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Abstract: Geo-ontologies provide formal specifications of geographic concepts, and can 
be embedded into geographic information systems to support automatic reasoning. 
Traditionally, geo-ontologies are developed through a top-down approach in which a 
group of experts collaboratively decide about the formalization. While such an 
approach captures valuable expert knowledge, the resulting geo-ontologies could be 
biased, miss certain useful properties, or may not reflect existing data (needs). The fast 
evolving Linked Open Data (LOD) cloud offers a large amount of structured data 
contributed by authoritative agencies, companies, and the general public. With the 
diverse perspectives and the structured data organization, the LOD cloud contains 
knowledge which could be used to enrich top-down geo-ontologies. This paper 
proposes a workflow to mine bottom-up geographic knowledge from the LOD cloud. 
We describe each step of this workflow, and conduct an experiment using a dataset 
from the LOD cloud to learn a geographic concept port city. We perform an evaluation 
and show that the workflow can extract useful knowledge for enriching top-down geo-
ontologies. 

Keywords: geo-ontology, ontology engineering, concept learning, Linked Open Data, 
Semantic Web, semantics, DBpedia. 

1 Introduction 
Geo-ontologies provide formal specifications of geographic concepts, and have 
been discussed in a variety of GIScience studies. As concept mediators, geo-
ontologies can enhance the semantic interoperability among heterogeneous 
data and distributed systems. For example, Fonseca et al. (2002) proposed an 
architecture which used ontologies as an essential component to integrate 
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different geographic information (GI) systems [7]. In the domain of 
environmental monitoring, Pundt and Bishr (2002) developed an ontology to 
facilitate the sharing of data collected from different field survey activities [20]. 
Kuhn (2005) proposed semantic reference systems which employed ontological 
specifications to ground and map geographic information in different systems 
[15]. Geo-ontologies have also been used to improve geographic information 
retrieval. Jones et al. (2001) combined the semantic relatedness calculated from 
place ontologies with the traditional Euclidean distance to rank the relevance 
between the candidate results and the input queries [14]. Li et al. (2011) 
employed the SWEET ontology to expand the input query with semantically 
relevant terminologies, thereby enhancing the capability of the traditional 
keyword-based search [18]. In previous work, we demonstrated how semantic 
search can be implemented on top of Esri’s ArcGIS Online [11]. Capturing 
expert knowledge, geo-ontologies have also been applied to multiple decision 
making scenarios. Existing use cases include ontology-driven spatial decision 
support [17] as well as geodesign [16]. For next generation GI systems, geo-
ontologies may play an even more important role by enabling GI systems to 
automatically recognize geographic entities from data and recommend suitable 
spatial analysis tools. 

Designing good geo-ontologies, however, is not an easy task. Traditionally, a 
top-down approach has been used, in which a group of experts collaboratively 
specify the terms and relations of the target ontology. Such an approach has 
many merits. It captures the valuable domain knowledge from experts, which 
sometimes can only be acquired after years of experience in the specific field. In 
addition, the terms assigned by experts are often concise and meaningful since 
such terms generally have to undergo the deliberations and discussions of 
multiple professionals. While possessing these merits, the developed geo-
ontologies may nevertheless be biased towards the knowledge of the 
participating experts, and may miss some properties which could be useful for 
understanding the specific geographic concept, and many not well reflect 
particular datasets or future use cases. 

Progress in Semantic Web technologies [6] fostered the fast evolution of the 
Linked Open Data (LOD) cloud [2]. From 2007 to 2014, the LOD cloud has 
grown from its initial 12 datasets to more than 570 datasets with billions of 
triples (see Figure1). These rich amount of data are contributed by authoritative 
agencies, such as the U.S. Census and data.gov.uk, the industry, and also the 
general public. Examples of such user-contributed datasets include DBpedia 
and LinkedGeoData, which are the Linked Data versions of Wikipedia and 
OpenStreetMap respectively [1, 25]. Data instances in the LOD cloud are 
structured using the Resource Description Framework (RDF). This structured 
organization distinguishes LOD datasets from other unstructured user-
contributed content such as most social media data. 

The LOD cloud presents a valuable resource from which bottom-up knowledge 
could be mined to enrich the top-down geo-ontologies. The value of the Linked 
Data cloud can be seen in two ways. First, with many different data  
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              (a) The LOD cloud in 2007.                          (b) The LOD cloud in 2014. 

