Electrides Through the Lens of
Quantum Crystallography: The Case of Simple Cubic Calcium’, Acta Cryst. 2025, B81,
256–265.
[205] Haque, T.; Mou, M.; Daigle, S.; Curtarolo, S.; Fahrenholtz, W.; Maria, J. P.;
Wolfe, D.; Zurek, E., ‘The Role of Strain versus Chemical Bonding on Grain Boundary
Structure and Composition in Two High Entropy Carbides’, 2024.
[204] Racioppi, S.; Zurek, E., ‘High-Pressure Electrides: A Quantum Chemical
Perspective’, Annu. Rev. Condens. Matter Phys. 2025, 55.
[203] Redington, M.; Paudel, H. P.; Tafen, D. N.; Miller, D. P.; Zurek, E.; Duan, Y.,
‘Tritium Adsorption and Absorption on (100) and (001) Surfaces of Pure and Tin
Defective Zirconium’, Phys. Chem. Chem. Phys. 2025, 27, 7893–7904.
[202] Kuzovnikov, M. A.; Wang, B.; Wang, X.; Marqueno, T.; Shuttleworth, H. A.;
Strain, C.; Gregoryanz, E.; Zurek, E.; Pena-Alvarez, M.; Howie, R. T., ‘High Pressure
Synthesis of Rubidium Superhydrides’, Phys. Rev. Lett. 2025.
[201] Ding, S.; Wang, S.; Liu, Y.; Zurek, E.; Zhu, L.; Yang, G., ‘Al2B12C with High
Ambipolar Mobility Driven by Unique B-C Framework’, J. Am. Chem. Soc. 2024, 146,
34466–34474.
[200] Deng, L.; Wang, B.; Halbert, C.; Schulze, D. J.;
Gooch, M.; Bontke, T.; Kuo, T. W.; Shi, X.; Song, S.; Salke, N.; Yang, H. D.; Ren, Z.;
Hemley, R. J.; Zurek, E.; Prasankumar, R. P.; Chu, C. W., ‘Creation, Stabilization,
and Investigation at Ambient Pressure of Pressure-Induced Superconductivity in
0.5Sb1.5Te3’, Proc. Natl. Acad. Sci. USA 122, e2423102122.
[199] McIlwaine, N. S.; Rios, N. O. M.; Zurek, E.; Brenner, D. W.; Fahrenholtz, W. G.;
Curtarolo, S.; Wolfe, D. E.; Maria, J.-P., ‘Bipolar HiPIMS kick-pulse for high hardness
in high-entropy boride thin films’, J. Am. Ceram. Soc. 2024, 108, e20257.
[198] Racioppi, S.; De la Roza, A. O.;
Hajinazar, S.; Zurek, E., ‘Powder X-Ray Diffraction Assisted Evolutionary Algorithm
for Crystal Structure Prediction’, Digital Discovery 2025, 4, 73–83.
[197] Wang, X.; Pickett, W.; Hutcheon, M.; Prasankumar, R.; Zurek, E., ‘Why Mg2IrH6
is Predicted to be a High Temperature Superconductor, but Ca2IrH6 is Not’, Angew.
Chem., Int. Ed. 2024, 63, e202412687 (1–5).
[196] Denchfield, A.; Belli, F.;
Zurek, E.; Park, H.; Hemley, R. J., ‘Quantum Stabilization and Flat Hydrogen-based
Bands of Nitrogen-doped Lutetium Hydride’, Phys. Rev. B 2024, 110, 174110 (1–11).
[195] Belli, F.; Zurek, E., ‘Efficient Modelling of Anharmonicity and Quantum Effects in
PdCuH2 with Machine Learning Potentials’, npj Comput. Mater. 2025, 11, 87 (1–9).
[194] Redington, M.; Zurek, E., ‘Predicted High-Pressure Hot Superconductivity in
Li2CaH16 and Li2CaH17 Phases that Resemble the Type-II Clathrate Structure’, Chem.
Mater. 2024, 36, 8412–8423.
[193] Hajinazar, S.; Zurek, E., ‘XtalOpt Version 13: Multi-Objective Evolutionary Search
for Novel Functional Materials’, Comput. Phys. Commun. 2024, 304, 109306.
[192] Wang, X.; Geng, N.; de Villa, K.; Militzer, B.; Zurek, E., ‘Superconductivity in
Dilute Hydrides of Ammonia under Pressure’, J. Phys. Chem. Lett. 2024, 15, 5947–5953.
[191] Ranjan, R.; Redington, M.; Ologun, A.; Zurek, E.; Miller, D. P.; Trenary, M.,
‘Identification of a Stable B2H2 Intermediate in the Decomposition of Zr(BH4)4 on the
Pd(111) Surface’, J. Phys. Chem. C 2024, 128, 12414–12426.
[190] Davariashtiyani, A.; Wang, B.; Hajinazar, S.; Zurek, E.; Kadkhodaei, S., ‘Impact
of Data Bias on Machine Learning for Crystal Compound Synthesizability Predictions’,
Mach. Learn.: Sci. Technol. 2024.
[189] Racioppi, S.; Saffarian-Deemyad, I.; Holle, W.; Belli, F.; Smith, J. S.;
Kenney-Benson, C.; Ferry, R.; Zurek, E.; Deemyad, S., ‘Lithium’s Low-Temperature
Phase Transitions: Insights into Quantum Lattice Dynamics and Superconductivity’,
Phys. Rev. B. 2025, 111, 054111.
[188] Filipovic, S.; Obradovic, N.; Hilmas, G. E.; Fahrenholtz, W. G.; Brenner, D. W.;
Maria, J. P.; Wolfe, D. E.; Zurek, E.; Campilongo, X.; Curtarolo, S., ‘A super-hard
high entropy boride containing Hf, Mo, Ti, V, and W’, J. Am. Ceram. Soc. 2024, 107,
4430–4435.
[187] Liu, Z.; Li, J.; Zurek, E.; Zhuang, Q.; Liu, Y.; Yue, J.; Guo, S.; Zhang, A.; Chi, Z.;
Huang, X.; Cui, T., ‘Emergence of near room-temperature superconductivity in
hydrides with H2 molecular units’, Phys. Rev. B. 2024, 109, L180501 (1–8).
[186] Pandey, P.; Wang, X.; Gupta, H.; Smith, P. W.; Lapsheva, E.; Carroll, P. J.;
Booth, C. H.; Minasian, S. G.; Autschbach, J.; Zurek, E.; Schelter, E. J., ‘Realization
of Organocerium-Based Fullerene Molecular Materials Showing Mott Insulator-Type
Behavior’, ACS Appl. Mater. Interfaces 2023, 16, 17857–17869.
[185] Roberts, J.; Rijal, B.; Divilov, S.; Maria, J. P.; Fahrenholtz, W. G.; Wolfe, D. E.;
Brenner, D. W.; Curtarolo, S.; Zurek, E., ‘Machine Learned Interatomic Potentials for
Ternary Carbides trained on the AFLOW Database’, npj Comput. Mater. 2024, 10, 142
(1–10).
[184] Geng, N.; Hilleke, K. P.; Belli, F.; Das, P. K.; Zurek, E., ‘Superconductivity in CH4
and BH4- Containing Compounds Derived from the High-Pressure Superhydrides’,
Mater. Today Phys. 2024, 44, 101443.
[183] Liang, X.; Wei, X.; Zurek, E.; Bergara, A.; Li, P.; Gao, G., ‘Design of
High-Temperature Superconductors at Moderate Pressures by Alloying AlH3 or GaH3’,
Matter Radiat. Extremes 2024, 9, 018401 (1–10).
[182] Divilov, S.; Eckert, H.; Toher, C.; Friedrich, R.; Zettel, A. C.; Brenner, D. W.;
Fahrenholtz, W. G.; Wolfe, D. E.; Zurek, E.; Maria, J. P.; Hotz, N.; Campilongo, X.;
Curtarolo, S., ‘A Priori Procedure to Establish Spinodal Decomposition in Alloys’, Acta
Mater. 2023, 266, 119667 (1–7).
[181] Daigle, S. E.; Curtarolo, S.; Fahrenholtz, W. G.;
Maria, J. P.; Wolfe, D. E.; Zurek, E.; Brenner, D. W., ‘Interfacial Defect Properties
of High-Entropy Carbides: Stacking Faults, Shockley Partial Dislocations, and a New
Evans-Polanyi-Semenov Relation’, Phys. Rev. Mater. 2025, 9, 053601.
[180] Li, H.; Zhang, Y.; He, J.; Geng, N.; Chariton, S.; Prakapenka, V.; Zurek, E.;
Lin, J. F.; Zhou, J., ‘Experimental and Theoretical Study of Polytypes to Perovskite
Phase Transition in BaPtO3 under High Pressure and High Temperature’, Phys. Rev. B
2024, 110, 094108 (1–19).
[179]
Storm, C. V.; Racioppi, S.; Duff, M. J.; McHardy, J. D.; Zurek, E.; McMahon, M. I.,
‘Experimental Evidence of Interstitial Electron Density in Transparent Dense Sodium’,
2023.
[178] Peterson, G. G. C.; Hilleke, K. P.; Lotfi, S.; Zurek, E.; Brgoch, J., ‘Twists and
Puckers: Tuning Crystal Chemistry in the La(Au𝑥Ge1-𝑥)2 Compositional Series’, J. Am.
Chem. Soc. 2023, 145, 21612–21622.
[177] Divilov, S.; Eckert, H.; Hicks, D.; Oses, C.; Toher, C.; Friedrich, R.; Esters, M.;
Mehl, M. J.; Zettel, A. C.; Lederer, Y.; Zurek, E.; Maria, J.-P.; Brenner, D. W.;
Campilongo, X.; Filipovic, S.; Fahrenholtz, W. G.; Ryan, C. J.;
DeSalle, C. M.; Crealese, R. J.; Wolfe, D. E.; Calzolari, A.; Curtarolo, S., ‘Disordered
enthalpy-entropy descriptor for high-entropy ceramics discovery’, Nature 2024, 625,
66–73.
