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* News articles are rich sources of information
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Introduction

« (Cities, as hubs of human activities, are frequently
mentioned in news articles

« Two or more cities may co-occur in the same news
article

New York City vs. Los
Angeles: Which Coast
Is the Best Coast?

« E.g., comparing the [V S
lifestyles of two cities R = e

Eight locals share advice on the best places to eat,
live, play, and what it takes to become a city expert.

Although New York City and Los Angeles are on opposite geographical ends of

the US. they have some of the largest populations and most expensive homes.

New York City is synonymous with a fast-paced lifestyle and cramped living

quarters, while Los Angeles is often characterized as casual and ostentatious MOST SHARED
Both cities fight for the affection of the entertainment business, fashion industry STORIES

and restaurateurs, but only ene city can claim the best coast title. Whether you're

considering a big city move for a job, a long distance lover, family or simply for Mansion Madness 2017 - Round 4:

Pick Your Favorite Luxury Home

adventure, carefully consider the advantages and drawbacks of these two

Los Angeles & New York City




Introduction

Chicago Cubs Cubs one win from first World Series
since 1945 after beating Dodgers 8-4

Introduction

* E.g., sports may draw teams
from two cities together

mf

Los Angeles & Chicago

How cities can stand up to

« E.g., cities may address climate change
. . As the White House aims to stifle climate science, cities cooperate globally
e n VI ro n m e n ta | I SS u eS BY ALISSA WALKER \GTngfZ?N{(:T(zg:s 2017, 10:00AM EST

collaboratively

Los Angeles & New Orleans
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Introduction

« Cities can be related under a variety of topics (semantic
relatedness)

« Such semantic relatedness is partially captured in news
articles

« Objective: to develop a computational framework that can
automatically process a large number of news articles and
extract semantic relatedness



Framework

Problem Formalization
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Framework

Problem Formalization

* Core idea:
1) Identify the topics of news articles
2) Assign the topics to the cities
3) Quantify the semantic relatedness

- Key guestion: given a news article, which topics is it
talking about?

— Cult.ure?? Multi-label
:: > Business: classification
— Environment?
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Experiments

 Cities: top 100 cities in the contiguous U.S.
« Time: 1/1/2006 and 12/31/2015

* News articles from The Guardian
« 543,824 news articles

theguardian
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Obtaining training data
» EXxisting news tags
 Mapping some tags to topics
* 141,765 training data records

News Tags
culture, music, film, media, books, artanddesign, television, art, fashion
festivals, history, comedy, museums, opera, drama, poetry, documentary,

IPTC Topic

Arts, Culture and
Entertainment
painting, theatre, sculpture
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pics:
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* Topic extracting
* Applying the trained LLDA model to all news articles

A training data record

IPTC labels Processed text

Artscultureandentertainment | la hard city accept reality suffer personal setback illness
Lifestyleandleisure sick gorgeous setting move santa monica beach...
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« Visualize city relatedness
Based on semantic topics
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« Visualize city relatedness
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Experiments

° Both LOS Angeles RESILIENT ABOUTUS NEWS OURCITIES OUR PARTNERS
and New Orleans
were enrolled in the
program in 2014

How Cities Recover from
Natural Disasters

11.19.14 | BY DAVID SCHREINER

What can cities do to plan for and recover more effectively from disasters, especially
when those disasters are continuing to increase in frequency and severity?

The Financial Times spoke with experts from the U.S. Department of Housing and
Urban Development's (HUD) Rebuild by Design and 100 Resilient Cities, and suggests
three broad steps, whether cities face too much water or too little, extreme heat or
record cold:

We began working with our first group of 32 cities i§ December of 2013.
In 2014, we received 330 applications from 94 countries for our second
cohort, and we announced the 35 cities of round 2 in December. The third
100 Resilient Cities Challenge closed in November of 2015 and we
announced our final group of cities in May 2016.




Distance Decay Analysis

« A weak distance decay effect was found in a previous
research based on place co-occurrence in news articles
(Liu et al. 2014, Transactions in GIS)

CiCj

X
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Cij

* [ is the friction coefficient; f = 0.2 in Liu et al. 2014

 City relatedness under different topics might have different
distance decay effects



Analysis

Distance Decay Analysis

All news: [ = 0.23

Topic

Arts, Culture and Entertainment 0.21
Sport 0.08
Crime, Law and Justice 0.37
Science and Technology 0.19

Politics 0.32



Conclusions

Conclusions

 News articles partially capture the semantic relatedness
between cities

« A computational framework is developed to “read” a large
number of news articles and extract semantic relatedness

* An experiment based on more than 500,000 news articles
shows different network structures and temporal variations

« Varied distance decay effects were observed for the
different semantic relatedness
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