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Abstract

The airborne visual SLAM system is a UAV carried visual SLAM system for

aerial mapping. It provides a solution for large-scale blockage detection and

modeling. UAV’s mobility dramatically increases mapping efficiency, visual

SLAM engine’s support for the optical camera also simplifies the sensing proce-

dure. We use the ORB-SLAM3 as the SLAM engine to get support for IMU data

input. In addition, a heavy-duty octocopter is developed as the carrier vehicle.

The sensed map then presents in pointcloud and octomap format. This sensing

system is designed for providing terrain and blockage information for wireless

environment simulation and UAV/robot swarm dispatching.

vii



Chapter 1
Introduction

1.1 Motivation

With the advancement of wireless communications and UAV technologies, im-

plementing flexible wireless networks and UAV-carried wireless stations has

become possible. Autonomous UAVs can carry microwave, millimeter wave,

and terahertz band base stations to form a flexible wireless network [1, 2, 3].

There are also many vehicles or robots carried deployable ground stations that

can form a ground-based mobile network [4]. However, for mobile ground sta-

tions, how to dispatch the station’s positions according to the blockages and

the dynamically changing network load is challenging [5, 6]. To better deploy

the mobile stations, many wireless electromagnetic space simulators can help

us simulate and predict the dynamically changing wireless network coverage

situations and estimate the effects of blockages on the network [7, 8]. However,

it takes time to map the mission area and run the simulations [9]; this may slow

down the deployment of mobile wireless networks. Terrain or buildings may

also impede the flying safety of autonomous UAVs [10]. Therefore it is essential



2

to make the mapping process simple and fast for mobile wireless networks.

1.2 Challenges

Due to the limitations of the UAV’s endurance and maximum take-off weight,

the mapping systems’ weight, size, power supply, and computing resource con-

sumption are limited. In addition, a flying platform can provide a limited band-

width for transmitting the map. Mapping and publishing the map in real-time

is also challenging.

1. Mapping systems’ running environment. UAVs are flying platforms, which

means the mapping systems must be light and energy efficient. The oscil-

lations of the flying platform may also affect the mapping systems’ accu-

racy and precision. We use a visual SLAM system so optical cameras can

be used as sensors. The SLAM engine is ORB-SLAM3 [11], the first vi-

sual SLAM engine that supports multiple cameras and acceleration data

fusion, which can counter the oscillations, and the acceleration data can be

acquired from either the flight controller or an independent sensor. For au-

tonomous UAVs, its onboard computer is capable of processing the ORB-

SLAM3 programs.

2. Map transmitting. After the mapping system generates a map for the am-

bient environment, the map must be transmitted to other autonomous ve-

hicles. Nevertheless, since the mapping vehicle is flying in an unknown

area, the wireless connection between the mapping vehicle and other ve-

hicles may be unstable [12]. Moreover, the gathered terrain map contains

lots of detailed shape information, which may take too much bandwidth



3

during transmission. Traditional mapping systems would use a point-

cloud to represent the map. Based on the point cloud, we use the octomap

format to compress the map so the map transmission bandwidth will be

saved.

3. Real-Time Sensing. On traditional mapping missions, the mapping sys-

tems always need to gather all the terrain shape details, then generate and

process the map offline. However, for a mobile network, its fast deploy-

ment characteristics require the mapping systems to work in real-time.

To fulfill this requirement, we use the ROS environment for receiving the

camera input and publishing the map in real-time.

1.3 Contributions

We aim to build a UAV that can carry a SLAM system, process all the SLAM

computing onboard, and publish maps to other autonomous vehicles and wire-

less environment simulation systems. The map is compressed for transmission

to other autonomous vehicles and sent into wireless environment simulators.

Furthermore, this autonomous vehicle must reserve enough carrying capability

for payloads like wireless base stations to be part of the mobile wireless net-

work. We hope such an autonomous vehicle can enable the entire mobile wire-

less network to have a less deployment time and become more robust against

blockage effects.