[176] Racioppi, S.; Storm, C. V.; McMahon, M. I.; Zurek, E., ‘On the Electride Nature
of Na-hP4’, Angew. Chem. Int. Ed. 2023, 135, e202310802 (1–5).
[175] Wang, B.; Hilleke, K. P.; Hajinazar, S.; Frapper, G.;
Zurek, E., ‘Structurally Constrained Evolutionary Algorithm for the Discovery and
Design of Metastable Phases’, J. Chem. Theory Comput. 2023, 19, 7960–7971.
[174] Hilleke, K. P.; Wang, X.; Luo, D.; Geng, N.; Wang, B.; Belli, F.; Zurek, E.,
‘Structure, Stability and Superconductivity of N-doped Lutetium Hydrides at kbar
Pressures’, Phys. Rev. B 2023, 108, 014511 (1–12).
[173] Racioppi, S.; Miao, M.; Zurek, E., ‘Intercalating Helium into A-site Vacant
Perovskites’, Chem. Mater. 2023, 35, 4297–4310.
[172] Wei, X.; Hao, X.; Bergara, A.; Zurek, E.; Liang, X.; Wang, L.; Song, X.; Li, P.;
Wang, L.; Gao, G.; Tian, Y., ‘Designing Ternary Superconducting Hydrides with
A15-type Structure at Moderate Pressures’, Mater. Today Phys. 2023, 34, 101086.
[171] Hanson, M. D.; Miller, D. P.; Kondeti, C.; Brown, A.; Zurek, E.; Simpson, S., ‘A
Computational Experiment Introducing Undergraduates to Geometry Optimizations,
Vibrational Frequencies, and Potential Energy Surfaces’, J. Chem. Educ. 2023, 100,
921–927.
[170] Fang, M.; Kumar, G. S.; Racioppi, S.; Zhang, H.; Zurek, E.; Lin, Q., ‘Hydrazonyl
Sultones as Stable Tautomers of Highly Reactive Nitrile Imines for Fast Bioorthogonal
Ligation Reaction’, J. Am. Chem. Soc. 2023, 145, 9959–9964.
[169] Geng, N.; Hilleke, K. P.; Zhu, L.; Wang, X.; Strobel, T. A.;
Zurek, E., ‘Conventional High-Temperature Superconductivity in Metallic, Covalently
Bonded, Binary-Guest C-B clathrates’, J. Am. Chem. Soc. 2023, 145, 1696–1706.
[168] Wolfe, D. E.; DeSalle, C. M.; Ryan, C. J.; Slapikas, R. E.;
Sweny, R. T.; Crealese, R. J.; Kolonin, P. A.; Stepanoff, S. P.; Haque, A.; Divilov, S.;
Eckert, H.; Oses, C.; Esters, M.; Brenner, D. W.; Fahrenholtz, W. G.; Maria, J.-P.;
Toher, C.; Zurek, E.; Curtarolo, S., ‘Influence of Processing on the Microstructural
Evolution and Multiscale Hardness in Titanium Carbonitrides (TiCN) Produced via
Field Assisted Sintering Technology’, Materialia 2023, 27, 101682.
[167] Hilleke, K. P.; Zurek, E., ‘3.13 - Crystal chemistry at high pressure’, in Reedijk, J.;
Poeppelmeier, K. R. (editors), ‘Comprehensive Inorganic Chemistry III’, Elsevier,
Oxford, third edition edition, 2023, 421–445.
[166] Antle, J. P.; Kimura, M. W.; Racioppi, S.; Damon, C.;
Lang, M.; Gatley-Montross, C.; S., S. B. L.; Miller, D. P.; Zurek, E.; Brown, A. M.;
Gast, K.; Simpson, S. M., ‘Applying Density Functional Theory to Common Organic
Mechanisms: A Computational Exercise’, J. Chem. Educ. 2023, 100, 355–360.
[165] Hilleke, K. P.; Franco, R.; Pertierra, P.; Salvado, M. A.; Zurek, E.; Recio, J. M.,
‘Preference for a Pressure-Induced Orthorhombic Structure after 1T-HfSe2’, Mater.
Today Phys. 2023, 36, 101152 (1–9).
[164] Oses, C.; Esters, M.; Hicks, D.; Divilov, S.; Eckert, H.; Friedrich, R.; Mehl, M. J.;
Smolyanyuk, A.; Campilongo, X.; van de Walle, A.; Schroers, J.; Kusne, A. G.;
Takeuchi, I.; Zurek, E.; Nardelli, M. B.; Fornari, M.; Lederer, Y.; Levy, O.; Toher, C.;
Curtarolo, S., ‘aflow++: A C++ Framework for Autonomous Materials Design’,
Comput. Mater. Sci. 2023, 217, 111889 (1–36).
[163] Sobiech, T. A.; Zhong, Y.; Miller, D. P.; McGrath, J. K.;
Scalzo, C. T.; Redington, M. C.; Zurek, E.; Gong, B., ‘Ultra-Tight Host-Guest Binding
with Exceptionally Strong Positive Cooperativity’, Angew. Chem. Int. Ed. 2022, 61,
e202213467 (1–5).
[162] Hilleke, K.; Zurek, E., ‘Rational Design of Superconducting Metal Hydrides via
Chemical Pressure Tuning’, Angew. Chem. Int. Ed. 2022, 61, e202207589 (1–7).
[161] Wang, B.; Hilleke, K. P.; Wang, X.; Polsin, D. N.; Zurek, E., ‘Topological
Electride Phase of Sodium at High Pressures and Temperatures’, Phys. Rev. B 2023, 107,
184101 (1–8).
[160] Roberts, J.; Zurek, E., ‘Computational Materials Discovery’, J. Chem. Phys. 2022,
156, 210401 (1–6).
[159] Wang, X.; Proserpio, D. M.; Oses, C.; Toher, C.; Curtarolo, S.; Zurek, E., ‘The
Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon
Allotropes at Ambient Pressure’, Angew. Chem. Int. Ed. 2022, 61, e202205129 (1–4).
[158]
Yang, H. J.; Redington, M.; Miller, D. P.; Zurek, E.; Kim, M.; Yoo, C.-S.; Lim, S. Y.;
Cheong, H.; Chae, S.-A.; Ahn, D.; Hur, N. H., ‘New Monoclinic Ruthenium Dioxide
with Highly Selective Hydrogenation Activity’, Catal. Sci. Technol. 2022, 12, 6556–6565.
[157] Cao, R.; Rossdeutcher, R. B.; Zhong, Y.; Shen, Y.; Miller, D. P.; Sobiech, T. A.;
Wu, X.; Sanchez Buitrago, L.; Ramcharan, K.; Gutay, M. I.;
Frankenthal Figueira, M.; Luthra, P.; Zurek, E.; Szyperski, T.; Button, B.; Shao, Z.;
Gong, B., ‘Aromatic Pentaamide Macrocycles Bind Anions with High Affinity for
Transport Across Biomembranes’, Nat. Chem 2023, 15, 1559–1568.
[156] Schunke, C.; Miller, D. P.; Zurek, E.; Morgenstern, K., ‘Halogen and Structure
Sensitivity of Halobenzene Adsorption on Copper Surfaces’, Phys. Chem. Chem. Phys.
2022, 24, 4485–4492.
[155] Geng, N.; Bi, T.; Zurek, E., ‘Structural Diversity and Superconductivity in S-P-H
Ternary Hydrides Under Pressure’, J. Phys. Chem. C 2022, 126, 7208–7220.
[154] Hilleke, K. P.; Bi, T.; Zurek, E., ‘Materials Under High Pressure: A Chemical
Perspective’, J. Appl. Phys. 2022, 128, 441 (1–22).
[153] Zhang, S.; Morales, M. A.; Jeanloz, R.; Millot, M.; Hu, S. X.; Zurek, E., ‘Nature
of the Bonded-to-Atomic Transition in Liquid Silica to TPa Pressures’, J. Appl. Phys. 2022,
131, 071101 (1–12).
[152] Breeman, B.; Tiglias, A. T.; Mancuso, J.; Zurek, E.; Miller, D. P.; Velarde, L.,
‘Insight into the Adsorption Structure of TIPS-Pentacene on Noble Metal Surfaces’, J.
Phys. Chem. C 2022, 126, 2689–2698.
[151] Hilleke, K. P.; Zurek, E., ‘Tuning Chemical Precompression: Theoretical Design
and Crystal Chemistry of Novel Hydrides in the Quest for Warm and Light
Superconductivity at Ambient Pressures’, J. Appl. Phys. 2022, 131, 070901 (1–19).
[150] Kumar, G. S.; Racioppi, S.; Zurek, E.; Lin, Q., ‘Superfast Tetrazole-BCN
Cycloaddition Reaction for Bioorthogonal Protein Labelling in Live Cells’, J. Am. Chem.
Soc. 2022, 144, 57–62.
[149] Wang, X.; Bi, T.; Hilleke, K. P.; Lamichhane, A.; Hemley, R. J.; Zurek, E., ‘Dilute
Carbon in H3S Under Pressure’, npj Comput. Mater. 2022, 8, 87 (1–9).
[148] Sobiech, T. A.; Zhong, Y.;
Sanchez B, L. S.; Kauffmann, B.; McGrath, J. K.; Scalzo, C.; Miller, D. P.; Huc, I.;
Zurek, E.; Ferrand, Y.; Gong, B., ‘Stable Pseudo[3]rotaxanes with Strong Positive
Binding Cooperativity Based on Shape-Persistent Aromatic Oligoamide Macrocycles’,
Chem. Commun. 2021, 57, 11645–11648.
[147] Bertram, C.;
Miller, D. P.; Schunke, C.; Kemeny, I.; Kimura, M. W.; Bovensiepen, U.; Zurek, E.;
Morgenstern, K., ‘Interplay of Halogen and Weak Hydrogen Bonds in the Formation of
Magic Nanoclusters on Surfaces’, J. Phys. Chem. C 2022, 126, 588–596.
