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Abstract

We consider a collaborative distributed multi-agent reinforcement learning

problem with networked agents, where agents are connected via a time-varying

communication network and serve as flying nodes between two endpoints. The

agents serve as flying base station to establish the wireless connection between

the backhaul nodes and users. The agents aim to maximize the overall through-

put.

We first investigate the difference between TensorFlow and PyTorch and pro-

ceed our research with TensorFlow. Meanwhile, we test the collaborative multi-

agent Advantage Actor-Critic (A2C) on Ground Mobility Vehicles (GMVs) with

both OpenAI Gym simple spread scenarios and navigation scenario in UBSim

over the indoor autonomy research testbed. Then we conduct simulation ex-

periments with networked agents and compared the proposed algorithm with

REINFORCE-based Policy Gradient (REINFORCE PG) over the UB SOAR fa-

cility with UAVs. Then to further reduce the communication overhead and the

real-time gap related to battery charging issue, we utilize a Lazily Aggregated

method to set up a trigger condition to recharge the UAV battery based on the

endurance, weight and speed. Our work is provided along with the numerical

experiments from the perspectives of two different libraries and two different

algorithms.
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Chapter 1
Introduction

Unmanned aerial vehicles (UAVs, or “drones”) have been utilized in many

fields and are capable of executing commands, performing search-and-rescue

missions [1], establishing a network [2], and provide support for a network

[3, 4, 5]. UAVs are also well known as delivery trucks [6] which can help re-

duce the traffic in civilian life. They can carry large weight and are able to

achieve a much faster delivery to satisfy customers. For example, in 2022 re-

searchers introduced fully autonomous mini drones and tested navigation and

coordination as a swarm in a bamboo forest [7]. Swarm UAVs are widely used

for large-scale computation and large data processing. Swarm UAVs are often

deployed in a large area to complete collaborative or cooperative tasks, such

as search-and-rescue, data collections, and swarm UAV networking [8]. Swarm

UAVs can be used for speed up the convergence of the network policy, quicker

access and communication with other UAVs. Instead of having only one UAV

exploring the environment, Swarm UAVs will have multiple UAVs to collbo-

rate with each other by each scanning a much smaller area, share their data

with others to reduce the time cost, and achieve a faster rate of policy conver-
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gence. Swarm UAVs are more efficient in transmission time, information pro-

cessing, communication and energy harvesting. Power consumption is a key

performance metric in wireless UAV networking, and using multiple UAVs to

speed up the exploring and training process can help reduce the power usage,

which is very important to calculate the maximum flight endurance. There are

several challenges to address, such as the model design and optimization, re-

source allocation, and protocol design. The complexity of minimizing commu-

nication overhead, resource allocation, model and protocol design motivate and

accelerate advancements in analytical model design and data-driven decision-

making based on artificial intelligence and machine learning (AI/ML) technol-

ogy. Model design, model optimization, algorithm implementation, and proto-

col design are required to design and deploy network control programs and test

the experiment on software radios simultaneously.

1.1 Background

Reinforcement learning (RL) [9] is a type of machine learning, where an agent

takes actions in the environment over a sequence of time steps and aims to max-

imize the long-term cumulative reward or minimize the long-term cumulative

loss it receives from the environment. In a typical RL problem, there is at least

one agent, exploring or exploiting its surrounding.

The agent takes actions in the environment in exchange for reward for the in-

formation of that and next states, then the agent proceeds another action based

on these information. The agent aims to maximize the long term reward in the

environment. The way that the agent interacts with the environment contin-

ually for a certain amount of time and learns based on the feedback from the
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Figure 1.1: Agent-environment interaction in a MDP.

environment is called Markov Decision Process (MDP). The MDP consists a tu-

ple:

(S, A, ρ, P, R) (1.1)

where s ∈ S is the state space, a ∈ A is the action space, ρ is the initial state

distribution, P is the state transition kernel, and R is the reward received from

interacting with the environment. The agent aims to maximize the long-term

cumulative reward or minimize the long-term cumulative loss by the state in-

formation received from interacting with the environment.

max
π

∑
m∈M

Rm(π) with Rm(π) := ET∼P(·|π)

∞

∑
t=0

γtrm(st, at) (1.2)

In this research, we consider multiple agents in RL, also called Multi-Agent

RL (MARL), where instead of having one agent interacting with the environ-

ment, multiple agents can work together. In this case, there are two types of

MARL that will affect agents’ behaviors, cooperative and collaborative MARL.

In cooperative MARL, the agents work together to achieve their own goals.