Chapter 2
Related Work

2.1 Overview

For the SLAM system, there are many sensors that can be used to map and

sense the ambient environment for reconstruction. Typically, radar, ultrasound,

and optical cameras can all be used as SLAM sensors. The Microsoft Kinect is

a RGBD sensor based on an infrared sensor and monocular camera. For the

SLAM engines, there are algorithms based on optical flow, SIFT, SURF, or FAST

descriptors. The FAST descriptor compares a pixel’s brightness and other pix-

els’ brightness around it in a preset range to find out corners for tracking move-

ments. There are also many applications of SLAM system integrated vehicles or

robots. For example, commercial drones always carry stereo cameras for colli-

sion avoidance. Many vehicle manufacturers are also starting to install SLAM

systems on their vehicles for lane-keeping assist, adaptive cruising control, or

higher-level driving assist functions and safety features. Some vacuum robots

also carry a LIDAR for home environment mapping, modeling and navigation.
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2.2 ORB-SLAM

The ORB-SLAM [13] is a monocular camera-based SLAM system, and its track-

ing is based on extracting the ORB descriptor. This SLAM engine includes three

threads: tracking, local mapping and loop closing. The tracking module ex-

tracts the ORB feature from each frame as a feature point. The feature points are

compared between different frames to decode the camera’s movement. Frames

including feature points for tracking are marked as keyframes. In the local map-

ping thread, keyframes and feature points are put together to form the map, and

redundant keyframes are deleted. Close loops in the map will be detected and

corrected in the loop closing thread. To maintain tracking without taking too

many computing resources, this SLAM engine has a ”survival of the fittest”

strategy: add all necessary frames as keyframes and then delete the redundant

ones. This makes the engine have robust tracking performance while forming

a compact map. This is the first version of the ORB-SLAM. Further develop-

ments on this SLAM engine supported stereo camera and RGBD camera input

and were released as ORB-SLAM2. The latest update added IMU data fusion

on this SLAM engine and has been published as ORB-SLAM3.

2.3 VINS-Mono

SLAM systems are designed to reconstruct the ambient environment in a map.

Most SLAM algorithms keeps a global map. If the tracking is lost, the SLAM

system will start initialization again. During this initialization procedure if the

slam systems relocalizes successfully, the world map’s update will be resumed.

However if the relocalization did not work, the original world map will be dis-
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Figure 2.1: VINS-Mono processing flow graph

carded. VINS-Mono [14] is a monocular camera-IMU fusion SLAM engine with

multi-map saving function. This multi-map function is based on pose graph.

Multiple pose graphs can be saved. Once replicate pose graph is recognised,

the pose graphs can be merged together.



Chapter 3
Mapping Techniques

A mapping system requires sensors to capture the features of the physical world

to reconstruct the model of the ambient environment. A sensor like LIDAR

can directly get the distance between objects and the sensor for reconstruction,

while optical cameras rely on the SLAM engine to track image movements and

decode distances for reconstruction. Here we introduce three popular sensing

methods: ORB-feature-based tracking, infrared-based RGBD camera, and laser-

based LIDAR.

3.1 Visual based mapping

Optical cameras are tiny, low cost and energy efficient sensors for acquiring

images. To reconstruct a map from images, a SLAM engine is required for ex-

tracting and tracking features: extract feature points in images of the observed

objects in different view angles until these feature points converge to their 3D

position, then track the movements of those feature points. A state-of-the-art

feature-based SLAM engine is ORB-SLAM, which uses ORB descriptors for



8

tracking. The latest ORB-SLAM3 [13] has supported not only the camera input

but also the depth camera and inertia input. Next, we introduce the ORB-based

tracking.

3.1.1 Oriented FAST Feature

The ORB (Oriented FAST and Rotated BRIEF) [15] is a scale and rotation invari-

ant feature descriptor based on FAST (Features from Accelerated and Segments

Test). The FAST locates feature points by brightness. For a pixel in an image,

the FAST compares its brightness with the other 16 pixels which fall on a cir-

cle around it. If 8 pixels on this circle are darker or brighter than the center

pixel, then the center pixel is marked as a feature point. The preset threshold

can be changed, and the ORB uses FAST-9, which makes the threshold 9 pixels.