Figure 1: Evolution of the Linked Open Data cloud from 2007 to 2014 [22]. 

 
contributors, datasets on the LOD cloud reflect the diverse perspectives of 
people towards the same concepts and entities, and therefore can be exploited 
to enrich the knowledge from the limited number of participating experts. 
Second, the structured data enable knowledge to be extracted in a structured 
manner (e.g., in the form of properties and property-values) which is often 
desired for an already formalized top-down geo-ontology. However, mining 
knowledge from the LOD cloud demands suitable methods, since improper 
approaches (e.g., using a natural language processing method based on a bag of 
words model) may simply break the links among data instances and convert the 
structured data back to an unstructured form. 

This paper is an effort towards extracting bottom-up knowledge from the LOD 
cloud. The contributions of this work are as follows: 

• We develop a workflow that mines knowledge about geographic concepts 
from the structured Linked Open Data. 

• We demonstrate the use of the workflow by applying it to a sample dataset 
from DBpedia and an example top-down geo-ontology. 

• We designed a preliminary experiment to evaluate the extracted bottom-up 
geographic knowledge. 

The remainder of this paper is organized as follows. Section 2 reviews related 
work on geo-ontology engineering, and provides some background on Linked 
Data and DBpedia. Section 3 presents the workflow for extracting geographic 
knowledge from Linked Open Data. In section 4, we employ the proposed 
workflow to mine knowledge from DBpedia, and perform a preliminary 
evaluation on the extracted knowledge. Finally, section 5 summarizes our work 
and discusses future directions. 
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2 Related work 
The value of geo-ontologies has long been recognized by the GIScience 
community, and the history can be traced back to a NCGIA specialist meeting 
in 1998 [19]. Unlike the ontology discussed in philosophy, geo-ontologies are 
closer to those in computer science, which are designed to help machines turn 
data into sharable knowledge [4, 9]. Different from ontologies in other domains 
(e.g., bioinformatics), geo-ontologies focus on achieving better understanding of 
the geographic world and facilitating the implementation of conceptually 
sound GI systems [23]. Since the 1998 meeting, a lot of studies have been 
devoted to developing geo-ontologies. Smith and Mark (2001) investigated the 
conceptualization of non-expert subjects on geospatial phenomenon, and 
derived an ontology of geographical categories [24]. Frank (2003) designed a 5-
tier ontology for spatio-temporal databases which starts from the observations 
in the physical world and completes at the knowledge of cognitive agents [8]. 
Scheider et al. (2009) developed a formalization for grounding geo-ontologies in 
the physical environment [21]. Focusing on geographic information constructs, 
Couclelis (2010) developed a hierarchical framework with the user 
intentionality on one end and the existence of information on the other [5]. 
Janowicz (2012) proposed an observation-driven ontology engineering 
framework which aims at deriving ontological primitives from observation data 
[12]. The work at hand has been influenced by these previous studies. However, 
we focus on extracting bottom-up geographic knowledge from Linked Data to 
enrich top-down geo-ontologies, which has been rarely examined so far. 

The growth of the LOD cloud brings a large amount of structured 
spatiotemporal data, and is changing the ways of publishing, searching, and 
sharing geographic information [13]. The term Linked Data has two folds of 
meanings that are often used interchangeably. On the one hand, it refers to a set 
of principles recommended by W3C for publishing data on the Semantic Web. 
On the other hand, it represents the data which are structured and published 
following these principles. Among the many datasets on the LOD cloud, DBpedia 
is a central hub, which provides information about more than 4.5 million entities 
(many of which are geographic places) [3]. The content of DBpedia originates from 
Wikipedia, and each Wikipedia article has a corresponding DBpedia page. As a 
result, DBpedia inherits many great features of Wikipedia. For example, 
Wikipedia articles are contributed by over 25, 272, 000 users 
(http://en.wikipedia.org/wiki/Wikipedia:Statistics, retrieved in May 2015), 
and accordingly, DBpedia data obtain the diverse perspectives from the huge 
number of people. Meanwhile, a lot of data on Wikipedia have their original 
sources from authoritative agencies. For example, by examining the Wikipedia 
page of San Francisco, one can find that the data about the city’s land and water areas 
come from U.S. Census, while the elevation data are from U.S. Geological Survey. 
Unsurprisingly, DBpedia also inherits these valuable authoritative data. Since 
new content is being constantly added to Wikipedia, DBpedia updates its data 
regularly to synchronize with Wikipedia. 
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Categorization systems are frequently used by datasets on the LOD cloud to 
group similar instances. In contrast to LOD datasets that employ pre-defined 
categorization schemata, Wikipedia allows voluntary contributors to create 
customized categories and to classify entities into these categories. For example, 
there exists a category called Port cities and towns of the United States Pacific coast (see 
http://en.wikipedia.org/wiki/Category:Port_ cities_and_towns_of_the_United_ St
ates_Pacific_ coast) which contains cities, such as San Francisco and Los Angeles. 
According to Wikipedia, the intention of these categories is to “group together pages 
on similar subjects”. To some degree, the categorization result is similar to the data 
that Smith and Mark (2001) collected in [24]. In their experiment, non-expert 
human subjects were asked to give examples for geographic categories, whereas 
Wikipedia invites users to perform categorization tasks on the Web. DBpedia 
inherits these customized categories and the classification results from 
Wikipedia. In this work, we make use of the data instances under specific 
geographic categories to discover the properties which differentiate the 
instances that are in a category from those that are not. 