[146] Berhane, I.; Burde, A. S.; Kennedy-Ellis, J. J.; Zurek, E.; Chemler, S. R.,
‘Copper-Catalyzed Enantioselective Alkene Carboetherification for the Synthesis of
Saturated Six-Membered Cyclic Ethers’, Chem. Commun. 2021, 57, 10099–10102.
[145] Yu, X.; Zhou, T.; Zhao, Y.; Lu, F.; Zhang, X.; Liu, G.; Gou, H.; Zurek, E.; Luo, X.,
‘Surface Magnetism in Pristine α Rhombohedral Boron and Intersurface Exchange
Coupling Mechanism of Boron Icosahedra’, J. Phys. Chem. Lett. 2021, 12, 6812–6817.
[144] Yang, Q.; Lin, J.; Li, F.; Zhang, J.; Zurek, E.; Yang, G., ‘Pressure-Induced Yttrium
Oxides with Unconventional Stoichiometries and Novel Properties’, Phys. Rev. Mater.
2021, 5, 044802 (1–7).
[143] Sun, X.; Zhong, Y.; Li, Y.-H.; Miller, D. P.; Buttan, S.; Wu, X.-X.; Zhang, Y.;
Tang, Q.; Tan, H.-W.; Zhu, J.; Liu, R.; Zurek, E.; Lu, Z.-L.; Gong, B., ‘Reliable Folding
of Hybrid Tetrapeptides into Short beta-Hairpins’, Chin. Chem. Lett. 2021, 33, 257–261.
[142] Hilleke, K. P.; Ogitsu, T.; Zhang, S.; Zurek, E., ‘Structural Motifs and Bonding in
Two Families of Boron Structures Predicted at Megabar Pressures’, Phys. Rev. Mater.
2021, 5, 053605 (1–14).
[141] Kurzydlowski, D.; Derzsi, M.; Zurek, E.; Grochala, W., ‘Fluorides of Silver Under
Large Compression’, Chem. Eur. J. 2021, 27, 5536–5545.
[140] Bi, T.; Shamp, A.; Terpstra, T.; Hemley, R. J.; Zurek, E., ‘The Li-F-H Ternary
System at High Pressures’, J. Chem. Phys. 2021, 154, 124709 (1–11).
[139] Swanson, W. B.; Tabaczynski, D.; Lis, D.; Zurek, E.;
Kozik, M., ‘Direct Experimental 31P 2D DOSY NMR Evidence for Oligomerization of
Transition-Metal Substituted Polyoxotungstates in Nonpolar Solvents’, Polyhedron 2021,
204, 115174 (1–10).
[138] Lilia, B.; Hennig, R.; Hirschfeld, P.; Profeta, G.; Sanna, A.; Zurek, E.;
Pickett, W. E.; Amsler, M.; Dias, R.; Eremets, M. I.; Heil, C.; Hemley, R. J.; Liu, H.;
Ma, Y.; Pierleoni, C.; Kolmogorov, A. N.; Rybin, N.; Novoselov, D.; Anisimov, V.;
Oganov, A. R.; Pickard, C. J.; Bi, T.; Arita, R.; Errea, I.; Pellegrini, C.; Requist, R.;
Gross, E. K. U.; Margine, E. R.; Xie, S. R.; Quan, Y.; Hire, A.; Fanfarillo, L.;
Stewart, G. R.; Hamlin, J. J.; Stanev, V.; Gonnelli, R. S.; Piatti, E.; Romanin, D.;
Daghero, D.; Valenti, R., ‘The 2021 Room-Temperature Superconductivity Roadmap’,
J. Phys. Condens. Mat. 2022, 34, 183002 (1–51).
[137] Falls, Z.; Avery, P.; Wang, X.; Hilleke, K. P.; Zurek, E., ‘The XtalOpt Evolutionary
Algorithm for Crystal Structure Prediction’, J. Phys. Chem. C 2021, 125, 1601–1620.
[136] Riedel, R.; Seel, A. G.; Malko, D.; Miller, D. P.; Sperling, B. T.; Choi, H.;
Headen, T. F.; Zurek, E.; Porch, A.; Kucernak, A.; Pyper, N. C.; Edwards, P. P.;
Barrett, A. G. M., ‘Superalkali-Alkalide Interactions and Ion Pairing in Low-Polarity
Solvents’, J. Am. Chem. Soc. 2021, 143, 3934–3943.
[135] Yan, Y.; Bi, T.; Geng, N.; Wang, X.; Zurek, E., ‘A Metastable CaSH3 Phase
Composed of HS Honeycomb Sheets that is Superconducting Under Pressure’, J. Phys.
Chem. Lett. 2020, 11, 9629–9636.
[134] Cai, W.; Lin, W.; Yan, Y.; Hilleke, K. P.; Coles, J.; Bao, J.-K.; Xu, J.; Zhang, D.;
Chung, D. Y.; Kanatzidis, M. G.; Zurek, E.; Deemyad, S.,
‘Pressure-Induced Superconductivity in the Wide Band Gap Semiconductor Cu2Br2Se6
with a Robust Framework’, Chem. Mater. 2020, 32, 6237–6246.
[133] Cui, X.; Hilleke, K. P.;
Wang, X.; Lu, M.; Zhang, M.; Zurek, E.; Li, W.; Zhang, D.; Yan, Y.; Bi, T., ‘RbB3Si3:
An Alkali Metal Borosilicide that is Metastable and Superconducting at 1 atm’, J. Phys.
Chem. C 2020, 124, 14826–14831.
[132] Du, Y.; Li, W.; Zurek, E.; Gao, L.; Cui, X.; Zhang, M.; Liu, H.;
Tian, Y.; Zhang, S.; Zhang, D., ‘Predicted CsSi Compound: A Promising Material for
Photovoltaic Applications’, Phys. Chem. Chem. Phys. 2020, 22, 11578–11582.
[131] Zhong, Y.; Tang, Q.; Miller, D. P.; Zurek, E.; Liu, R.; Lu, Z.-L.; Gong, B., ‘Major
Factors for the Persistent Folding of Hybrid α, β, γ-Hybrid Peptides into Hairpins’, Front.
Chem. 2020, 8, 530083 (1–10).
[130] Cui, W.; Bi, T.; Shi, J.; Li, Y.; Liu, H.; Zurek, E.; Hemley, R. J., ‘Route to High-𝑇𝑐
Superconductivity via CH4-Intercalated H3S Hydride Perovskites’, Phys. Rev. B 2020, 101,
134504 (1–5).
[129] Bi, T.; Zurek, E., ‘Electronic Structure and Superconductivity of Compressed Metal
Tetrahydrides’, Chem. Eur. J. 2021, 27, 14848–14870.
[128] Tang, Q.; Zhong, Y.; Miller, D. P.; Liu, R.; Zurek, E.; Lu, Z.-L.; Gong, B., ‘Reverse
Turn Foldamers: An Expanded β-Turn Motif Reinforced by Double Hydrogen Bonds’,
Org. Lett. 2020, 22, 1003–1007.
[127] Miao, M.; Sun, Y.; Zurek, E.; Lin, H., ‘Chemistry Under High Pressure’, Nat. Rev.
Chem. 2020, 4, 508–527.
[126] Kou, C.; Tian, Y.; Zhang, M.; Zurek, E.; Qu, X.; Wang, X.; Yin, K.; Yan, Y.;
Gao, L.; Lu, M.; Yang, W., ‘M-graphene: A Metastable Two-Dimensional Carbon
Allotrope’, 2D Mater. 2020, 7, 025047 (1–7).
[125] Hu, Y.; Adhikari, D.; Tan, A.; Dong, X.; Zhu, T.;
Wang, X.; Huang, Y.; Mitchell, T.; Yao, Z.; Dasenbrock-Gammon, N.; Snider, E.;
Dias, R. P.; Huang, C.; Kim, R.; Neuhart, I.; Ali, A. H.; Zhang, J.; Bechtel, H. A.;
Martin, M. C.; Corder, S. N. G.; Hu, F.; Li, Z.; Armstrong, J. N.; Wang, J.; Liu, M.;
Benedict, J.; Zurek, E.; Sambandamurthy, G.; Grossmann, J. C.; Zhang, P.; Ren, S.,
‘Laser-Induced Cooperative Transition in Molecular Electronic Crystal’, Adv. Mater.
2021, 33, 2103000 (1–9).
[124] Wang, Q.; Zhong, Y.; Miller, D. P.; Lu, X.; Tang, Q.; Lu, Z.-L.; Zurek, E.; Liu, R.;
Gong, B., ‘Self-Assembly and Molecular Recognition in Water: Tubular Stacking and
Guest-Templated Discrete Assembly of Water-Soluble, Shape-Persistent Macrocycles’, J.
Am. Chem. Soc. 2020, 142, 2915–2924.
[123] Zhao, L.; Liu, W.; Yi, W.; Hu, T.; Khodagholian, D.; Gu, F.; Lin, H.; Zurek, E.;
Zheng, Y.; Miao, M., ‘Nano-Makisu: Highly Anisotropic Two-Dimensional Carbon
Allotropes Made by Weaving Together Nanotubes’, Nanoscale 2020, 12, 347–355.
[122] Selvakumar, J.; Simpson, S. M.; Zurek, E.; Arumugam, K., ‘An Electrochemically
Controlled Release of NHCs Using Iron Bis(dithiolene) N-heterocyclic Carbene
Complexes’, Inorg. Chem. Front. 2021, 8, 59–71.
[121] Geng, N.; Bi, T.; Zarifi, N.; Yan, Y.; Zurek, E., ‘A First-Principles Exploration of
Na𝑥S𝑦 Binary Phases at 1 atm and Under Pressure’, Crystals 2019, 9, 441 (1–17).
[120] Sperling, J. M.; Warzecha, E. J.; Celis-Barros, C.; Sergentu, D.-C.;
Wang, X.; Klamm, B. E.; Windorff, C. J.; Gaiser, A. N.; White, F. D.; Beery, D. A.;
Chemey, A. T.; Whitefoot, M. A.; Long, B. N.; Hanson, K.; Kögerler, P.;
Speldrich, M.; Zurek, E.; Autschbach, J.; Albrecht-Schönzart, T. E., ‘Compression of
Curium Pyrrolidine-Dithiocarbamate Enhances Covalency’, Nature 2020, 583, 396–399.