In collaborative MARL, the agents work together, have individual progress,
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and aim to achieve the same shared goal. Both learning strategies can be uti-

lized in either a centralized method or a decentralized method. A centralized

method involves a central controller and a group of agents, and at each time

step, the agents update their policy gradient and receive the next state informa-

tion and reward from the controller. Unlike the centralized method, decentral-

ized method does not have a controller to keep track of all updated information

from the agents. In decentralized method, the agents are linked via a time-

varying communication network and share the required information with their

neighbors. Both state and reward information is localized, while in centralized

method, state and reward information may be globally observable depending

on the requirement of the tackle scenario.

We aim to reduce the communication overhead for collaborative MARL. In

a multi-agent network, for example, multi-UAV networks, which are also called

Swarm UAV networks that often suffer from transmission latency, communica-

tion, and data overhead due to the frequent information exchange among UAVs

through a time-varying communication network and many unpredictable envi-

ronmental factors that affect the convergence of the learned policy.

1.2 Challenges

There are many challenges in MARL, such as communication overhead and

signal interference, limited endurance, data overhead, sim-to-real gap, and swarm

control. Except for the last one, which is caused by hardware, each MARL chal-

lenge can be discussed from three basic categories: environment, policy, and

networked control problem.

The environment can cause challenges based on data complexity and decision-
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making. When multiple agents interact with the same environment, the state

information received by each agent will include the current agent’s information

and other agents’ information. This information depends on the scenario and

the network control problem. Each agent will then process and take actions

based this information and reward. With multiple agents, we often expect them

to cover a large and complex area, this can increase the state data complexity. It

can lead to inaccurate simulation results due to many unpredictable factors and

changes in other agents’ behavior in a real environment.

Regrading the policy, due to large amount of information that require to be

processed, individual behavior is hard to predict and will interfere with other

agents, such as collision and misinformation. It can be more challenging when

having a decentralized system, since the agents will be required to learn in-

formation from each other, since information can be misunderstood or failed

transmission can make the policy even hard to converge.

In a network control problem, there are many things that need to be con-

sidered, such as communication links and scenarios (bandwidth and data rate).

Each agent requires lots of communication with its neighbor agents to maintain

a controllable system and this will lead to large communication overhead and

latency.

More detailed MARL challenges are listed below and discussed based on the

three categories mentioned above. We consider a basic navigation scenario as

an example to help the discussion of each challenge. The navigation scenario,

also called seeking scenario, where N agents seek N landmarks. The agents will

receive rewards based on the distance to the landmarks and other agents. In

this case, the state for each agent will include its location coordinates, distance

to the closet landmark, and distance to the closet agent. To avoid confusion, we
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consider agent i as the current agent and agent j as the other agent.

1. Communication Overhead / Signal Interference

The communication overlap and signal interference can be caused

by exploring the surrounding environment, training policy, and commu-

nication network. In typical MARL, the agents need to frequently commu-

nicate with the central controller or other agents and receive the needed

information to take the next action. Two methods can affect the communi-

cation differently, centralized method and decentralized method. Next we

will discuss the communication overlap and signal interference for each

method for each category.

In a centralized method, a central controller is needed to collect all

the information from every agent and send out the observation and re-

ward to help the agents take the next step action. In centralized method,

the agents do not need to communicate with other agents. Each agent i

chooses an action based on the initial state information received from the

central controller. Based on this action, the central controller receives lo-

cation information and calculates the distance to the closest landmark and

closest agent j. As the number of agents increases, the amount of location

information received from the environment at each time step will also in-

crease. The required distances for calculating the reward will require more

time to process. Since the agents take actions individually, their actions are

hard to predict, and the training policy takes time to converge. If consider-

ing a network control problem with a centralized method, agent i is linked

to users and backhaul stations but not to agent j.

In a decentralized method, since there is no central controller, the
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agents share their information with their neighbors via a time-varying

communication network. Each agent receives their state information from

the environment and updates through this communication network to

their neighbors. In this case, each agent’s state information is affected

by two factors, how accurate the shared information is and how stable

this communication network is. During the information exchange, there

is some noise and signal interference that can cause lost transmissions.

This will make the policy training even harder to converge.

To reduce the signal interference, communication cost, time cost, and

the communication frequency need to be reduced. Otherwise, the state

information will be lost and agents’ actions will be negatively affected.

2. Data Overhead

In both centralized and decentralized methods, the agents will need

sufficient state information in order to take an action. This information in-

creases as the number of agents increases, which will increase the amount

of data that need to be processed and hence the cost of time.