To make FAST invariant to scale change, the ORB down-samples the original

image in different scales and arranges those images as a pyramid. The FAST

is run on each layer of this pyramid to detect feature points. This makes the

ORB tracking continuous when the mapping camera moves closer or further

to the tracked object. Around a feature point, a square of pixels is chosen as a

patch. Then, ORB tracks rotation by detecting intensity changes with intensity

centroid, which defines the moments of a patch as

mpq = ∑
x,y

xpyp I(x, y). (3.1)

The centroid is then found within the moments by

C = (
m10

m00
,

m01

m00
). (3.2)
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Figure 3.1: A center pixel P and the 16 pixels around it picked by FAST

Then, the direction of this patch can be described as a vector from the feature

point to the centroid by

θ = atan2(m01, m10). (3.3)

With this direction of the patch, the ORB descriptor is partially rotation invari-

ant.

3.1.2 Rotated BRIEF

The ORB uses BRIEF (Binary Robust Independent Elementary Feature) descrip-

tor. The BRIEF stores feature points in a binary vector, typically 128-bit long.

Firstly, the BRIEF chooses a random pixel around the feature point by Gaussian

distribution, then the next pixel around the first pixel in the same way. If the

first pixel is brighter than the second one, then the first bit in the binary vector

is marked as 1, and 0 otherwise. This procedure repeats 128 times for a feature

point to fill its 128-bit binary vector. However, BRIEF is sensitive to rotations, so

ORB adds a rotation aware function for BRIEF, which makes it rBRIEF [16]. The

rBRIEF defines a binary test τ with the intensity p(x)
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τ(p; x, y) =

1 : p(x) < p(y)

0 : p(x) ≥ p(y)
(3.4)

The rBRIEF can then be represented by a binary vector form by n tests

f (n) = ∑
1<i<n

2i−1τ(p; xi, yi). (3.5)

This makes BRIEF partially rotation invariant when the rotation is within

a few degrees. When the image rotation is obvious, the BRIEF performance is

poor. Here the ORB proposes steered BRIEF: in any location (xi, yi), the feature

set of n binary tests are formed by

S =

x1, ..., xn

y1, ..., yn

(3.6)

The patch’s direction θ is then used to make the matrix steered

Sθ = RθS (3.7)

so the steered BRIEF can be formed by

gn(p, θ) = fn(p)|(xi, yi) ∈ Sθ. (3.8)

This makes the ORB tracking continuous as long as the θ changes are consistent.

Based on feature extractors like the ORB, the visual-based mapping algorithms

can track movements and implement 3D reconstruction with only images input

from the camera.
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3.2 Depth based mapping

3D reconstruction needs to generate an accurate and precise model for the mapped

environment, the distance between points in the map should be acceptable for

further application. The visual-only systems can’t directly get distance informa-

tion from the input camera, so the visual-only reconstruction is always sparse,

and unsuitable for acquiring detailed information. There are multiple solutions

for getting depth information together with image input. Currently, popular

depth imaging techniques include time-of-flight and structured-light sensors.

3.2.1 Time-of-Flight camera

Time-of-Flight(ToF) sensors measure distances between the camera and the ob-

jects in front of it based on counting the round trip time of light emitted from the

camera system. ToF systems can get a depth map directly or by RF-modulated

Figure 3.2: Microsoft Azure Kinect, infrared ToF camera

light. A Direct ToF system includes a pair of laser emitter and receiver. Laser

pulses are launched with different angles, the receiver receives the reflected
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light pulses, and the distance is calculated based on the round trip time. For an

RF system like in fig 3.2, it launches modulated RF light. The reflected RF light’s

phase shift is used to calculate the distance instead of the round trip time.

3.2.2 Structured-light camera

Structured-light systems always include a projector and multiple optical cam-

eras. The projector projects a specific pattern. Most structured-light systems’

projection patterns are straight lines. When the lines are projected on a surface,

the uneven surface will make the line distorted. The cameras receive the re-

flected light and calculate the distance from the pattern’s distortions. Multiple

cameras are used as receivers to avoid the reflected light being blocked. The

projected light can be emitted by a common projector or laser interference.