[119] Miller, D. P.; Phillips, A.; Ludowieg, H.; Swihart, S.; Autschbach, J.; Zurek, E.,
‘The Computational Design of Two-Dimensional Materials’, J. Chem. Educ. 2019, 96,
2308–2314.
[118] Avery, P.; Wang, X.; Oses, C.; Gossett, E.;
Proserpio, D. M.; Toher, C.; Curtarolo, S.; Zurek, E., ‘Predicting Superhard Materials
via a Machine Learning Informed Evolutionary Structure Search’, npj Comput. Mater.
2019, 5, 89 (1–11).
[117] Zhang, Y.; Zhong, Y.; Connor, A. L.; Miller, D. P.; Cao, R.; Shen, J.; Song, B.;
Baker, E. S.; Tang, Q.; Pulavarti, S. V. S. R. K.; Liu, R.; Wang, Q.; Lu, Z.-L.;
Szyperski, T.; Zeng, H.; Li, X.; Smith, R. D.; Zurek, E.; Zhu, J.; Gong, B., ‘Folding
and Assembly of Short α, β, γ-hybrid Peptides: Minor Variations in Sequence and Drastic
Differences in Higher-Level Structures’, J. Am. Chem. Soc. 2019, 14239-14248, 141.
[116] Zurek, E.; Bi, T., ‘High-Temperature Superconductivity in Alkaline and Rare Earth
Polyhydrides at High Pressure: A Theoretical Perspective’, J. Chem. Phys. 2019, 150,
050901 (1–13).
[115] Zurek, E., ‘Pushing Towards Room-Temperature Superconductivity’, Physics 2019,
12, 1.
[114] Li, W.; Lu, M.; Zurek, E.; Xu, X.; Chen, L.; Zhang, M.; Gao, L.; Zhong, X.;
Li, J.; Zhou, X.; Liu, W., ‘Crystal Structures of Silicon-Rich Lithium Silicides at High
Pressure’, Phys. Lett. A 2019, 383, 1047–1051.
[113] Avery, P.; Toher, C.; Curtarolo, S.; Zurek, E., ‘XtalOpt version r12: An Open-Source
Evolutionary Algorithm for Crystal Structure Prediction’, Comput. Phys. Commun. 2019,
237, 274–275.
[112] Liu, W.;
Zhao, L.; Zurek, E.; Xia, J.; Zheng, Y.-H.; Lin, H.-Q.; Liu, J.-Y.; Miao, M.-S., ‘Building
Egg-Tray-Shaped Graphenes that have Superior Mechanical Strength and Band Gap’,
npj Comput. Mater. 2019, 5, 71 (1–8).
[111] Zarifi, N.; Bi, T.; Liu, H.; Zurek, E., ‘Crystal Structures and Properties of Iron
Hydrides at High Pressure’, J. Phys. Chem. C 2018, 122, 24262–24269.
[110] Borges-Munoz, A. C.; Miller, D. P.; Zurek, E.; Colon, L., ‘Silanization of
Superficially Porous Silica Particles with p-Aminophenyltrimethoxysilane’, Microchem.
J. 2019, 147, 263–268.
[109] Fu, Z. H.; Bi, T. G.; Zhang, S. H.; Chen, S.; Zurek, E.; Legut, D.; German, T. C.;
Lookman, T.; Zhang, R. F., ‘Anchoring Effect of Distorted Octahedra on the Stability
and Strength of Platinum Metal Pernitrides’, Phys. Rev. Mater. 2019, 3, 013603 (1–8).
[108] Bi, T.; Zarifi, N.; Terpstra, T.; Zurek, E., ‘The Search for Superconductivity in High
Pressure Hydrides’, in Reedijk, J. (editor), ‘Reference Module in Chemistry, Molecular
Sciences and Chemical Engineering’, Elsevier, Waltham, MA, 2019, 1–36.
[107] Gaffney, J. A.; Hu, S. X.; Arnault, P.; Becker, A.; Benedict, L. X.; Boehly, T. R.;
Celliers, P. M.; Ceperley, D. M.; Certik, O.; Clerouin, J.; Collins, G. W.;
Collins, L. A.; Danel, J. F.; Desbiens, N.; Dharma-wardana, M. W. C.; Ding, Y. H.;
Fernandez-Panella, A.; Gregor, M. C.; Grabowski, P. E.; Hamel, S.; Hansen, S. B.;
Harbour, L.; He, X. T.; Johnson, D. D.; Kang, W.; Karasiev, V. V.; Kazandjian, L.;
Knudson, M. D.; Ogitsu, T.; Pierleoni, C.; Piron, R.; Redmer, R.;
Robert, G.; Saumon, D.; Shamp, A.; Sjostrom, T.; Smirnov, A. V.; Starrett, C. E.;
Sterne, P. A.; Wardlow, A.; Whitley, H. D.; Wilson, B.; Zhang, P.; Zurek, E., ‘A
Review of Equation-of-State Models for Inertial Confinement Fusion Materials’, High
Energ. Dens. Phys. 2018, 28, 7–24.
[106]
Mishra, A. K.; Muramatsu, T.; Liu, H.; Geballe, Z. M.; Somayazulu, M.; Ahart, M.;
Baldini, M.; Meng, Y.; Zurek, E.; Hemley, R. J., ‘New Calcium Hydrides with Mixed
Atomic and Molecular Hydrogen’, J. Phys. Chem. C 2018, 122, 19370–19378.
[105] Bennett, J. A.;
Miller, D. P.; Simpson, S. M.; Rodrigues, M.; Zurek, E., ‘Electrochemical Atomic
Force Microscopy and First-Principles Calculations of Ferriprotoporphyrin Adsorption
and Polymerization’, Langmuir 2018, 34, 11335–11346.
[104] Toher, C.; Oses, C.; Hicks, D.;
Gossett, E.; Rose, F.; Nath, P.; Usanmaz, D.; Ford, D. C.; Perim, E.; Calderon, C. E.;
Plata, J. J.; Lederer, Y.; Jahnatek, M.; Setyawan, W.; Wang, S.; Xue, J.; Rasch, K.;
Chepulskii, R. V.; Taylor, R. H.; Gomez, G.; Shi, H.; Supka, A. R.; Al Orabi, R.
A. R.; Gopal, P.; Cerasoli, F. T.; Liyanage, L.; Wang, H.; Siloi, I.; Agapito, L. A.;
Nyshadham, C.;
Hart, G. L. W.; Carrete, J.; Legrain, F.; Mingo, N.; Zurek, E.; Isayev, O.; Tropsha, A.;
Sanvito, S.; Hanson, R. M.; Takeuchi, I.; Mehl, M. J.; Kolmogorov, A. N.; Yang, K.;
D’Amico, P.; Calzolari, A.; Costa, M.; De Gennaro, R.; Nardelli, M. B.; Fornari, M.;
Levy, O.; Curtarolo, S., ‘The AFLOW Fleet for Materials Discovery’, in Andreoni, W.;
Yip, S. (editors), ‘Handbook of Materials Modeling. Volume 1 Methods: Theory and
Modeling’, Vol. 1, Springer, Cham, Switzerland, 2018, 1–28.
[103] Gossett, E.; Toher, C.; Oses, C.; Isayev, O.; Legrain, F.; Rose, F.; Zurek, E.;
Carrete, J.; Mingo, N.; Tropsha, A.; Curtarolo, S., ‘AFLOW-ML: A RESTful API for
Machine-Learning Predictions of Materials Properties’, Comput. Mater. Sci. 2018, 152,
134–145.
[102] Zarifi, N.; Liu, H.; Tse, J. S.; Zurek, E., ‘Crystal Structures and Electronic
Properties of Xe-Cl Compounds at High Pressure’, J. Phys. Chem. C 2018, 122, 2941–2950.
[101] Shelton, H.; Bi, T.; Zurek, E.; Smith, J.; Dera, P., ‘The Ideal Crystal Structure
of Cristobalite X-I: A Bridge in SiO2 Densification’, J. Phys. Chem. C 2018, 122,
17437–17446.
[100] Avery, P.; Falls, Z.; Zurek, E., ‘XtalOpt Version r11: An Open-Source Evolutionary
Algorithm for Crystal Structure Prediction’, Comput. Phys. Commun. 2018, 222, 418–419.
[99] Ye, X.; Zarifi, N.; Zurek, E.; Hoffmann, R.; Ashcroft, N. W., ‘High Hydrides of
Scandium Under Pressure: Potential Superconductors’, J. Phys. Chem. C 2018, 122,
6298–6309.
[98] Liu, Z.; Botana, J.; Hermann, A.; Valdez, S.; Zurek, E.; Yan, D.; Lin, H.-Q.;
Miao, M.-S., ‘Reactivity of He with Ionic Compounds Under High Pressure’, Nat.
Commun. 2018, 9, 951 (1–10).
[97] Avery, P.; Ludowieg, H.; Autschbach, J.; Zurek, E., ‘Extended Hückel Calculations
on Solids using the Avogadro Molecular Editor and Visualizer’, J. Chem. Educ. 2018, 95,
331–337.
[96] Teeter, J. D.; Costa, P. S.; Pour, M. M.; Miller, D. P.; Zurek, E.; Enders, E.;
Sinitskii, A., ‘Epitaxial Growth of Aligned Atomically Precise Chevron Graphene
Nanoribbons on Cu(111)’, Chem. Commun. 2017, 53, 8463–8466.
[95] Zhang, R.; Cai, W.; Bi, T.; Zarifi, N.; Terpstra, T.; Zhang, C.; Valy Verdeny, Z.;
Zurek, E.; Deemyad, S., ‘Effects of Non-Hydrostatic
Stress on Structural and Optoelectronic Properties of Methylammonium Lead Bromide
Perovskite’, J. Phys. Chem. Lett. 2017, 8, 3457–3465.