3 Workflow 
The objective of the proposed workflow is to extract geographic knowledge 
from Linked Open Data in a bottom-up manner. Specifically, we aim at 
discovering the knowledge which may be missing or biased in top-down geo-
ontologies. The top- down geo-ontologies discussed in this paper are not the 
top-level ontologies in existing literature, which provide abstract and domain-
independent terms, such as endurant and perdurant. Instead, these top-down geo-
ontologies model concrete geographic concepts (e.g., lake and university town), and 
are micro-ontologies which serve as building blocks in specific applications [13]. 
Figure 2 shows an overview of the designed workflow. 

The workflow starts from the Linked Datasets at the lower-left corner of the figure. 
Based on the categorization system, the workflow first selects a Target category 
that corresponds to the geographic concept modelled by the top-down geo-
ontology. Meanwhile, both positive instances and negative instances are selected 
according to the category. Positive instances are the entities which are classified by 
users as belonging to the target category, whereas negative instances are those 
that do not belong to the category. For example, if the target category is university 
town, then positive instances are the towns which have been classified into this 
category, while negative instances are those which are not considered as 
university town. Selecting suitable positive and negative instances are important 
since they will be used as the input for the next three-stage process to learn the 
target category. 
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Figure 2: An overview of the workflow. The dotted lines of the General users box 
and the Contribute arrow represent that some Linked Datasets are not 
contributed by general users). 

 

The first stage extracts common properties among the input instances. It 
examines all the properties that each instance has, and attempts to answer two 
questions: 1) what are the property-value pairs that only exist in the majority of 
the positive instances? 2) what are the properties that are shared by both the 
positive and negative instances? Answering the first question can help discover 
the properties whose existence indicates a strong membership between a 
geographic instance and the target category. For example, an examination of the 
instances in the category of university town may reveal that the property-value 
pair (i.e., a predicate and object pair) hasUniversity.University is shared among the 
majority of the positive instances while not in most of the negative instances. 
Such a result indicates that this property-value pair is a strong indication for an 
instance to be considered as a university town. The term majority should be 
determined based on the requirements of specific applications. For example, if 
the goal is to learn a category that is compatible to a few outliers, then a value of 
95% could be used as the majority threshold, and it means the properties are 
shared by at least 95% of the positive instances and by no more than 5% of the 
negative instances. Answering the second question can help find the candidate 
properties whose value ranges can be potentially used to distinguish a 
geographic concept. For example, to learn the concept big city in the mind of the 
general public, a property population may be shared by both positive and negative 
instances. While this property is not unique to positive instances, its value can 
still be used to differentiate the target category (e.g., a big city might have 
population > 1, 000, 000 based on the user- contributed data). 
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The second stage filters out certain irrelevant properties and constructs new 
properties which might be useful for understanding the target concept. This stage 
is a supervised process and requires manual intervention. The reason that this 
filtering is necessary is because the LOD cloud is a big knowledge base that is not 
merely for one specific application: the information available on the LOD cloud 
is much richer than what is typically needed for an application. Thus, instead of 
directly picking and using the data, applications should be selective in terms of 
what data are relevant and what are not. When it comes to learning knowledge 
about a specific geographic concept, some properties may not be considered as 
relevant. For example, in DBpedia, a geographic place is often linked to the 
celebrities who were born there through the property isHometownOf. Such a 
property can be useful in understanding the relations between people and 
places, and in fact, we have utilized these relations from DBpedia to improve 
place name disambiguation in a previous study [10]. However, this property 
may not be relevant if the concept we want to learn is university town. One may 
wonder why this property filtering is not put into the first stage to pre-process 
the data. This is due to the manual work it requires: removing the irrelevant 
properties after the common ones have been identified can save a lot of human 
effort. In addition, new properties can be constructed based on the existing ones. 
For example, if both total area and total population about a city are available in the 
data, one can construct a new property population density, which may become very 
valuable information in identifying some geographic concepts, such as populous 
city. 