Figure 3.3: Structured-light points projected by Apple’s Face ID camera
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3.3 LIDAR based mapping

LIDAR is a special ToF sensor. Most LIDAR systems emit laser pulses, receive

the reflected pulse and get the distance information from the round trip time.

Here we mainly discuss the mechanical LIDAR. A laser pulse is launched to a

high-speed spinning reflection mirror, the spinning mirror spreads laser pulses

to the plane, then the 2D map of this plane can be generated [17]. Different

planes map can be attached together to form a 3D map.

Figure 3.4: Velodyne Puck, a 3D LIDAR



Chapter 4
Map Process

After the mapping sensors acquire the depth feature from the environment, the

sensed features and distance information will be merged together to form a

map. The map generated from sensed data needs to be updated in real time

and gets a correction from the SLAM engine. The map will then be optimized

for further process. Next we introduce map processing techniques for handling

the map.

4.1 Pointcloud

In feature-based SLAM engines, feature points will be extracted from key frames

as map points. In LIDAR based scanning systems, laser impulses are launched

and reflected points are received. The received raw data will be a cloud of

points. Here we use the pointcloud to reconstruct the raw data from mapping

system. In a pointcloud map, all the points are located by its Cartesian coordi-

nates. To form a 3D pointcloud, we use the Point Cloud Library(PCL) [18], an

open source library for handling pointcloud in different dimensions and pro-
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cessing geometry data. PCL supports real-time map merging, so changes that

come from sensors can be instantaneously updated. The pointcloud may in-

clude noise caused by deviations or sensor errors, so the raw pointcloud needs

to minimize the noise before being used. We down-sample the pointcloud for

filtering and map data compressing.

Figure 4.1: Point cloud reconstruction of UB’s Baird Point

4.2 Octomap

In most 3D reconstruction applications, there are two solutions for transform-

ing point cloud into 3D surfaces. One of them is to form triangles or Polygon

meshes with vertices in the point cloud. This approach can reconstruct the de-

tails of the original surfaces more accurately. Another solution is to generate a

volumetric field according to the point cloud. We will use this solution since

it saves more computing resources and it is also capable of filtering out errors

and deviations. The volumetric processing library we use is Octomap [19]. The
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octomap is a kind of volume metric occupancy grid map. In the occupancy

grid, each grid has a binary variable that represents whether it’s occupied by an

obstacle or is empty. The octomap generates a 3D volumetric occupancy grid ac-

cording to the point cloud, occupied Greece will be represented as solid cubes,

usually called a voxel. The octomap’s map generation is based on octotree, a

hierarchical data structure. The basic process of octotree is to fork a volumetric

space into 8 sub volumetric blocks recursively until it reaches a preset resolution

limitation. In a 3D space, an octotree node will only be initialized when there is

an obstacle in a certain volumetric space, which saves lots of RAM when pro-

cessing a map.

Figure 4.2: Volumetric reconstruction of UB’s Baird Point based on octomap



Chapter 5
Mapping System

5.1 Overview

The mapping system consists of the input camera and lenses, the visual SLAM

engine, and a map processing program. An optical camera works as an input

sensor of the entire video SLAM system, and fish eye lenses give the camera a

wider field of view. The SLAM engine is the core of the entire mapping system.

It receives the frames input from the camera, processes the images, extracts fea-

ture points, and forms a map of the scanned environment. The map processing

program extracts feature points from the SLAM engine and rebuilds the map

in a point cloud format. After the point cloud is generated, the map processing

program compresses it with the Octotree algorithm to save RAM and band-

width during map transmission. The compressed Octomap represents objects

in cubic blocks, making it much easier to process the map further. The mapping

system will be carried on a heavy-duty multicopter for aerial mapping.
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5.2 Mapping Camera

Optical cameras are convenient for large-scale, low-cost mapping. In our de-

sired scenario, the mapping system will get an approximate contour of the ter-

rain and buildings and provide blockage information for wireless environment

simulation and UAV dispatching. For this sensing purpose, LIDAR or RGBD

cameras are not the best choices since RGBD cameras’ sensing range is too short,

and long-range LIDARs’ cost is too high. Therefore, our aerial sensing system

will use monocular cameras and LIDARs. Multiple UAVs will carry a monoc-

ular mapping system and scan most of the mission area. If complicated terrain

or obstacles are detected, UAVs with LIDAR can be dispatched to that area. In

our monocular mapping system, cameras like Fig. 5.1 will be used as an optical

sensor.