3. Swarm Control

Swarm control algorithm is really important, especially in decentral-

ized MARL. Since there is no central controller, a control method is needed

to maintain the swarm formation while avoiding collisions with each other

or the environment. Swarm control framework includes flight control and

cross-layer optimization designs. This is required to coordinate large-scale

UAV systems to reduce the execution time.

4. Hardware Challenge: Limit Endurance
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UAVs have a limited payload that they can carry: as the weight

of UAVs increases, the maximum flight time decreases, due to increased

strain on the battery. In order to increase the flight time, UAVs will re-

quire a larger battery. Hardware problems can cause all the above chal-

lenges, due to a sensor malfunction, mislocation, and wrong configura-

tion. UAVs rely on their sensors to conduct data collection. If there is a

sensor malfunction occurs, UAVs might be misled and requires directions

or command to fly back to the maintenance station. Important sensor mal-

functions, like GPS sensor, can also lead to data inaccuracy, which will be

useless to transfer. Transferring this kind of information can increase com-

munication cost.

Both the challenges and utilization of the swarm UAVs networks have moti-

vated our research.

1.3 Contributions

The goal of this research is to study a communication-efficient multi-agent

reinforcement learning algorithm that can reach a maximum throughput with

less communication overhead. In this work, we consider a basic networked

agent scenario, where there is a starting point, a destination point, and 2 agents

to set up the connection between two points.

1. In the first step of the research, we want to understand the difference be-

tween TensorFlow and PyTorch and conduct experiments to see the code

changes. We want to identify a library that has more supporting docu-

ments and tutorials for future research. We evaluate the difference be-
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tween TensorFlow and PyTorch by testing both libraries with the REINFORCE-

based Policy Gradient (REINFORCE PG) method with the OpenAI Gym

simple spread scenario.

2. In the second step, instead of using existing scenarios in OpenAI GYM, we

design our own scenarios and MDPs. We adapt UBSim, a network simula-

tor with integrated optimization, learning, and experimentation capabili-

ties for digital-twin-enabled wireless networks. We add a set of new node

classes, including flying class and landmark class to further compare the

convergence of the algorithms in the navigation scenarios in OpenAI Gym

and UBSim.

3. We implement a centralized Multi-Agent Advantage Actor-Critic (A2C)

method in UBSim with the navigation scenario using the indoor auton-

omy research testbed. By comparing the results of Multi-Agent A2C and

REINFORCE PG, it is found that A2C converges faster than REINFORCE

PG, which could be beneficial for future research.

4. We model the UB Structure for Outdoor Autonomy Research (SOAR) in

UBSim for outdoor simulation experiments and further test it with all the

algorithms. For a swarm UAV system, the agents are often searching in

a large area where the indoor autonomy research testbed is small com-

pared to the SOAR facility. The SOAR facility will be utilized for all future

simulations and real-world experiments involving multiple agents.



Chapter 2
Related Work

2.1 Overview

There are two regimes of RL that involves multiple agents, Distributed Multi-

Agent Reinforcement Learning (Distributed MARL) [10] and Parallel Multi-

Agent Reinforcement Learning (Parallel MARL) [11]. In Distributed MARL, all

agents conduct training in the same environment and each agent’s actions can

be influenced by other agents. Distributed MARL is used for a large area in-

vestigation and performs tasks that require collaboration or cooperation among

agents. In Parallel MARL, all agents work in parallel, which means the agents

train in a single-agent environment and complete their single-agent tasks. Par-

allel MARL can reduce the training time and data complexity.

Additionally, there are two methods that can be considered on top of MARL,

centralized method and decentralized method. Th former involves a central

controller to keep track of all data and coordinate the information transferred

between agents. The latter does not have any controller to coordinate the tran-

sition of information, including action, observation, and reward. Instead, in
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decentralized method, the agents are connected and they transfer information

to fulfill their observation via a time-varying communication network in order

to calculate their local reward. Lastly, we also compared two machine learning

libraries in this section, TensorFlow and PyTorch.

2.2 Centralized MARL

The centralized MARL [12], similar to the centralized method briefly dis-

cussed in Chapter 1, has one central controller with multiple agents. These

agents are connected to the central controller by communication links. These

communication links are all bidirectional, which means theagents can upload

information to central controller, and central controller can broadcast informa-

tion to the agents.

Figure 2.1: A central controller linked with 8 agents.

2.3 Distributed Multi-Agent Reinforcement Learn-

ing (Distributed MARL)

In Distributed Multi-Agent Reinforcement Learning (Distributed MARL)
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[10], instead of having a central controller to connect to the agents like cen-

tralized MARL, the agents are connected to their neighbors via a time-varying

communication network. The agents jointly optimize the policy using the joint

action of all the agents.