The third stage examines the properties that are the output from the second 
stage. This stage also answers two questions for each examined property: 1) 
whether this property can be used to differentiate positive and negative 
instances? 2) if yes, what is a suitable threshold for this property to separate 
data instances? Before the more detailed method is presented, let us first 
consider two example properties (see Figure 3). Intuitively, the property in 
Figure 3(a) can be used to differentiate positive and negative instances, whereas 
the property in Figure 3(b) cannot since its instances are mixed together.  

 

 
(a) A property with a clear cut.                       (b) A property with mixed instances. 

Figure 3: Two example properties. Green circles are positive instances and red 
circles are negative ones. The horizontal arrow indicates the increasing direction 
of the property values.  

In order to find the properties similar to Figure 3(a), we use a method based on 
entropy and information gain. Entropy is a metric which quantifies the 
randomness of information [6], which can be calculated using equation 3.1. 
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𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋) =  −∑ 𝑃𝑃(𝑥𝑥𝑖𝑖) log𝑃𝑃(𝑥𝑥𝑖𝑖)𝑖𝑖={𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛𝑛𝑛𝑛𝑛}    (3.1) 

where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋)  represents the entropy of the dataset 𝑋𝑋 , 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝  represents the 
positive instances in 𝑋𝑋 , and 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 represents the negative instances. 𝑃𝑃(𝑥𝑥𝑖𝑖) is the 
empirical proportion of either positive or negative instances in the dataset, 
which can be calculated, for example, by 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝/(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) for positive instances. 

Information gain (IG) is the entropy difference before and after an action has 
been performed on the data. It can be calculated using equation 3.2. 

𝐼𝐼𝐼𝐼 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏(𝑋𝑋) − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎(𝑋𝑋)          (3.2) 

where IG represents the information gain, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏(𝑋𝑋)  is the entropy before 
applying the action (which is regular segmentation in this work), and 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎(𝑋𝑋) is the entropy after the action. 

Our method integrates entropy, IG, and regular segmentation to examine the 
properties output from the second stage. For each property, we segment the data 
instances evenly into multiple groups, and calculate the information gain by 
subtracting the entropies before and after the segmentation. We perform this 
process iteratively with an increasing number of segmentations. The rationale 
behind this method is that for the properties that have a clear cut, their 
information gain will increase quickly and will soon reach a plateau with the 
increasing number of segmentations, since most of the segmented groups will 
contain only one type of instances; on the contrary, for the properties that have 
mixed instances, their information gain will not show such a rapid increase, since 
larger number of segmentations still cannot separate the positive and negative 
instances. Figure 4 illustrates this process by applying an increasing number of 
segmentations to the two example properties shown in Figure 3. 

 
(a) A property with a clear cut.           (b) A property with mixed instances. 

Figure 4: Information gains with different numbers of segmentation.  

IG = 0.69, Num = 2

IG = 0.45, Num = 3

IG = 0.69, Num = 4

IG = 0, Num = 2

IG = 0.04, Num = 3
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It can be seen that the property in Figure 4(a) quickly reaches its maximum IG 
value when the number of segmentation is 2. Although there are fluctuations, 
this property still achieves very high IG. In contrast, the IG value of the property 
in Figure 4(b) only increases slowly with fluctuations. Both properties will reach 
their highest IG values, when the number of segmentations becomes extremely 
high, in which each separated group contains only one single instance. By 
plotting out the relation between IG and the number of segmentations, we can 
visually identify those properties which quickly reach their plateaus. Examples 
of such plots will be shown in the following section 4. After these properties 
have been identified, their suitable value ranges can be extracted by aggregating 
the values of the major positive instances. Similarly, a majority threshold, such as 
95%, could be used to make the learned concept compatible to a few outliers. 

4 Experiment 
This section describes an initial experiment which uses the proposed workflow 
to learn the geographic concept port city from the DBpedia data. 