Figure 5.1: Calicam, a fisheye camera we use as monocular input

5.2.1 Camera Coordinates and Calibration

When a camera forms an image from an object, the relationship between the

actual size of the object and its image is defined by four coordinate systems

transformation: world, camera, image, and pixel. To reconstruct the physical

world, we must set the camera intrinsic to let the SLAM engine finish the trans-

formation between these four coordinate systems.
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5.2.2 Driving camera in ROS

Our goal for this SLAM system is to acquire blockage data in real-time. There-

fore, the ORB-SLAM3 engine is deployed based on the ROS environment for

real-time running. In the ROS environment, we first launch the usb-cam-node

with the ROS package usb-cam. Then, the node will fetch camera frames and

publish them as sensor-msgs::Image in ROS topic usb-cam/image-raw. Af-

terward, the ORB-SLAM3 will subscribe to the published topic and run the

SLAM process. However, the original ORB-SLAM engine has no pointcloud

publishing function, so we have to add a pointcloud publishing node on its

main thread.

5.2.3 Building camera model

As the mapping sensor, the input images must have a proper model to solve the

relationship between image changes and mapping reconstruction. Optical cam-

eras have two types: pinhole and fisheye. We will use the fisheye camera for

a wider field of view. In the ORB-SLAM3 engine, the camera model is defined

in the GeometricCamera class as a virtual function. The fisheye camera uses

the KannalaBrandt8 model. The camera’s intrinsics, distortions, and projection

are defined in the model file. A SkewSymmetricMatrix is used to load the cam-

era’s intrinsic matrix. The observation uncertainty is also defined in the camera

model. Once the tracking thread is running, the thread will use the ParseCam-

ParamFile function to load the camera typesetting. First, a temporary vector

vCamCalib is created to store intrinsic; then, a tracking matrix mDistCoef will

keep the distortion parameter. The intrinsic will then be sent to the tracking

variable mpCamera and read by the map collection function mpAtlas. Then in
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the Atlas map, the camera is added and loaded. For stereo cameras, the camera

modeling and loading process are similar. The model will load the second cam-

era as the right camera and the original camera as the left camera. The tracking

thread picks proper keyframes from input images to form the map.

5.3 SLAM Engine

The ORB-SLAM3 engine is the first SLAM engine for real-time mono, stereo,

RGBD SLAM mapping with IMU data fusion. The ORB-SLAM3 handles input

frames with three main threads as shown in Fig. 5.2. When a mapping system

Figure 5.2: ORB-SLAM3, the SLAM engine we use to process input images

is deployed on a UAV, oscillation is inevitable and introduces deviations in the

SLAM map. However, acceleration data from either the UAV flight controller or

an independent IMU can erase this error. According to ORB-SLAM3’s authors,

this approach can get ten times more accurate than the previous version. The
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visual sensor is a good solution for low cost and fast deployment for aerial map-

ping. In this scenario, we will use the ORB-SLAM3 engine’s monocular mode

for our aerial sensing.

5.4 Map Processing

The ORB-SLAM3 handles local maps with key frame culling. In feature-based

mapping systems, picking how many frames as key frames is vital. Too many

key frames are redundant, but too less key frames can’t form a proper map. In

the local mapping procedure, ORB-SLAM3 deletes redundant key frames after a

local map has been formed. When processing global map, each map’s Sim3/SE3

is calculated for place recognition.

5.4.1 Pointcloud publishing

Point cloud is the most common format for 3D scanning and reconstruction.