Figure 2.2: Eight agents that are connected to their neighbors by time-varying
communication links.

In typical distributed MARL, multiple agents interact with each other within

the same environment, which consists of new tuples:

(S, {Am}m∈M, ρ, P, R) (2.1)

where {Am}m∈M is the joint action of all the agents at each time step, which

is required to determine the next state information. This will further affect the

long-term cumulative reward function:

max
π

∑
m∈M

Rm(π) with Rm(π) := ET∼P(·|π)

∞

∑
t=0

γtrm(st, an,t) (2.2)

where n = 1, 2, ...., M and it is used to calculate the joint reward at each time

step. The advantage of Distributed MARL is data efficiency because multiple

agents work together to reduce the amount of data that needs to be processed.

In distributed MARL, there are multiple agents interacting with each other
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in the same environment. There are different learning theories. For instance, in

collaborative learning, the agents take individual actions and aim to maximize

the overall reward, but each agent can receive the individual or global reward at

each time step. In cooperative learning, unlike collaborative learning, the agents

work together. Each agent has an important role and each role plays an impor-

tant part to achieve the maximum global reward. In competitive learning, on

the other hand, the agents compete with others to achieve a maximized result.

In summary, they all seek to maximize the reward in that environment. The only

difference is, the agents in collaborative learning can have different actions and

different rewards; the agents in cooperative learning must have others’ contri-

butions and will receive the same reward; and lastly, the agents in competitive

learning can have different rewards, actions, and states.

2.4 Parallel Multi-Agent Reinforcement Learning (Par-

allel MARL)

Unlike the distributed MARL, parallel MARL[11] divides the large-scale com-

plex tasks into multiple single-agent task and has all the single-agent tasks run-

ning in parallel to reduce the computational complexity of the original and

speed up the training process.

(Sm, Am, ρm, Pm, Rm) (2.3)

where compare to the distributed MARL, each agent has its own state, action,

initial state, state transition kernel, and reward. Thus, a different long-term
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cumulative reward function shown as follow:

max
π

∑
m∈M

Rm(π) with Rm(π) := ETm∼P(·|π)

∞

∑
t=0

γtrm(sm,t, am,t) (2.4)

The advantage of parallel MARL is improved time efficiency and lower compu-

tational complexity. Since the complex task is divided into multiple small and

less complex tasks, the training time can be reduced [? ]. [13] also shows that

training policy in parallel can speed up the training process and help to process

data faster.

2.5 TensorFlow vs. PyTorch

This research consider two different open-source software libraries for ma-

chine learning development, TensorFlow [14] and PyTorch [15]. TensorFlow is

developed by Google and written in C++, CUDA, and Python. TensorFlow is

an end-to-end machine learning platform that has multiple tools to process and

load data. TensorFlow can be used for model and algorithm design. It can sup-

port model iteration and distributed training. TensorFlow has Model Analysis

and TensorBoard to help track training performance. Some pre-trained models

can be found in TensorFlow Hub to help beginners. TensorFlow can support

deploying the model on different environments, such as CPUs, GPUs, FPGAs,

servers, and edge devices. PyTorch is developed by Meta AI, which is under

Meta Platform, also known as Facebook. It is based on the Torch framework

and can also be written in C++, CUDA, and Python. PyTorch also has many

tools that can be used for data processing, model design, and algorithm design.

PyTorch can support distributed training and performance optimization by us-
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ing the torch.distributed. It also has support on major cloud platforms.

Since TensorFlow is released in Nov. 2015 which is almost a year earlier than

PyTorch, there are more existing documentation and coding examples than Py-

Torch. To code a simple expression, TensorFlow has more libraries and sources

to use than PyTorch, which requires more hard coding. This type of data par-

allelism made TensorFlow hard to debug than PyTorch. Another difference be-

tween TensorFlow and PyTorch is in the visualization. TensorFlow has a tool

called Tensorboard that can display the summary of collected data in many dif-

ferent ways, plots, images, and audio, whereas the visualization for PyTorch is

very limited. A more organized comparison is listed in Table 2.1.

Comparison TensorFlow PyTorch
1 Developer Google Facebook
2 Written In C++, CUDA, Python C++, CUDA, Python
3 Release Date Nov. 2015 Sept. 2016
4 Data parallelism Support for asyn-

chronous execution
Manually code

5 Debugging Difficult to conduct de-
bugging

Good debugging capa-
bilities

6 Visualization Better visualization Limited

Table 2.1: Comparison table between TensorFlow and PyTorch



Chapter 3
Model and Algorithm Design

3.1 Overview

This chapter discusses two key elements of this research, scenario design, and

algorithms design. Scenarios are the environment to conduct the training per-

formance evaluation. Scenarios decide the MDPs and the agents’ goals. Then

two different algorithms are used for training performance evaluation.