4.1 Experimental data and geo-ontology 
A top-down geo-ontology constructed to model this concept can be in the form 
of Figure 5. In this ontology, a port city inherits from a super and more general 
class city, and it has a port and is close to a water body. These are some intuitive 
properties that make a city as a port city. 

 
Figure 5: A simplified example top-down geo-ontology for port city. The light 
blue rectangle represents the super class defined in an existing geo-ontology, and 
the yellow rectangles represent the classes defined in this ontology. 

To learn bottom-up geographic knowledge about this concept, we can follow the 
presented workflow. First, a target category needs to be identified. In this 
experiment, two categories from DBpedia have been used, which are Port cities and 
towns of the United States Atlantic coast and Port cities and towns of the United States 
Pacific coast. The cities belonging to these two categories are combined into one 
set as the positive instances. In total, 49 positive cities have been identified, and 
all of their properties have been retrieved from DBpedia. It is worth noting that 
these 49 cities do not cover all port cities in the U.S., and some cities, such as New 
Orleans, can be well considered as port cities. However, these 49 cities have been 
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explicitly classified by Wikipedia users as port cities, and therefore have been used 
as the training data. For negative instances, since DBpedia does not provide the 
data on which cities are not port cities, 29 inland U.S. cities have been randomly 
selected. Figure 6 shows the geographic distribution of the selected cities. As can be 
seen, the port cities used in this experiment are distributed along the east and 
west coasts, while the non-port cities are located inside the U.S. continent. 

 
Figure 6: Geographic distribution of the port and non-port cities. Green circles 

are positive instances and red circles are negative instances. 

4.2 Experimental procedure 
Extracting common properties. A 95% threshold has been used to extract the 
common properties. The extraction process takes two steps. First, we examine all 
data to identify the properties that are shared by both positive and negative 
instances. The identified properties are shown in Table 1. As can be seen, many 
properties provide useful information about the cities, such as their 
populations, land areas, related roads, companies, and other information. In the 
second step, the same 95% threshold has been applied to only positive instances 
to extract the distinctive properties. In addition to the properties shown in 
Table 1, one more property-value pair was extracted, which is is dbpedia-
owl:homeport of whose value is dbpedia:Ship. This result is consistent with what has 
been defined in the top-down geo-ontology: a PortCity should have a Port, and 
accordingly should be the homeport of something, such as Ship. This consistence 
demonstrates that the properties developed in a top-down approach can be 
confirmed by the bottom-up knowledge extracted from the data. 
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Table 1: Properties shared by 95% of both the positive and negative instances. 

Filtering out irrelevant properties and constructing new properties. This stage 
removes the irrelevant properties and constructs new ones for learning the 
concept port city. The irrelevant properties have been classified into the following 
categories: 

• Linking to persons related to the place, e.g., is residence of, is deathPlace of, is 
home- Town of, is restingPlace of, is birthPlace of, ... 

• Linking to organizations at the place, e.g., is city of, is location of, is 
headquarter of, is foundationPlace of, is broadcastArea of, ... 

• Linking to roads and highways, e.g., is routeStart of, is routeEnd of, ... 

• Linking to political or administrative information, e.g., leaderName, 
leaderTitle, postCode, areaCode, ... 

After filtering out these irrelevant properties, the rest are summarized in Table 
2. Although only 5 properties remain, they all convey important geographic 
information about the places. In addition to the 5 properties, one new property, 
waterLandPercentage, has been constructed which is calculated by areaWater/areaTotal. 
This new property is added since it can be directly relevant to the concept of port 
city. These properties will be tested in the next stage to see if they can be used to 
differentiate the positive and negative instances. 

 
Table 2: Properties output from the second stage. 
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Identifying classification thresholds for properties. Regular segmentation, 
entropy, and information gain have been applied to the 6 properties in Table 2. 
Figure 7 shows the plotted results with the number of segmentations on the x 
axis, and the values of IG on the y axis. As can be seen, with the increase of the 
segmentation number, the information gains of different properties increase in 
different manners. For some properties, such as the elevation (Figure 7(e)) and the 
waterLandPercentage (Figure 7(f))), their information gains increase rapidly and reach 
the plateau soon. These are the properties which can effectively separate positive 
and negative instances. The other 4 properties, in contrast, show slow increases 
and constant fluctuations with different segmentations. This result indicates 
that these properties have mixed positive and negative instances, and therefore 
are not suitable for learning the concept port city.  