Here we use a point cloud publisher to get the map from the SLAM engine and

then publish it in the ROS environment. For the pointcloud publishing, we first

include three ROS packages: tf, Geometry-msgs, and PCL. The tf keeps track-

ing all coordinates movement over frame change; the geometry-msgs transfers

universal geometric data between other packages; the PCL package stores all

points’ x, y, and z coordinates in pointcloud. In the ORB-SLAM3 Monocular

thread, we first define a position publisher and a pointcloud publisher for point-

cloud publishing. Then, when the camera frames are fed into the monocular

thread, we use tf to create a 3x3 matrix to store the camera frame in a right-

handed coordinates system. Meanwhile, we create an empty pointcloud and
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read the coordinates matrix to form the real pointcloud. Finally, the matrix and

pointcloud are updated with the image grabber function in ORB-SLAM3 to en-

sure that the pointcloud is dynamically updated.

5.4.2 Octomap Generation

A 3D reconstruction to pointcloud can get a very detailed reconstruction of the

physical world. However, our large-scale mapping does not need detailed in-

formation about obstacles shapes. Therefore, we need to process further the

original point cloud acquired from the SLAM engine. Here, we use Octomap,

a compact format for a 3D occupancy grid map based on octree. The Octomap

represents occupied, unoccupied and unknown space. In the ROS environment,

we run both the Octomap and Octovis packages, the Octomap main package

handles the mapping process, and the Octovis will visualize the map.

5.5 Stereo Camera Implementation

In our initial step, we test octomap mapping with an Intel Realsense D455 cam-

era. The D455 is a stereo camera with 6m range. We use it for indoor octomap

generation and the UAV’s low-height flight test. Due to the size limit of the en-

tire sensor module, stereo camera’s two sensors are close to each other, which

limits its sensing range. Though stereo camera’s range makes it unsuitable for

UAV’s onboard long range sensing, we use it for scaled mapping test to verify

the octomap’s process and UAV’s carrying capability.
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5.5.1 Indoor octomap test

To verify the performance of octomap process on UAV’S companion computer,

we deploy the Octomap-server process on an Intel NUC for ground test. An

Intel Realsense D455 camera is used as frame and pointcloud source. When the

D455 works, it broadcasts the pointcloud yopics. We use Octomap-server to

acquire it and generate the octomap.

Figure 5.3: An aisle in WINGS lab and its Octomap reconstruction

We put the camera in an aisle in the WINGS lab as shown in Fig. 5.3, an

occupancy map generated by octomap represents all obstacles with blocks. The

color of this octomap represents depth data. The green blocks are far from the

camera, and the purple ones are close. In this map, the racks in the lab are pre-

sented as blue and purple blocks, and the walls are presented as green blocks.

Due to the stereo camera’s range limit, the far blocks have obvious deviations.

The octomap can be updated according to the mapping area’s changes. Like

Fig. 5.4 shows, when a person walks into the camera’s field of view, the octomap

generated new blocks representing new obstacles.
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Figure 5.4: Octomap update when environment changes



Chapter 6
Carrier Vehicle

To map a mission area the mapping system must be carried by carrier vehicles.

In our design, the mapping systems will be carried by flying UAVs, which are

highly maneuverable for large scale mapping applications. Industrial UAS has

three most popular types: fixed-wing, multicopter and VTOL. The multicopter

is the easiest one to operate because it has no special requirements for taking off

or landing, and therefore we will use multicopter as our carrier vehicle.

6.1 Octocopter

In our design we use an octocopter, which is a rotary-wing aircraft with eight

lift-generating rotors with fixed-pitch blades. Multiple motors provide suffi-

cient thrust for carrying our mapping payload. With the coordination of the

flight controller, the octocopter is capable of maintaining flying when one of the

eight motors is malfunctioning. Next we mainly introduce the power system of

the Octocopter.
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6.1.1 Motors

On our octocopter, we use 380 KV three phase asynchronous induction motors.