3.2 Networked Agents

We considered a network system with M agents, each agent serves as a fly-

ing base station and connect to the ground backhaul stations and users. We also

considered a centralized setting where the agents communicate with the central

controller for rewards and state information. The agents are connected through

a time-varying communication network, denoted by xt = (M, yt), where xt is

a communication network without communication directions and yt is the sets

of communication links at time t. (i, j) ∈ yt means agent i and agent j are con-
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nected and can share the network information. This communication network

is used to establish network connections to serve users and aim to achieve the

maximum throughput.

Algorithm 1: The Networked Agents System
Data: Input: total eps, T

1 for each episode eps do
2 Initialize connections
3 for i ∈ M do
4 Send packets to its neighbor j ∈ M : (i, j) ∈ yt over the

communication network xt
5 end
6 end

3.3 REINFORCE-Based Policy Gradient

REINFORCE-based Policy Gradient (REINFORCE PG) [9] is a Policy Gra-

dient (PG) method, which is considered a policy-based method. It is used to

estimate the optimal policy’s weight by stochastic gradient ascent to increase

the probabilities of the high-value actions. REINFORCE is based on trajectory,

which is for episodic cases. The trajectory corresponds to a full episode, also

called a Monte Carlo algorithm. It aims to maximize the expected return. The

policy gradient expression for REINFORCE PG is:

∇θ J(θ) = Eπθ
[∇θ logπθ(s, a)Rt] (3.1)

where θ is the policy parameter, πθ is a parameterized policy, and Rt is the sum

of the reward.

Although as a stochastic PG method, the convergence and performance of
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Algorithm 2: REINFORCE-Based Policy Gradient (episodic)
Data: Input: learning rate α > 0, total eps, T

1 Initialize: θ;
2 for each episode eps do
3 (S0, A0, R1, ...ST−1, AT−1, RT);
4 for t = 1 to T − 1 do
5 θ ← θ + αγtRt∇θ log πθ(At|St, θ)
6 end
7 end

REINFORCE PG are promising, it has a high variance and requires longer train-

ing time compared to Actor-Critic method.

3.4 Advantage Actor-Critic (A2C)

Advantage Actor-Critic (A2C) [16] is an algorithm that combines both policy-

based and value-based reinforcement learning algorithms. A2C is a temporal

difference (TD) method that consists of two neural networks, actor network,

and critic network. This means A2C has both actor step and critic step as sepa-

rate memory structures. The actor controls each agent’s behavior and the critic

evaluate s the action based on a state-value function:

Aπ(s, a) = Qπθ
(s, a)−Vπθ

(s) (3.2)

where Aπ(s, a) is the advantage function, Qπθ
(s, a) is the action value function,

and Vπθ
(s) is the state value function. The actor learns from this subtraction

between the state action pair and the average value of that state. This advantage

function is the critic evaluation, which is also called the TD error. It can be
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rewritten as:

Aπ(s, a) = R + γVπθ
(st+1)−Vπθ

(s) (3.3)

This equation can be used in place of the action value function by using only

one neural network, so that the variability in predictions can be reduced.

The Agents learns from advantage function which is the actual rewards in-

stead of the average rewards. Then A2C updates the policy using the advantage

function Aπ(s, a). The update expression for A2C is shown below:

∇θ = Eπθ
[∇θ logπθ(s, a)Aπ(s, a)] (3.4)

The advantage of using A2C instead of REINFORCE PG is lower variance with

increased stability because of this advantage function.

Algorithm 3: Advantage Actor-Critic
Data: Input: learning rate α > 0, learning rate β > 0, total eps, T

1 Initialize: θ;
2 for each episode eps do
3 Initializest = s0
4 for time step t = 1 to T − 1 do
5 Current action: at ∼ π(·|S, θ), observe st+1, Rt
6 Advantage function: At ← Rt + γtV(st+1, w)−V(st, w)
7 State-value parameter w← w + βAt∇V(st, w)
8 Policy parameter θ ← θ + αγt At∇ log π(at|st, θ)
9 st ← st+1

10 end
11 end

Similarly, Asynchronous Advantage Actor-Critic (A3C) [17], which based on

the A2C, maintains all the details of the A2C, but involves executing in parallel

when interacting with the environment. A3C can improve the robustness and
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scalability and also improve the convergence of policy.