 
Figure 7: Plots of information gain and segmentation numbers for different 

properties.  

For the two identified properties, elevation and waterLandPercentage, the values of 
95% of the positive instances are aggregated, and the obtained threshold results 
are listed as below (the unit of elevation is meter). 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 49.36     (4.1) 

𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑤𝑤𝑃𝑃𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒 > 11.79%     (4.2) 

The extracted knowledge about port city is reasonable: generally, a port city is 
located at places where the average elevation is not too high and which have quite 
an amount of water within the city boundary. However, such knowledge could 
be missed during a top-down ontology development process. 
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4.3 An evaluation of the extracted knowledge 
To evaluate the quality of the learned geographic knowledge, an unseen 
DBpedia dataset has been used. This dataset contains 21 German cities which 
have been classified by Wikipedia users into the category port cities in Germany, as 
well as 17 cities randomly selected from the inland of Germany as the negative 
instances. The geographic distribution of the positive and negative instances in 
this testing dataset is shown in Figure 8. 

 
Figure 8: Geographic distribution of the positive and negative instances in the 
testing dataset (green circles are positive instances and red circles are negative 

ones). 

It can be seen that two of these positive port cities, namely Frankfurt and Mainz, lie 
in the inland of the country. These two cities are along the Main river, and 
have been generally considered as river port cities (in contrast to the other 
seaport cities). This difference can help ontology developers rethink and 
refine the target concept to meet the application requirement.  

The two pieces of mined knowledge in equations 4.1 and 4.2 are examined 
using the metric of accuracy from information retrieval, which is defined in 
equation 4.3. 

𝑒𝑒𝑤𝑤𝑤𝑤𝑎𝑎𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒 = (𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇)/(𝑃𝑃 + 𝑇𝑇)     (4.3) 

where TP represents true positive which are the number of positive instances that 
are also considered as positive by the extracted knowledge. For example, if a 
port city (positive instance) has an average elevation lower than 49.36 meters as 
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learned from our experiment, then this instance will be counted into TP. 
Similarly, TN represents true negative which are the number of negative instances 
that are also considered as negative by the extracted knowledge. For example, 
if a non-port city (negative instance) has a waterLandPerventage lower than 11.79% 
(thus, it is correctly considered as a non-port city), then this instance will be 
counted into TN. P and N are the total numbers of positive and negative 
instances in the testing dataset. The metric accuracy measures the consistency 
between the extracted knowledge and the unseen testing instances. 

   
       (a) elevation    (b) waterLandPercentage 

Figure 9: Evaluation of the testing cities in Germany based on the two extracted 
properties. Green circles are positive instances, and red circles are negative ones. 

The dotted line represents the reference value based on the extracted knowledge. 

The knowledge about elevation is first evaluated against the testing data (see 
Figure 9(a)), and the following result is acquired: 𝑇𝑇𝑃𝑃/𝑃𝑃: 19/21,𝑇𝑇𝑇𝑇/𝑇𝑇: 17/17 , 
accuracy: 94.74%. It can be seen that the geographic knowledge learned about 
elevation is highly consistent with the testing data. The two cities which are classified 
incorrectly are the two inland port cities. 

When it comes to evaluating the knowledge on waterLandPercentage, there exists a 
challenge: the Germany cities in the testing DBpedia dataset do not have the 
property of areaWater which is necessary in this experiment to calculate the 
waterLandPercentage. Such a situation can be attributed to the varied data 
availability in different countries. In order to test this extracted knowledge, we 
make use of the geographic data from OpenStreetMap. The administrative 
boundaries and the water-related areas (such as river, lake, bay, and reservoir) have 
been downloaded for each of the testing cities. We sum up the water areas and the 
administrative areas respectively, and then calculate the water land percentages by 
dividing the former with the latter. The calculated values are plotted out in Figure 
9(b). By applying the knowledge waterLandPercentage > 11.79% to the testing cities, 
we obtain the following result: 𝑇𝑇𝑃𝑃/𝑃𝑃: 17/21,𝑇𝑇𝑇𝑇/𝑇𝑇: 17/17, accuracy : 89.47%. 
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5 Conclusions and future work 
Geo-ontologies can play an even more important role in developing the next 
generation intelligent GIS by enabling the systems to automatically recognize 
geographic concepts from data and recommend suitable tools. While a top-
down approach has often been used to develop geo-ontologies, such an 
approach may be biased towards the knowledge of the participants or miss 
some useful properties. The fast growth of the Linked Open Data cloud provides 
a valuable resource for deriving knowledge in a bottom-up manner. Such 
knowledge can then be used to enrich and complement the top-down geo-
ontologies. This paper presents early results about a workflow for mining 
bottom-up geographic knowledge from Linked Open Data. Based on both 
positive and negative instances of a target concept, the workflow identifies the 
common properties, filters irrelevant information, and extracts suitable 
thresholds. An initial experiment has been conducted, in which the workflow 
has been used to extract knowledge about a geographic concept port city from a 
DBpedia dataset. We evaluate the extracted knowledge using an unseen 
dataset, and the evaluation result shows a good consistency between the learned 
knowledge and the testing cities. While DBpedia has been used as the data source 
in the experiment, the proposed workflow can also be applied to other LOD 
datasets. 

