
A Geo-Ontology Design Pattern for Semantic Trajectories

Yingjie Hu, Krzysztof Janowicz, David Carral, Simon Scheider,
Werner Kuhn, Gary Berg-Cross, Pascal Hitzler, Mike Dean, and

Dave Kolas



Outline

� Introduction

� Conceptual Foundation

� OWL Formalization

� Applications

� Conclustions and Future Work

2 of 15



Introduction

� Trajectory data have been used in a variety of studies.
� Human behavior analysis
� Transportation management
� Wildlife mornitoring

3 of 15



Introduction

� The term trajectory can be defined as a sparse set of
temporally-indexed positions (or fixes) of the moving object,
while its exact path between these fixes is unknown and has to
be estimated.

� Some fixes have no specific meaning and are purely artifacts of
the used positioning technology.

� Some other fixes denote important activities of the moving
object, and researchers may be interested in annotating and
classifying them– semantic trajectories.

4 of 15



Introduction

� Linked Data has become one of the choices to publish
trajectory data in the past few years.

� Two approaches:
� Foundational ontologies: they have been usefully applied as a

common ground for geo-ontologies, but tend to be abstract and may
introduce ontological commitments which are difficult to handle for
laypersons.

� Ontology design patterns: flexible, reusable, and self-contained
building blocks that help to model reoccurring tasks. They can also
be combined and ultimately aligned with foundational ontologies that
act as glue between patterns.

5 of 15



Introduction

� We propose an ontology design pattern for semantic
trajectories.

� Two goals of our ontology design pattern:
� First, it should be directly applicable to a variety of trajectory

datasets, and, thus, reduce the initial hurdle for domain scientists to
publish Linked Data.

� Secondly, it should be easily extensible, e.g., by aligning to or
matching with existing trajectory ontologies, foundational ontologies,
or other domain specific vocabularies.

6 of 15



Conceptual Foundation

� Competency questions have been used to detect the generic
use case of the design pattern.
� ”Show the birds which stop at x and y” (spatial data)
� ”Show the birds which move at a ground speed of 0.4 m/s” (attribute

data)
� ”Show the trajectories which cross national parks” (geographic

knowledge)
� ”Show the trajectories of the birds which are less than 1 year old”

(domain knowledge)
� ”Show the trajectories captured by Gamin GPS” or ”show the

trajectories generated by iPhone users” (information about the data
creator)

7 of 15



Conceptual Foundation

8 of 15



OWL Formalization

� A fix is defined as a spatiotemporal point {xi ,yi ,ti} which
indicates the location of a moving object at an instant of time.

Fix v ∃atTime.OWL-Time:Temporal Thing u ∃hasLocation.Position
u ∃hasFix−.SemanticTrajectory (1)

9 of 15



OWL Formalization

� A segment is defined by exactly two fixes, a starting fix
{xi ,yi ,ti} and an ending fix {xj ,yj ,tj}.

Segment v ∃startsFrom.Fix u ∃endsAt.Fix (2)

> v≤ 1startsFrom.> (3)

> v≤ 1endsAt.> (4)

Segment v ∃hasSegment−.SemanticTrajectory (5)

10 of 15



OWL Formalization

� The class of semantic trajectory serves as the access point for
the ontology design pattern.

SemanticTrajectory v ∃hasSegment.Segment (6)

hasSegment ◦ startsFrom v hasFix (7)

hasSegment ◦ endsAt v hasFix (8)

11 of 15



OWL Formalization

� StartingFix, EndingFix, and Stop

� Ordering Fixes within a Trajectory

� Position and Point-of-Interest

� Attribute and hasAttribute

12 of 15



Application

� This ontology design pattern has been applied to modelling
Mike Dean’s trajectory, recorded by a hand-held GPS.

� In this trajectory, Mike was traveling in two modes (walking
and driving)

13 of 15



Application

14 of 15



Conclusions

� A geo-ontology design pattern for semantic trajectories have
been developed in this research.

� It has the following features:
� Expressiveness. The design pattern can express the trajectory’s

spatiotem- poral properties, geographic knowledge, domain
knowledge, as well as the relations among them.

� Simplicity. Only a minimal number of classes and relations are
introduced, which makes the design pattern easy to understand, reuse,
and extend.

� Flexibility. The provided interfaces (generic classes such as Source)
allow the user to integrate related knowledge according to the specific
needs of the application (users can also leave interfaces open and use
the pattern directly without subtyping).

� Scalability. Depending on the required granularity of a particular
application, the ontology design pattern can model trajectories at
different scales.

15 of 15