Chapter 4
Experimental Evaluation

In this chapter, two platforms, UBSim and OpenAI Gym, are evaluated and

compared based on the same training parameter for future model and algo-

rithm designs under the same scenario. These experiments are conducted using

REINFORCE PG as the learning algorithm. Then, the SOAR facility is config-

ured into UBSim and is compared with the indoor testbed, with an additional

class design for scenario design. Another experiment is conducted to see the

relationship between changing the number of agents and reward. Finally, the

limitations of MARL is investigated to understand the relationship between the

agents and training time.

4.1 TensorFlow vs. PyTorch

For MARL, the computing device is really important to help accelerate the

convergence of training policy. PyTorch requires an extra line of code to check

if the device is available and device conversion. All data needs to use ten-

sor.to(device) for device such as cuda0. For TensorFlow, we can install the GPU
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version of TensorFlow and configure the relevant GPU device drivers. Then,

TensorFlow will run operations automatically on GPUs, this can also be con-

trolled by coding. GPUs can process more data than CPUs with less power con-

sumption. Using GPUs can accelerate the training policy convergence because

of GPUs’ parallel processing abilities. Therefore we choose to use TensorFlow

for the MARL algorithm design.

4.2 Simulation Testing

In this section, we utilize two simulation software to test our experiment,

OpenAI Gym [18] and UBSim [19]. We consider the same scenario ( N agents

seeking N landmarks) for both software with training algorithms, REINFORCE

PG. We consider the same parameters to reduce the gap between the two soft-

ware. The simple spread scenario in OpenAI Gym is similar to the navigation

scenario, where their scenarios contain two agents and two landmarks. Each

agent receives the initial state information containing the agent’s current loca-

tion, distance to the closest landmark, and the distance to the closest agent from

the environment. In this case, since the two agents interact with the same envi-

ronment, the distance to the closest agent will be the distance to the other agent.

The agents will then choose their actions based on this state information. Based

on this action, the environment will pass the new state information after taking

the action and reward to critic if this action worths it or not. The agents will

receive negative rewards based on two categories, distance between agents and

landmarks and existing collision. The agents learn to minimize the loss by min-

imizing the distance between agents and landmarks and avoiding collisions.
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4.2.1 OpenAI Gym

OpenAI Gym is an open source python library, which is a standard API for

testing the reinforcement learning algorithms and often comes with lots of ex-

isting scenarios along with the pre-defined MDPs, including action, step func-

tion, observation, reward, and evaluation for the agent’s achievement. The step

function in OpenAI Gym is using for taking actions and it returns the next ob-

servation, reward, and end-of-episode information as the output.

Figure 4.1: Simple spread scenario in OpenAI Gym with three agents (purple)
and three landmarks (black).

Figure 4.1 shows three agents aiming to reach three landmarks. The agent in

the middle will collide with the agent at the bottom of the figure since the bot-

tom landmark is the closest to both agents. To avoid this situation, redefining

the reward function is needed. By increasing the collision penalty, an agent will

more likely avoid colliding with each other than reaching the same landmarks
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at the same time. The amount of the collision penalty can change agents’ behav-

iors, therefore changing the average reward per iteration and hence changing

the speed of policy convergence.

4.2.2 UBSim

UBSim is a discrete event-driven network simulator that can support UAV

and ground robot networks with three different frequency bands, microwave,

millimeter-wave, and terahertz bands.

Figure 4.2: Architecture of UBSim simulator for navigation environment.

Figure 4.2 shows the architecture of the UBSim simulator for the navigation

scenario, which is N agents seeking N landmarks. The agents are defined in the

mobile base station class. This class has a set of basic operations, such as passing

agent’s current coordinate, velocity, and pause time. Landmarks are defined

in the landmark class, which has a similar functionality without velocity since

the landmarks are stationary. Landmark class has a unit landmark box, which
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is used to calculate the shape of the landmark to display in the GUI. Custom

algorithm API section is used for the user to define their own control algorithms,

such as collision control to avoid collision with other irrelevant obstacles, like

walls and nets to help prevent great damage.

Figure 4.3: Navigation scenario simulation conducted over the indoor testbed.

Figure 4.3 shows a similar navigation scenario as the OpenAI Gym in UB-

Sim. UBSim is based on SimPY, a process-based discrete-event simulation frame-

work. UBSim can synchronize the visualization of the environment for every

time step, which cannot be achieved using OpenAI Gym.