The performance of the proposed workflow depends on the availability and 
quality of the training data which contain the target category, the positive 
instances, and the negative ones. While we obtained our data from the Wikipedia 
categorization system in this work, other approaches could also be used. For 
example, traditional human participant experiments could be employed to 
elicit the typical instances of a target category. The derived instance memberships 
can then be embedded into the presented workflow, and combined with the 
LOD datasets to mine bottom-up knowledge. Alternatively, one can create the 
target category on Wikipedia, encourage online users to classify instances based 
on this category, and then harvest the data. While the latter approach might 
require less human effort and thus better scale up, traditional human 
participant tests provide more information about the background of the 
participants (e.g., age and gender), and therefore can provide a more 
representative data sample. 

The presented research can also be extended in several directions. First, our 
experiment so far has examined the applicability of the proposed workflow 
using one geographic concept. While fair performance has been observed, it is 
still necessary to investigate some additional concepts to understand the 
merits and limitations of the proposed workflow more thoroughly. Such 
investigation could also help quantify the degree of improvement that our 
workflow can bring to existing top-down geo- ontologies. Second, the 
evaluation experiment indicates that the port cities in the U.S. are similar to the 
port cities in Germany in terms of their elevations and water land percentages. This 
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result is intriguing since some geographic concepts (e.g., mountain and hill) may 
be conceptualized differently in different countries. Thus, it would also be 
interesting to examine which concepts are more regionally sensitive and which 
others are more stable across different geographic areas. 
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ontologies for integrated geographic information systems. Transactions in 
GIS 6, 3 (2002), 231–257. 

[8] FR A N K , A. U. Ontology for spatio-temporal databases. Springer, 2003. 

[9] GU A R I N O , N. Formal ontology in information systems: Proceedings of the first inter- 
national conference (FOIS’98), June 6-8, Trento, Italy, vol. 46. IOS press, 1998. 

[10] HU, Y., JA N O W I C Z , K., A N D PR A S A D , S. Improving Wikipedia-based place 
name disambiguation in short texts using structured data from DBpedia. 
In Proceedings of the 8th workshop on geographic information retrieval (2014), ACM 
New York, NY, pp. 1–8. 

[11] HU, Y., JA N O W I C Z , K., PR A S A D , S., A N D GAO , S. Enabling semantic search and 
knowledge discovery for arcgis online: A linked-data-driven approach. In AGILE 
2015. Springer, 2015, pp. 107–124. 

[12] JA N O W I C Z , K. Observation-driven geo-ontology engineering. Transactions in 
GIS 16, 3 (2012), 351–374. 

[13] JA N O W I C Z , K., SC H E I D E R , S., PE H L E , T., A N D HA RT, G. Geospatial 
semantics and linked spatiotemporal data–past, present, and future. 
Semantic Web 3, 4 (2012), 321–332. 



 Enriching Top-down Geo-ontologies Using Bottom-up 
Knowledge Mined from Linked Data 

199 

 
 
[14] JO N E S , C. B., AL A N I , H., A N D TU D H O P E , D. Geographical information 

retrieval with ontologies of place. In Spatial information theory (2001), Springer, 
pp. 322–335. 

[15] KU H N , W. Geospatial semantics: why, of what, and how?  In Journal on 
Data Semantics III. Springer, 2005, pp. 1–24. 

[16] LI , N., ERV I N , S., FL A X M A N , M., GO O D C H I L D , M., A N D ST E I N I T Z , C. Design 
and application of an ontology for geodesign. Revue internationale de 
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