[94] Zhang, X.; Costa, P. S.; Hooper, J.; Miller, D. P.; N’Diaye, A. T.; Beniwal, S.;
Jiang, X.; Yin, Y.; Rosa, P.; Routaboul, L.; Gonidec, M.; Poggini, L.; Braunstein, P.;
Doudin, B.; Xu, X.; Enders, A.; Zurek, E.; Dowben, P. A., ‘Locking and Unlocking
the Molecular Spin Crossover Transition’, Adv. Mater. 2017, 29, 1702257 (1–10).
[93] Hu, T.; Connor, A. L.; Miller, D. P.; Wang, X.; Pei, Q.; Liu, R.;
He, L.; Zheng, C.; Zurek, E.; Lu, Z.-L.; Gong, B., ‘Helical Folding of Meta-Connected
Aromatic Oligoureas’, Org. Lett. 2017, 19, 2666–2669.
[92] Bi, T.; Miller, D. P.; Shamp, A.; Zurek, E., ‘Superconducting Phases of Phosphorus
Hydride Under Pressure: Stabilization by Mobile Molecular Hydrogen’, Angew. Chem.
Int. Ed. 2017, 56, 10192–10195.
[91] Shamp, A.; Zurek, E.; Ogitsu, T.; Fratanduono, D. E.; Hamel, S., ‘Properties of
B4C in the Shocked State for Pressures up to 1.5 TPa’, Phys. Rev. B 2017, 95, 184111 (1–9).
[90] Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A., ‘Accurate and Precise ab
initio Anharmonic Free-Energy Calculations for Metallic Crystals. Application to hcp
Fe at High Temperature and Pressure’, Phys. Rev. B 2017, 96, 014117 (1–13).
[89] Avery, P.; Falls, Z.; Zurek, E., ‘XtalOpt version r10: An Open-Source Evolutionary
Algorithm for Crystal Structure Prediction’, Comput. Phys. Commun. 2017, 217, 210–211.
[88] Shamp, A.; Zurek, E., ‘Superconductivity in Hydrides Doped with Main Group
Elements Under Pressure’, Nov. Supercond. Mater. 2017, 3, 14–22.
[87] Miller, D. P.; Hooper, J.; Simpson, S.;
Costa, P. S.; Tyminska, N.; McDonnell, S. M.; Bennett, J. A.; Enders, A.; Zurek, E.,
‘Electronic Structure of Iron Porphyrin Adsorbed to the Pt(111) Surface’, J. Phys. Chem.
C 2016, 120, 29173–29181.
[86] Avery, P.; Zurek, E., ‘RandSpg: An Open-Source Program for Generating Atomistic
Crystal Structures with Specific Spacegroups’, Comput. Phys. Commun. 2017, 213,
208–216.
[85] Beniwal, S.; Hooper, J.; Miller, D. P.;
Costa, P.; Chen, G.; Liu, S.-Y.; Dowben, P. A.; Sykes, E. C. H.; Zurek, E.; Enders, A.,
‘Graphene-Like Boron-Carbon-Nitrogen Monolayers’, ACS Nano 2017, 11, 2486–2493.
[84] Falls, Z.; Zurek, E.; J., A., ‘Computational Prediction and Analysis of the 27Al
Solid-State NMR Spectrum of Methylaluminoxane (MAO) at Variable Temperatures and
Field Strengths’, Phys. Chem. Chem. Phys. 2016, 18, 24106–24118.
[83] Fratanduono, D. E.; Celliers, P. M.; Braun, D. G.;
Sterne, P. A.; Hamel, S.; Shamp, A.; Zurek, E.; Wu, K. J.; Lazicki, A. E.; Millot, M.;
Collins, G. W., ‘Equation of State, Adiabatic Sound Speed and Gruneisen Coefficient of
Boron Carbide Along the Principal Hugoniot to 700 GPa (7 Mbar)’, Phys. Rev. B. 2016,
94, 184107 (1–7).
[82] Zurek, E., ‘Hydrides of the Alkali Metals and Alkaline Earth Metals Under Pressure’,
Comments Inorg. Chem. 2017, 37, 78–98.
[81] Mounce, A.; Yasuoka, H.; Koutroulakis, G.; Lee, J. A.; Cho, H.;
Gendron, F.; Zurek, E.; Scott, B. L.; Trujillo, J. A.; Slemmons, A. K.; Cross, J. N.;
Thompson, J. D.; Kozimor, S. A.; Bauer, E. D.; Autschbach, J.;
Clark, D. L., ‘Nuclear Magnetic Resonance Measurements and Electronic Structure of
Pu(IV) in [Me4N]2PuCl6’, Inorg. Chem. 2016, 55, 8371–8380.
[80] Zurek, E., ‘The Pressing Role of Theory in Studies of Compressed Matter’, in
Dronskowski, R. (editor), ‘Handbook of Solid State Chemistry’, Vol. 5, Wiley-VCH
Verlag GmbH & Co., Weinheim, Germany, 2017, 571–605.
[79] Simpson, S.; Hooper, J.; Miller, D. P.; Kunkel, D. A.; Enders, E.; Zurek, E.,
‘Modulating Bond Lengths via Backdonation: A First-Principles Investigation of a
Quinonoid Zwitterion Adsorbed to Coinage Metal Surfaces’, J. Phys. Chem. C 2016, 120,
6633–6641.
[78] Luo, X.; Zurek, E., ‘Crystal Structures and Electronic Properties of Single-Layer,
Few-Layer and Multilayer GeH’, J. Phys. Chem. C 2016, 120, 793–800.
[77] Murphy, C. J.; Miller, D. P.; Simpson, S.;
Baggett, A.; Pronschinske, A.; Liriano, M. L.; Therrien, A. J.; Enders, A.; Liu, S.-Y.;
Zurek, E.; Sykes, E. C. H., ‘Charge-Transfer-Induced Magic Cluster Formation of
Azaborine Heterocycles on Noble Metal Surfaces’, J. Phys. Chem. C 2016, 120, 6020–6030.
[76] Costa, P. S.; Miller, D. P.;
Teeter, J. D.; Beniwal, S.; Zurek, E.; Sinitskii, A.; Hooper, J.; Enders, A., ‘Structure
and Proton-Transfer Mechanism in One-Dimensional Chains of Benzimidazoles’, J.
Phys. Chem. C. 2016, 120, 5804–5809.
[75] Shamp, A.; Terpstra, T.; Bi, T.; Falls, Z.; Avery, P.; Zurek, E., ‘Decomposition
Products of Phosphine Under Pressure: PH2 Stable and Superconducting?’, J. Am. Chem.
Soc. 2016, 138, 1884–1892.
[74] Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.;
Veprek, S.; Zurek, E.; Mao, H. K., ‘Crystal Field Splitting is Limiting the Stability and
Strength of Ultra-Incompressible Orthorhombic Transition Metal Tetraborides’, Sci. Rep.
2016, 6, 23088 (1–12).
[73] Falls, Z.; Lonie, D. C.; Avery, P.; Shamp, A.; Zurek, E., ‘XtalOpt Version r9: An
Open-Source Evolutionary Algorithm for Crystal Structure Prediction’, Comput. Phys.
Commun. 2016, 199, 178–179.
[72] Miao, M.-S.; Botana, J.; Zurek, E.; Hu, T.; Liu, J.; Yang, W., ‘Electron Counting
and a Large Family of Two-Dimensional Semiconductors’, Chem. Mater. 2016, 28,
1994–1999.
[71] Kunkel, D. A.; Hooper, J.; Bradley, B.; Schleuter, L.; Rasmussen, T.;
Costa, P.; Beniwal, S.; Ducharme, S.; Zurek, E.; Enders, A., ‘2D Co-Crystallization
from H-Bonded Organic Ferroelectrics’, J. Phys. Chem. Lett. 2016, 7, 435–440.
[70] Terpstra, T.; Hooper, J.; Zurek, E., ‘First Principles Investigation on How Site
Preference and Entropy Affects the Stability of (Eu𝑥M1-𝑥)2Ge2Pb (M = Ca, Sr, Ba) Polar
Intermetallics’, Can. J. Chem. 2016, 94, 312–320.
[69] Shamp, A.; Zurek, E., ‘Superconducting High-Pressure Phases Composed of
Hydrogen and Iodine’, J. Phys. Chem. Lett. 2015, 6, 4067–4072.
[68] Hooper, J.; Kunkel, D. A.; Zurek, E.; Enders, A., ‘Interplay Between Hydrogen
Bonding, Epitaxy, and Charge Transfer in the Self-Assembly of Croconic Acid on
Au(111) and Ag(111)’, J. Phys. Chem. C 2015, 119, 26429–26437.
[67] Tymińska, N.; Zurek, E., ‘DFT-D Investigation
of Active and Dormant Methylaluminoxane (MAO) Species Grafted onto a Magnesium
Dichloride Cluster: A Model Study of Supported MAO’, ACS Catal. 2015, 5, 6989–6998.
[66] Shamp, A.; Saitta, P.; Zurek, E., ‘Theoretical Predictions of Novel Potassium
Chloride Phases Under Pressure’, Phys. Chem. Chem. Phys. 2015, 17, 12265–12272.
[65] Zurek, E.; Yao, Y., ‘Theoretical Predictions of Novel Superconducting Phases of
BaGe3 Stable at Atmospheric and High Pressures’, Inorg. Chem. 2015, 54, 2875–2884.
[64] Murphy, C. J.; Baggett, A. W.; Miller, D. P.; Simpson, S.; Marcinkowski, M. D.;
Mattera, M. F. G.; Pronschinske, A.; Therrien, A.; Liriano, M. L.; Zurek, E.;
Liu, S.-Y.; Sykes, E. C. H., ‘Effect of BN/CC Isosterism on the Thermodynamics of
Surface and Bulk Binding: 1,2-Dihydro-1,2-azaborine vs. Benzene’, J. Chem. Phys. 2015,
119, 14624–14631.
[63] Kunkel, D. A.; Hooper, J.;
Simpson, S.; Miller, D. P.; Routaboul, L.; Braunstein, P.; Doudin, B.; Beniwal, S.;
Dowben, P.; Skomski, R.; Zurek, E.; Enders, A., ‘Self-Assembly of Strongly Dipolar
Molecules on Metal Surfaces’, J. Chem. Phys. 2015, 142, 101921 (1–9).
[62] Miller, D. P.; Simpson, S.; Tyminska, N.; Zurek, E., ‘Benzene
Derivatives Adsorbed to the Ag(111) Surface: Binding Sites and Electronic Structure’, J.
Chem. Phys. 2015, 142, 101924 (1–13).
[61] Zurek, E.; Grochala, W., ‘Predicting Crystal Structures and Properties of Matter
Under Extreme Conditions via Quantum Mechanics: the Pressure is On’, Phys. Chem.
Chem. Phys. 2015, 17, 2917–2934.
[60] Falls, Z.; Tyminska, N.; Zurek, E., ‘The Dynamic Equilibrium Between
(AlOMe)𝑛 Cages and (AlOMe)𝑛⋅(AlMe3)𝑚 Nanotubes in Methylaluminoxane (MAO): A
First-Principles Investigation’, Macromolecules 2014, 47, 8556–8569.
[59] Dannenhoffer, A.; Baker, J.; Pantano, N.; Stachowski, J.; Zemla, D.; Swanson, W.;
Zurek, E.; Szczepankiewicz, S.; Kozik, M., ‘Dimerization of Cobalt-Substituted Keggin
Phosphotungstate, [PW11O39Co(X)]5-, in Nonpolar Solvents’, J. Coord. Chem. 2014, 67,
2830–2842.
[58] Simpson, S.; Gross, M. S.; Olson, J. R.; Zurek, E.; Aga, D. S., ‘Identification of
Polybrominated Diphenyl Ether Metabolites Based on Calculated Boiling Points
from COSMO-RS, Experimental Retention Times, and Mass Spectral Fragmentation
Patterns’, Anal. Chem. 2015, 87, 2299–2305.
[57] Beniwal, S.; Chen, S.; Kunkel, D. A.; Hooper, J.; Simpson, S.; Zurek, E.;
Zeng, X. C.; Enders, A., ‘Kagome-Like Lattice of π-π Stacked 3-Hydroxyphenalenone
on Cu(111)’, Chem. Commun. 2014, 50, 8659–8662.
[56] Zurek, E., ‘Discovering New Materials via A Priori Crystal Structure Prediction’,
in Parrill, A. L.; Lipkowitz, K. B. (editors), ‘Reviews in computational chemistry’,
Vol. 29, John Wiley & Sons, Inc., Hoboken, New Jersey, 2016, 274–326.
[55] Seel, A. G.; Zurek, E.; Ramirez-Cuesta, A. J.; Ryan, K. R.; Lodge, M. T. J.;
Edwards, P. P., ‘Low Energy Structural Dynamics and Constrained Libration of
Li(NH3)4, the Lowest Melting Point Metal’, Chem. Commun. 2014, 50, 10778–10781.
[54] Bovino, M. T.; Liwosz, T. W.; Kendel, N. E.; Miller, Y.; Tyminska, N.; Zurek, E.;
Chemler, S. R., ‘Enantioselective Copper-Catalyzed Carboetherification of
Unactivated Alkenes’, Angew. Chem. Int. Ed. 2014, 53, 6383–6387.
[53] Hooper, J.; Kunkel, D. A.; Simpson, S.; Beniwal, S.; Enders, A.; Zurek, E., ‘Chiral
Surface Networks of 3-HPLN - A Molecular Analog of Rounded Triangle Assembly’,
Surf. Sci. 2014, 629, 65–74.
[52] Hooper, J.; Terpstra, T.; Shamp, A.; Zurek, E., ‘Composition and Constitution of
Compressed Strontium Polyhydrides’, J. Phys. Chem. C 2014, 118, 6433–6447.
[51] Kunkel, D. A.; Hooper, J.; Simpson, S.; Beniwal, S.; Morrow, K. L.; Smith, D. C.;
Cousins, K.; Ducharme, S.; Zurek, E.; Enders, A., ‘Rhodizonic Acid on Noble Metals:
Surface Reactivity and Coordination Chemistry’, J. Phys. Chem. Lett. 2013, 4, 3413–3419.
[50] Pritchard, B. P.; Simpson, S.; Zurek, E.; Autschbach, J.,
‘Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment
for the Undergraduate Curriculum’, J. Chem. Educ. 2014, 91, 1058–1063.
[49] Simpson, S.; van Fleet, A.; Zurek, E., ‘A Computational Investigation of a
Molecular Switch’, J. Chem. Educ. 2013, 90, 1528–1532.
[48] Wach, A.; Chen, J.; Falls, Z.; Lonie, D.; Mojica, E.-R.; Aga, D.; Autschbach, J.;
Zurek, E., ‘Determination of the Structures of Molecularly Imprinted Polymers and
Xerogels Using an Automated Stochastic Approach’, Anal. Chem. 2013, 85, 8577–8584.
[47] Simpson, S.; Kunkel, D. A.; Hooper, J.; Nitz, J.; Dowben, P. A.; Routaboul, L.;
Braunstein, P.; Doudin, B.; Enders, A.; Zurek, E., ‘Coverage-Dependent Interactions
at the Organics-Metal Interface: Quinonoid Zwitterions on Au(111)’, J. Phys. Chem. C
2013, 117, 16406–16415.
[46] Hooper, J.; Altintas, B.; Shamp, A.; Zurek, E., ‘Polyhydrides of the Alkaline Earth
Metals: A Look at the Extremes Under Pressure’, J. Phys. Chem. C 2013, 117, 2982–2992.
[45] Lonie, D. C.; Hooper, J.; Altintas, B.; Zurek, E., ‘Metallization of Magnesium
Polyhydrides Under Pressure’, Phys. Rev. B 2013, 87, 054107 (1–8).
[44] Simpson, S.; Autschbach, J.; Zurek, E., ‘Computational Modeling of the Optical
Rotation of Amino Acids: An ‘in silico’ Experiment for Physical Chemistry’, J. Chem.
Educ. 2013, 90, 656–660.
[43] Simpson, S.; Lonie, D. C.; Chen, J.; Zurek, E., ‘A Computational Experiment on
Single-Walled Carbon Nanotubes’, J. Chem. Educ. 2013, 90, 651–655.
[42] Kunkel, D. A.; Hooper, J.; Simpson, S.; Rojas, G. A.; Ducharme, S.; Usher, T.;
Zurek, E.; Enders, A., ‘Proton Transfer in Surface-Stabilized Chiral Motifs of Croconic
Acid’, Phys. Rev. B 2013, 87, 041402(R) (1–4).
[41] Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.;
Hutchison, G. R., ‘Avogadro: An Advanced Semantic Chemical Editor, Visualization,
and Analysis Platform’, J. Cheminf. 2012, 4, 17 (1–17).
[40] Jewell, A. D.; Simpson, S. M.; Enders, A.; Zurek, E.; Sykes, E. C. H., ‘Magic
Electret Clusters of 4-Fluorostyrene on Metal Surfaces’, J. Phys. Chem. Lett. 2012, 3,
2069–2075.
[39] Shamp, A.; Hooper, J.; Zurek, E., ‘Compressed Cesium Polyhydrides: Cs+
Sublattices and H3- Three-Connected Nets’, Inorg. Chem. 2012, 51, 9333–9342.
[38] Suen, N.-T.; Hooper, J.; Zurek, E.; Bobev, S., ‘On the Nature of Ge-Pb Bonding in
the Solid State. Synthesis, Structural Characterization, and Electronic Structures of Two
Unprecedented Germanide-Plumbides’, J. Am. Chem. Soc. 2012, 134, 12708–12716.
[37] Simpson, S.; Zurek, E., ‘Substituted Benzene Derivatives on the Cu(111) Surface’, J.
Phys. Chem. C 2012, 116, 12636–12643.
[36] Kunkel, D. A.; Simpson, S.; Nitz, J.; Rojas, G. A.; Zurek, E.; Routaboul, L.;
Doudin, B.; Braunstein, P.; Dowben, P. A.; Eders, A., ‘Dipole Driven Bonding
Schemes of Quinoid Zwitterions on Surfaces’, Chem. Commun. 2012, 48, 7143–7145.
[35] Hooper, J.; Zurek, E., ‘High Pressure Potassium Polyhydrides: A Chemical
Perspective’, J. Phys. Chem. C 2012, 116, 13322–13328.
[34] Hooper, J.; Zurek, E., ‘Lithium Subhydrides Under Pressure and their
Superatom–Like Building Blocks’, ChemPlusChem 2012, 77, 969–972.
[33] Lonie, D. C.; Zurek, E., ‘Identifying Duplicate Crystal Structures: XtalComp, an
Open–Source Solution’, Comput. Phys. Commun. 2012, 183, 690–697.
[32] Hooper, J.; Zurek, E., ‘Rubidium Polyhydrides Under Pressure: Emergence of the
Linear H3- Species’, Chem. Eur. J. 2012, 18, 5013–5021.
[31] Rojas, G.; Simpson, S.; Chen, X.; Kunkel, D. A.; Nitz, J.; Xiao, J.; Dowben, P. A.;
Zurek, E.; Enders, A., ‘Surface State Engineering of Molecule-Molecule Interactions’,
Phys. Chem. Chem. Phys. 2012, 14, 4971–4976.
[30] Lonie, D. C.; Zurek, E., ‘XtalOpt version r7: An Open-Source Evolutionary
Algorithm for Crystal Structure Prediction’, Comput. Phys. Commun. 2011, 182,
2305–2306.
[29] Hooper, J.; Baettig, P.; Zurek, E., ‘Pressure Induced Structural Transitions in KH,
RbH and CsH’, J. Appl. Phys. 2012, 111, 112611 (1–10).
[28] Baettig, P.; Zurek, E., ‘Pressure-Stabilized Sodium Polyhydrides, NaH𝑛 (𝑛 > 1)’,
Phys. Rev. Lett. 2011, 106, 237002 (1–4).