4.2.3 Result Comparison

Since the number of agents needs to match the number of landmarks, in this

case, two agents that are seeking to reach two landmarks without collision. The

training policies for both simulation software use the same neural size for both

hidden layers, in which the first layer contains 128 neurons and the second layer
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contains 64 neurons. The discount factor γ is 0.95 and the learning rate α and β

are set to 0.00045. The total number of episodes is 30000 with 25 time steps per

episode.

(a) Averaged reward vs. iteration plot
for the OpenAI Gym simple spread sce-
nario.

(b) Averaged reward vs. iteration
plot for the UBSim navigation scenario
(similar to simple spread).

Figure 4.4: Comparison between two software.

Based on the result shown in Figure 4.4 (a) and (b), both experiments using

exactly the same training parameters but different software platforms can reach

the same amount of reward. Both training policies converge between 10000 and

15000 iterations. If the training parameters are the same, the difference between

this two software is minor. Therefore, using UBSim is efficient and can be more

helpful for debugging purposes, since UBSim is based on SimPy.

4.3 More Experiments

After we evaluate the simulation platform, we further configure the SOAR fa-

cility into the UBSim. The space of the indoor testbed [20] is limited and cannot

support multi-UAV real-world experiments. The trained policy based on the

indoor testbed will be invalid and will need to be retrained. The SOAR facility
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is much more suitable for the MARL model and algorithm design.

Figure 4.5: Navigation scenario simulation conducted over the SOAR facility.

Figure 4.5 illustrates SOAR facility in the UBSim. The two small squares on

the top left corner are the agent node and landmark node. They are the same

size as shown in Figure 4.3. This indicates that the SOAR facility is a much

larger facility and can be used for large-scale outdoor testing.

Figure 4.6 is the architecture of the UBSim simulator based on the SOAR

facility. Agents are now considered UAVs with almost the same functionality

as mobile base station nodes in 2-D, without considering the height. There are

many reasons can result in a height shifting during flight, such as environmental

issue and collision avoidance, thus, recalculation is needed. The distance can be

calculated using the get dist API in the network class.

These figures above are a comparison between the different numbers of agents

with the same learning rate α = 0.0007 under the same navigation environment.

In this scenario, the reward is the loss and the agents aim to minimize the loss.

In Figure 4.7 (a), only one agent interacts with the environment, and the train-
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Figure 4.6: Architecture of UBSim Simulator for SOAR with UAVs.

ing converges in around 10000 iterations. The average reward for a single-agent

scenario is -50. Figure 4.7 (b) considers two agents interacting with the envi-

ronment. This means both the collision reward and the reward reflect on how

close an agent is to a landmark is considered. For a two-agent scenario, it con-

verges in a little over 10000 iterations with a reward of -175. In Figure 4.7 (c),

there are three agents and it converges around 25000 iterations with a reward

of -400. As the number of agents increases, the reward decreases exponentially

and requires more iterations to train the policy.

4.4 Limitations

There are many challenges to address in MARL, such as the time cost to train a

policy, how fast can a policy converged and how to reach the maximum reward.
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(a) One Agent (b) Two Agents

(c) Three Agents

Figure 4.7: Comparison between different number of agents

(a) 4 agents scenario takes 10 hours to
train.

(b) 5 agents scenario takes 24 hours to
train.

Figure 4.8: Time cost for 4 agents and 5 agents scenarios
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In MARL, time cost is also a challenge. As the number of agent increases,

the training time for a policy to converge will also increase. In Figure 4.8 (a), a

scenario has 4 agents takes 16 hours to complete 140000 iterations. It converges

at around 8000 iterations which takes approximately 10 hours to train. In Figure

4.8 (b), this scenario has 5 agents. It takes 34 hours to complete 300000 iterations

and converges at around 170000 iterations taking around 24 hours. The training

time can take much longer in real scenario. Therefore working in parallel will

be more important to reduce the sim-to-real gap.



Chapter 5
Conclusions and Future Work

5.1 Conclusion

We considered a collaborative distributed Multi-Agent Reinforcement Learn-

ing problem with networked agents. We considered a wireless network with

two base station as the two endpoints and N agents deployed in between to

maximize the throughput. We have tested the collaborative multi-agent Advan-

tage Actor-Critic (A2C) on Ground Mobility Vehicles (GMVs) with both OpenAI

Gym simple spread scenario and navigation scenario in UBSim over the indoor

autonomy research testbed. Then we configured the SOAR into the UBSim and

compared the benefits with the indoor autonomy research testbed.