The idling speed of the motor increases by 380 rpm for every volt increase in

input voltage. The inertia of this motor is low and the response speed is very

fast, which makes the motor itself and the copter highly maneuverable. To get

the power output data, we use the Steinmetz equivalent circuit:

1
s

R′
r = R′

r
1 − s

s
+ R′

r (6.1)

s is slip, R′
r is rotor resistance referred to the stator.

So the output power plus motor’s copper loss is the air gap power:

Pr = 3R′
r2I

′2
r (6.2)

Pgap =
3R′

r2I
′2
r

s
(6.3)

Pelectromechanical = 3R′
r2I

′2
r

1 − s
s

(6.4)

Pelectromechanical = Pgap(1 − s) (6.5)

Pr is rotor copper loss, I′r is rotor current referred to the stator.

Which means the electromechanical power output with the rotation speed’s

relationship is

Pelectromechanical =
3R′

r2I
′2
r nr

sns
(watt) (6.6)

ns is synchronous speed in rpm.

According to our design, each motor consumes 237.54w and provides 1420g

thrust at maximum.
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6.1.2 ESC

Multicopters have fixed-pitch blades, so their maneuvering and attitude con-

trol rely on changing the motor speed rapidly, which is done by the Electronic

Speed Controller (ESC). The ESC receives the signal from the flight controller

and inverts the batteries’ DC power into three-phase AC power to drive the

motor. The ESC’s MOSFET quickly switches on and off according to the flight

controller’s PWM signal to modulate higher or lower output power. Our ESC

system is a three-phase bridge inverter with six-step control modulation. Each

ESC includes three half-bridges and each half-bridge has 2π
3 angle phase shift to

generate three-phase power needed by the motor. Six-step ESC’s phase voltage

[20] can be expressed with Fourier series as

Vao =
2VDC

π
[coswt − 1

3
cos3wt +

1
5

cos5wt − ...] (6.7)

Vbo =
2VDC

π
[cos(wt − 2π

3
)− 1

3
cos(wt − 2π

3
) +

1
5

cos5(wt − 2π

3
)− ...] (6.8)
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π
[cos(wt +

2π

3
)− 1

3
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2π

3
) +

1
5

cos5(wt +
2π

3
)− ...] (6.9)

So the motor’s line voltage is
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2
√

3VDC

π
[cos(wt+

π

6
)+ 0− 1

5
cos5(wt+

π

6
)− 1

7
cos7(wt+

π

6
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√
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[cos(wt− π
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)+ 0− 1

5
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7
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Vca =
2
√

3VDC

π
[cos(wt +

5π

6
) + 0 − 1

5
cos5(wt +

5π

6
)− 1

7
cos7(wt +
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6
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(6.12)

We use 22.2V LiPo battery as power system input. The ESC modulates the



28

input power into a proper voltage to drive the motor at a desired rpm. Among

the output power, the square waves includes 6n ± 1 characteristic harmonics,

which causes efficiency loss and motor noise. Through six-step control, we can

minimize the efficiency loss caused by harmonics.

6.1.3 Flight Test

To ensure the copter is capable of mapping missions, we installed a D455 cam-

era on it as mapping camera and set up an octomap server on the companion

computer Intel NUC. As shown in Fig. 6.1, the mapping system works normally

onboard. On the ground station, we can see that the ground below the UAV has

been represented as blue and purple blocks.

Figure 6.1: The Octocopter with mapping system in testing facility



Chapter 7
Conclusions and Future Work

In this research, we tested ORB feature based SLAM engines and built a multi-

copter. In the mapping system, we repeated monocular pinhole, Kanalabrandt8

and stereo model based camera mapping. We discussed popular SLAM and

mapping techniques and camera modeling. In the carrier vehicle, we built an

octocopter, tested carrying mapping payloads and discussed about the motor

and its driving system.

In future works, we will install a full set of mapping system on carrier ve-

hicles and run real mapping tests. In addition to the cameras, LIDARs will be

added for long-range, high-resolution mapping. The carrier vehicles will also

add different types of UAS for large-scale mapping missions. Universal octo-

copters will carry most mission payloads, industrial hexacopters will carry vital

payloads and computers to serve as flying data centers.
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