[27] Zurek, E., ‘Alkali Metals in Ethylenediamine: A Computational Study of the Optical
Absorption Spectra and NMR Parameters of [𝑀(𝑒𝑛)3+⋅𝑀-] Ion-Pairs’, J. Am. Chem. Soc.
2011, 133, 4829–4839.
[26] Zurek, E.; Wen, X.-D.; Hoffmann, R., ‘(Barely) Solid Li(NH3)4: The Electronics of
an Expanded Metal’, J. Am. Chem. Soc. 2011, 133, 3535–3547.
[25] Lonie, D. C.; Zurek, E., ‘XtalOpt: An Open-Source Evolutionary Algorithm for
Crystal Structure Prediction’, Comput. Phys. Commun. 2011, 182, 372–387.
[24] Zurek, E.; Autschbach, J., ‘Ab-Initio NMR Computations for Carbon Nanotubes’,
in Nalwa, H. S. (editor), ‘Encyclopedia of Nanoscience and Nanotechnology’, Vol. 11,
American Scientific Publishers, Stevenson Ranch, CA, 2nd edition, 2011, 59–73.
[23] Zurek, E.; Jepsen, O.; Andersen, O. K., ‘Searching for the Interlayer Band and
Unravelling the Bonding in β-ThSi2 and α-ThSi2 with 𝑁MTO Wannier-like Functions’,
Inorg. Chem. 2010, 49, 1384–1396.
[22] Zurek, E.; Autschbach, J., ‘NMR Computations for Carbon Nanotubes from First
Principles: Present Status and Future Directions’, Int. J. Quantum Chem. 2009, 109,
3343–3367.
[21] Zurek, E.; Hoffmann, R.; Ashcroft, N. W.; Oganov, A. R.; Lyakhov, A. O., ‘A
Little Bit of Lithium Does a Lot for Hydrogen’, Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
17640–17643.
[20] Zurek, E.; Edwards, P. P.; Hoffmann, R.,
‘A Molecular Perspective on Lithium-Ammonia Solutions’, Angew. Chem. Int. Ed. 2009,
48, 8198–8232.
[19] Zurek, E.; Pickard, C. J.; Autschbach, J., ‘A Density Functional Studies of the 13C
NMR Chemical Shifts of Fluorinated Single–Walled Carbon Nanotubes’, J. Phys. Chem.
A 2009, 113, 4117–4124.
[18] Zurek, E.; Pickard, C. J.; Autschbach, J., ‘Density Functional Study of the 13C NMR
Chemical Shifts in Single-Walled Carbon Nanotubes with Stone–Wales Defects’, J. Phys.
Chem. C 2008, 112, 11744–11750.
[17] Zurek, E.; Autschbach, J.; Malinowski, N.; Enders, A.; Kern, K., ‘Experimental
and Theoretical Investigations of the Thermodynamic Stability of Ba–C60 and K–C60
Clusters’, ACS Nano 2008, 2, 1000–1014.
[16] Zurek, E.; Pickard, C. J.; Autschbach, J., ‘Determining the Diameter of
Functionalized Single-Walled Carbon Nanotubes using 13C NMR: A Theoretical Study’,
J. Phys. Chem. C 2008, 112, 9267–9271.
[15] Zurek, E.; Autschbach, J.; Andersen, O. K., ‘Downfolding and 𝑁-ization of a Basis
Set of Slater Type Orbitals’, in Simos, T. E.; Maroulis, G. (editors), ‘Computation in
Modern Science and Engineering Proceedings of the International Conference on
Computational Methods in Science and Engineering 2007’, Number volume 2, part B in
Conference Proceedings 963, American Institute of Physics, 2007, 1421–1424.
[14] Zurek, E.; Autschbach, J., ‘Density Functional Studies of the 13C NMR Chemical
Shifts in Single–Walled Carbon Nanotubes’, in Simos, T. E.; Maroulis, G. (editors),
‘Computation in Modern Science and Engineering Proceedings of the International
Conference on Computational Methods in Science and Engineering 2007’, Number
volume 2, part B in Conference Proceedings 963, American Institute of Physics, 2007,
1425–1428.
[13] Zurek, E.; Pickard, C. J.; Autschbach, J., ‘A Density Functional Study of the 13C
NMR Chemical Shifts in Functionalized Single–Walled Carbon Nanotubes’, J. Am.
Chem. Soc. 2007, 129, 4430–4439.
[12] Enders, A.; Malinowski, N.; Ievlev, D.; Zurek, E.; Autschbach, J.; Kern, K.,
‘Magic Alkali-Fullerene Compound Clusters of Extreme Thermal Stability’, J. Chem.
Phys. 2006, 125, 191102–(1–4).
[11] Zurek, E.; Pickard, C. J.; Walczak, B.; Autschbach, J., ‘Density
Functional Calculations of the 13C NMR Chemical Shifts in Small-to-Medium-Diameter
Infinite Single-Walled Carbon nanotube’, J. Phys. Chem. A 2006, 110, 11995–12004.
[10] Zurek, E.; Jepsen, O.; Andersen, O. K., ‘Muffin-Tin Orbital Wannier-Like
Functions for Insulators and Metals’, ChemPhysChem 2005, 6, 1934–1942.
[9] Zurek, E.; Autschbach, J., ‘Density Functional Calculations of the 13C NMR
Chemical Shifts in (9,0) Single-Walled Carbon Nanotubes’, J. Am. Chem. Soc. 2004, 126,
13079–13088.
[8] Zurek, E.; Ziegler, T., ‘Theoretical Studies of the Structure and Function of MAO
(Methylaluminoxane)’, Prog. Polym. Sci. 2004, 29, 107–148.
[7] Autschbach, J.; Zurek, E., ‘Relativistic Density-Functional Computations of the
Chemical Shift of 129Xe in Xe@C60’, J. Phys. Chem. A 2003, 107, 4967–4972.
[6] Zurek, E.; Ziegler, T., ‘A Theoretical Study
of the Insertion Barrier of MAO (methylaluminoxane)-Activated, Cp2ZrMe2-Catalyzed
Ethylene Polymerization: Further Evidence for the Structural Assignment of Active and
Dormant Species.’, Faraday Discuss. 2003, 124, 93–109.
[5] Xu, Z.; Vanka, K.; Firman, T.; Michalak, A.; Zurek, E.; Zhu, C.; Ziegler, T.,
‘Theoretical Study of the Interactions between Cations and Anions in Group
IV Transition-Metal Catalysts for Single-Site Homogeneous Olefin Polymerization.’,
Organometallics 2002, 21, 2444–2453.
[4] Zurek, E.; Ziegler, T., ‘Toward the Identification of Dormant and Active Species in
MAO (Methylaluminoxane)-Activated, Dimethylzirconocene-Catalyzed Olefin
Polymerization.’, Organometallics 2002, 21, 83–92.
[3] Zurek, E.; Woo, T. K.; Firman, T. K.; Ziegler, T., ‘Modeling MAO
(Methylaluminoxane)’, in Blom, R.; Follestad, A.; Rytter, E.; Tilset, M.; Ystenes, M.
(editors), ‘Organometallic Catalysts and Olefin Polymerization: Catalysts for a New
Millenium’, Springer, Berlin, Heidelberg, 2001, 109–123.
[2] Zurek, E.; Ziegler, T., ‘A Combined Quantum Mechanical and Statistical
Mechanical Study of the Equilibrium of Trimethylaluminum (TMA) and Oligomers of
(AlOCH3)𝑛 Found in Methylaluminoxane (MAO).’, Inorg. Chem. 2001, 40, 3279–3292.
[1] Zurek, E.;
Woo, T. K.; Firman, T. K.; Ziegler, T., ‘Modeling the Dynamic Equilibrium Between
Oligomers of (AlOCH3)𝑛 in Methylaluminoxane (MAO). A Theoretical Study Based on
a Combined Quantum Mechanical and Statistical Mechanical Approach.’, Inorg. Chem.
2001, 40, 361–370.
submitted
submitted
submitted
submitted
submitted
submitted
submitted
submitted
submitted
URL https://doi.org/10.1103/PhysRevB.111.144509
URL https://doi.org/10.1021/jacs.4c17589
submitted
URL https://doi.org/10.1107/S2052520625001647
submitted
URL https://doi.org/10.1146/annurev-matsci-080423-124050
URL https://doi.org/10.1039/D5CP00215J
URL https://doi.org/10.1021/jacs.4c11164
URL https://doi.org/10.1073/pnas.2423102122
URL https://doi.org/10.1111/jace.20257
URL https://doi.org/10.1039/D4DD00269E
URL https://doi.org/10.1002/anie.202412687
URL https://doi.org/10.1103/PhysRevB.110.174110
URL https://doi.org/10.1038/s41524-025-01553-1
URL https://doi.org/10.1021/acs.chemmater.4c01472
URL https://doi.org/10.1016/j.cpc.2024.109306
URL https://doi.org/10.1021/acs.jpclett.4c01223
URL https://doi.org/10.1021/acs.jpcc.4c02327
URL https://10.1103/PhysRevB.111.054111
URL https://doi.org/10.1111/jace.19795
URL https://doi.org/10.1103/PhysRevB.109.L180501
URL https://doi.org/10.1021/acsami.3c18766
URL https://doi.org/10.1038/s41524-024-01321-7
URL https://doi.org/10.1016/j.mtphys.2024.101443
URL https://doi.org/10.1063/5.0159590
URL https://doi.org/10.1016/j.actamat.2024.119667
URL https://doi.org/10.1103/PhysRevMaterials.9.053601
URL https://doi.org/10.1103/PhysRevB.110.094108
submitted
URL https://doi.org/10.1021/jacs.3c07936
URL https://doi.org/10.1038/s41586-023-06786-y
URL https://doi.org/10.1002/ange.202310802
URL https://doi.org/10.1021/acs.jctc.3c00594
URL http://doi.org/10.1103/PhysRevB.108.014511
URL https://doi.org/10.1021/acs.chemmater.3c00353
URL https://doi.org/10.1016/j.mtphys.2023.101086
URL https://doi.org/10.1021/acs.jchemed.2c01129
URL https://doi.org/10.1021/jacs.2c12325
URL https://doi.org/10.1021/jacs.2c10089
URL https://doi.org/10.1016/j.mtla.2023.101682
URL https://www.sciencedirect.com/science/article/pii/B9780128231449001709
URL https://doi.org/10.1021/acs.jchemed.2c00935
URL https://doi.org/10.1016/j.mtphys.2023.101152
URL https://doi.org/10.1016/j.commatsci.2022.111889
URL https://doi.org/10.1002/anie.202213467
URL https://doi.org/10.1002/anie.202207589
URL https://doi.org/10.1103/PhysRevB.107.184101
URL https://doi.org/10.1063/5.0096008
URL https://doi.org/10.1002/anie.202205129
URL https://doi.org/10.1039/d2cy00815g
URL https://doi.org/10.1038/s41557-023-01315-w
URL https://doi.org/10.1039/d1cp05660c
URL https://doi.org/10.1021/acs.jpcc.1c10976
URL https://doi.org/10.1007/s00339-022-05576-z
URL https://doi.org/10.1063/5.0081293
URL https://doi.org/10.1021/acs.jpcc.1c10283
URL https://doi.org/10.1063/5.0077748
URL https://doi.org/10.1021/jacs.1c10354
URL https://doi.org/10.1038/s41524-022-00769-9
URL https://doi.org/10.1039/d1cc05193h
URL https://doi.org/10.1021/acs.jpcc.1c08045
URL https://doi.org/10.1039/d1cc03515k
URL https://doi.org/10.1021/acs.jpclett.1c01860
URL https://doi.org/10.1103/PhysRevMaterials.5.044802
URL https://doi.org/10.1016/j.cclet.2021.06.019
URL https://doi.org/10.1103/PhysRevMaterials.5.053605
URL https://doi.org/10.1002/chem.202100028
URL https://doi.org/10.1063/5.0041490
URL https://doi.org/10.1016/j.poly.2021.115174
URL https://doi.org/10.1088/1361-648x/ac2864
URL https://doi.org/10.1021/acs.jpcc.0c09531
URL https://doi.org/10.1021/jacs.1c00115
URL https://doi.org/10.1021/acs.jpclett.0c02299
URL https://doi.org/10.1021/acs.chemmater.0c02151
URL https://doi.org/10.1021/acs.jpcc.0c04617
URL https://doi.org/10.1039/D0CP01440K
URL https://doi.org/10.3389/fchem.2020.530083
URL https://doi.org/10.1103/PhysRevB.101.134504
URL https://doi.org/10.1002/chem.202102679
URL https://dx.doi.org/10.1021/acs.orglett.9b04547
URL https://doi.org/10.1038/s41570-020-0213-0
URL https://doi.org/10.1088/2053-1583/ab7977
URL https://doi.org/10.1002/adma.202103000
URL https://dx.doi.org/10.1021/jacs.9b11536
URL https://doi.org/10.1039/c9nr08069d
URL https://doi.org/10.1039/d0qi00638f
URL https://doi.org/10.3390/cryst9090441
URL https://doi.org/10.1038/s41586-020-2479-2
URL https://doi.org/10.1021/acs.jchemed.9b00485
URL https://doi.org/10.1038/s41524-019-0226-8
URL https://doi.org/10.1021/jacs.9b06094
URL https://doi.org/10.1063/1.5079225
URL https://doi.org/10.1103/physics.12.1
URL https://doi.org/10.1016/j.physleta.2018.12.022
URL https://doi.org/10.1016/j.cpc.2018.11.016
URL https://doi.org/10.1038/s41524-019-0211-2
URL https://doi.org/10.1021/acs.jpcc.8b06934
URL https://doi.org/10.1016/j.microc.2019.02.013
URL https://doi.org/10.1103/physrevmaterials.3.013603
URL https://doi.org/10.1016/b978-0-12-409547-2.11435-0
URL https://doi.org/10.1016/j.hedp.2018.08.001
URL https://doi.org/10.1021/acs.jpcc.8b05030
URL https://doi.org/10.1021/acs.langmuir.8b02059
URL https://doi.org/10.1007/978-3-319-42913-7_63-1
URL https://doi.org/10.1016/j.commatsci.2018.03.075
URL https://doi.org/10.1021/acs.jpcc.7b10810
URL https://doi.org/10.1021/acs.jpcc.8b04282
URL https://doi.org/10.1016/j.cpc.2017.09.011
URL https://doi.org/10.1021/acs.jpcc.7b12124
URL https://doi.org/10.1038/s41467-018-03284-y
URL https://doi.org/10.1021/acs.jchemed.7b00698
URL https://doi.org/10.1039/c6cc08006e
URL https://doi.org/10.1021/acs.jpclett.7b01367
URL https://doi.org/10.1002/adma.201702257
URL https://doi.org/10.1021/acs.orglett.7b01005
URL https://doi.org/10.1002/ange.201701660
URL https://doi.org/10.1103/physrevb.95.184111
URL http://doi.org/10.1103/PhysRevB.96.014117
URL https://doi.org/10.1016/j.cpc.2017.04.001
URL https://doi.org/10.1515/nsm-2017-0003
URL https://doi.org/10.1021/acs.jpcc.6b09408
URL https://doi.org/10.1016/j.cpc.2016.12.005
URL https://doi.org/10.1021/acsnano.6b08136
URL http://doi.org/10.1039/C6CP04260K
URL https://doi.org/10.1103/PhysRevB.94.184107
URL https://doi.org/10.1080/02603594.2016.1196679
URL https://doi.org/10.1021/acs.inorgchem.6b00735
URL https://doi.org/10.1002/9783527691036.hsscvol5020
URL https://doi.org/10.1021/acs.jpcc.6b00360
URL https://doi.org/10.1021/acs.jpcc.5b11770
URL https://doi.org/10.1021/acs.jpcc.5b11970
URL https://doi.org/10.1021/acs.jpcc.6b00572
URL https://doi.org/10.1021/jacs.5b10180
URL https://doi.org/10.1038/srep23088
URL https://doi.org/10.1016/j.cpc.2015.09.018
URL https://doi.org/10.1021/acs.chemmater.5b03557
URL http://doi.org/10.1021/acs.jpclett.5b02472
URL https://doi.org/10.1139/cjc-2015-0374
URL https://doi.org/10.1021/acs.jpclett.5b01839
URL https://doi.org/10.1021/acs.jpcc.5b06589
URL https://doi.org/10.1021/acscatal.5b01697
URL https://doi.org/10.1039/c5cp00470e
URL https://doi.org/10.1021/ic5030235
URL http://doi.org/10.1021/jp5126427
URL https://doi.org/10.1063/1.4907943
URL https://doi.org/10.1063/1.4908267
URL http://doi.org/10.1039/c4cp04445b
URL http://doi.org/10.1021/ma501892v
URL http://doi.org/10.1080/00958972.2014.956664
URL http://doi.org/10.1021/ac504107b
URL http://doi.org/10.1039/c4cc03523b
URL https://doi.org/10.1002/9781119148739.ch5
URL http://doi.org/10.1039/c4cc03397c
URL http://doi.org/10.1002/anie.201402462
URL https://doi.org/10.1016/j.susc.2014.04.015
URL https://doi.org/10.1021/jp4125342
URL http://doi.org/10.1021/jz4016124
URL https://doi.org/10.1021/ed400902c
URL https://doi.org/10.1021/ed400278x
URL https://doi.org/10.1021/ac402004z
URL https://doi.org/10.1021/jp403384h
URL https://doi.org/10.1021/jp311571n
URL https://doi.org/10.1103/physrevb.87.054107
URL http://doi.org/10.1021/ed300680g
URL https://doi.org/10.1021/ed3006067
URL http://doi.org/10.1103/PhysRevB.87.041402
URL https://doi.org/10.1186/1758-2946-4-17
URL https://doi.org/10.1021/jz3006783
URL http://doi.org/10.1021/ic301045v
URL http://doi.org/10.1021/ja3042838
URL https://doi.org/10.1021/jp302682n
URL https://doi.org/10.1039/c2cc32462h
URL https://doi.org/10.1021/jp303024h
URL https://doi.org/10.1002/cplu.201200130
URL https://doi.org/doi:10.1016/j.cpc.2011.11.007
URL https://doi.org/10.1002/chem.201103205
URL https://doi.org/10.1039/c2cp40254h
URL https://doi.org/10.1016/j.cpc.2011.06.003
URL https://doi.org/10.1063/1.4726210
URL https://doi.org/10.1103/physrevlett.106.237002
URL https://doi.org/10.1021/ja1085244
URL https://doi.org/10.1021/ja109397k
URL https://doi.org/10.1016/j.cpc.2010.07.048
URL http://www.aspbs.com/enn.html
URL https://doi.org/10.1021/ic9014515
URL https://doi.org/10.1002/qua.22211
URL https://doi.org/10.1073/pnas.0908262106
URL https://doi.org/10.1002/anie.200900373
URL http://doi.org/10.1021/jp810523x
URL http://doi.org/10.1021/jp803180v
URL http://doi.org/10.1021/nn800022d
URL https://doi.org/10.1021/jp800873c
URL https://doi.org/10.1063/1.2836021
URL https://doi.org/10.1063/1.2836022
URL http://doi.org/10.1021/ja069110h
URL http://doi.org/10.1063/1.2400027
URL http://doi.org/10.1021/jp064540f
URL http://doi.org/10.1002/cphc.200500133
URL http://doi.org/10.1021/ja047941m
URL http://doi.org/10.1016/j.progpolymsci.2003.10.003
URL http://doi.org/10.1021/jp0346559
URL https://doi.org/10.1039/B209455J
URL http://doi.org/10.1021/om011057c
URL http://doi.org/10.1021/om010812j
URL https://doi.org/10.1007/978-3-642-59465-6_10
URL http://doi.org/10.1021/ic001444z
URL http://doi.org/10.1021/ic000845b