5.2 Future Work

There are many works that can be added on top of this thesis. We proposed a

centralized collaborative Multi-Agent Reinforcement Learning algorithm with

networked agents, which can be further considered in a fully decentralized set-
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ting, where the agents are not only connected by the time-varying communica-

tion network to establish connections but also communicate during this connec-

tion to exchange information between the agents.

• Lazily Aggregated (LA) Method

Lazily Aggregated method [21] is used to compare the previous policy to

the current policy and evaluate the weight of difference, then update the

current policy when the difference exceeds a situational threshold:

||δ∇̂k
n||2 ≥

c
α2N2

D

∑
d=1
||θk+1−d − θk−d||2 + 6σ2

n,total eps (5.1)

where δ∇̂k
n represents the current non-time-critical information and use

to compare with the updated boundary, c is a coefficient that is used to

evaluate how important this information will be and will set for the lower

bound to trigger the update. The LA method can be used to update non-

time-critical information, for example, sensor functionality and battery

health.

The LA method can reduce the policy update frequency based on this

trigger condition, therefore the communication frequency can be reduced.

More problems that need to be addressed before more general implemen-

tation, for example how to maintain fairness while trying to maximize the

throughput. A selection algorithm will be designed in order to maintain

fairness between the agents, similar to the LA method, in which data up-

dated by the agents will be evaluated based on importance and urgency.

For example, a UAV that runs with a low battery or sensor malfunction is

much more urgent than other healthy agents.
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• Partially Observable Markov Decision Process (POMDP)

A Partially Observable Markov Decision Process (POMDP) [22] can be

used to reduce the communication overhead. Instead of traditional MDP,

which assumes full knowledge of state, action, and transition probabil-

ity, POMDP is instead defined by conditional transition probability and a

set of conditional observation probabilities, where the agents take actions

based on a conditional observation, and the policy is trained based on a

probability distribution of the underlying state from the environment.

(S, A, O, T, P, R, γ) (5.2)

where O is the observation that uses to take actions, T is a set of condi-

tional transition probabilities between states, and P is a set of conditional

observation probabilities. Since the agents takes actions based on less in-

formation than the full state, the computational complexity of POMDP is

less than MDP.

• Learning Fairness

For a decentralized MARL, the agents are all required to communicate

with their neighbors through a time-varying communication network. The

agents cannot transmit at the same time over the same channel, otherwise

this will cause interference and possible communication loss. To deter-

mine which agent communicates first it will require a separate fairness

algorithm. This algorithm will prioritize those agents who are exchanging

either very valuable information or urgent information such as a low bat-

tery, then further rank them to reduce the traffic. The fairness algorithm
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can make sure the agents will not lose important messages due to commu-

nication loss or interference since those messages are always considered

the top priority.

• Sim-to-Real Gap

All the above future work intends to either reduce or help the commu-

nication network for information exchange, but neither are considered if

the simulation data are inaccurate. Inaccurate training data can lead to a

large sim-to-real gap. To further reduce the sim-to-real gap, we plan to

adapt digital construction [19] with a hybrid simulation parameter, which

will use the real-time data as input data of the simulation to reduce the

sim-to-real gap.

• Time efficiency

Training in simulation and using this trained policy to train in the real-

world can take an infinite amount of time. To reduce the sim-to-real gap

it needs to receive real-time data as input data for simulation. Since this

process requires lots of time, we plan to learn in parallel. In this case,

we can train the same untrained policy at the same time. Then, configure

the trainable parameters in simulation and send the trained policy to test

in the real scenarios. We can use the real data to continue training the

policy in simulation. In this case, we can generate an iteratively improving

training result in both cases.
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Communication-efficient policy gradient methods for distributed rein-
forcement learning. IEEE Transactions on Control of Network Systems,
9(2):917–929, April 2021.

[22] Mikko Lauri, David Hsu, and Joni Pajarinen. Partially observable markov
decision processes in robotics: A survey. IEEE Transactions on Robotics,
pages 1–20, September 2022.


	List of Figures
	Abstract
	Introduction
	Background
	Challenges
	Contributions

	Related Work
	Overview
	Centralized MARL
	Distributed Multi-Agent Reinforcement Learning (Distributed MARL)
	Parallel Multi-Agent Reinforcement Learning (Parallel MARL)
	TensorFlow vs. PyTorch

	Model and Algorithm Design
	Overview
	Networked Agents
	REINFORCE-Based Policy Gradient
	Advantage Actor-Critic (A2C)

	Experimental Evaluation
	TensorFlow vs. PyTorch
	Simulation Testing
	OpenAI Gym
	UBSim
	Result Comparison

	More Experiments
	Limitations

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography

