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Large pre-trained models, also known as foundation models (FMs), are trained in a task-agnostic manner on large-scale data

and can be adapted to a wide range of downstream tasks by ine-tuning, few-shot, or even zero-shot learning. Despite their

successes in language and vision tasks, we have yet seen an attempt to develop foundation models for geospatial artiicial

intelligence (GeoAI). In this work, we explore the promises and challenges of developing multimodal foundation models for

GeoAI. We irst investigate the potential of many existing FMs by testing their performances on seven tasks across multiple

geospatial domains including Geospatial Semantics, Health Geography, Urban Geography, and Remote Sensing. Our results
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indicate that on several geospatial tasks that only involve text modality such as toponym recognition, location description

recognition, and US state-level/county-level dementia time series forecasting, the task-agnostic LLMs can outperform task-

speciic fully-supervised models in a zero-shot or few-shot learning setting. However, on other geospatial tasks, especially

tasks that involve multiple data modalities (e.g., POI-based urban function classiication, street view image-based urban

noise intensity classiication, and remote sensing image scene classiication), existing foundation models still underperform

task-speciic models. Based on these observations, we propose that one of the major challenges of developing a foundation

model for GeoAI is to address the multimodality nature of geospatial tasks. After discussing the distinct challenges of each

geospatial data modality, we suggest the possibility of a multimodal foundation model which can reason over various types

of geospatial data through geospatial alignments. We conclude this paper by discussing the unique risks and challenges to

develop such a model for GeoAI.

CCS Concepts: · Computing methodologies → Natural language processing; Unsupervised learning; Computer vision;

Knowledge representation and reasoning; Neural networks; · Applied computing→ Earth and atmospheric sciences.

Additional Key Words and Phrases: Foundation Models, Geospatial Artiicial Intelligence, Multimodal Learning

1 INTRODUCTION

Recent trends in machine learning (ML) and artiicial intelligence (AI) speak to the unbridled powers of data
and computing. Extremely large models trained on Internet-scale datasets have achieved state-of-the-art (SOTA)
performance on a diverse range of learning tasks. In particular, their unprecedented success has spurred a
paradigm shift in the way that modernday ML models are trained. Rather than learning task-speciic models
from scratch [45, 96, 185], such pre-trained models (so-called “foundation models (FMs)ž [14]) are adapted via
ine-tuning or few-shot/zero-shot learning strategies and subsequently deployed on a wide range of domains
[16, 151]. Such FMs allow for the transfer and sharing of knowledge across domains, and mitigate the need for
task-speciic training data. Examples of foundation models are 1) large language models (���) such as PaLM
[190], LLAMA [180], GPT-3 [16], InstrucGPT [144], and ChatGPT [142]; 2) large vision foundation models such
as Imagen [169], Stable Difusion [166], DALL·E2 [156], and SAM [89]; 3) large multimodal foundation models1

such as CLIP [151], OpenCLIP [69], BLIP [103], OpenFlamingo [11], KOSMOS-1 [64], and GPT-4 [143]; and 4)
large reinforcement learning foundation models such as Gato [163].

Despite their successes, there exists very little work exploring the development of an analogous foundational
model for geospatial artiicial intelligence (GeoAI), which lies at the intersection of geospatial scientiic discoveries
and AI technologies [43, 70, 120]. The key technical challenge here is the inherently multimodal nature of GeoAI.
The core data modalities in GeoAI include text, images (e.g., remote sensing or street view images), trajectory
data, knowledge graphs, and geospatial vector data (e.g., map layers from OpenStreetMap), all of which contain
important geospatial information (e.g., geometric and semantic information). Each modality exhibits special
structures that require its own unique representation. While existing foundation models contain modules that
can readily process some of these data modalities such as text and images, there are currently no foundation
models capable of efectively managing many other ‘distinctive’ data modalities essential for GeoAI tasks,
such as movement trajectory data and other geospatial vector data. Moreover, efectively combining all these
representations from diferent data modalities with appropriate inductive biases in a single model requires careful
design. The multimodal nature of GeoAI hinders a straightforward application of existing pre-trained FMs across
all GeoAI tasks.
In this paper, we lay the groundwork for developing FMs for GeoAI [118, 119, 196]. We begin by providing

a brief overview of existing foundation models in Section 2. Then in Section 3, we investigate the potential of
existing FMs for GeoAI by systematically comparing the performances of several popular foundation models with
many state-of-the-art fully supervised task-speciic machine learning or deep learning models on various tasks

1Many foundation models such as ChatGPT can only handle one data modality such as text. Multimodal foundation models were developed

to overcome this limitation which can handle multiple data modalities at the same time such as text, image, video, audio, etc.
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from diferent geospatial domains: 1) Geospatial Semantics: toponym recognition and location description
recognition task; 2) Health Geography: US state-level and county-level dementia death count time series
forecasting task; 3) Urban Geography: Point-of-interest (POI) based urban function classiication task and
street-level image-based noise intensity classiication task; 4) Remote Sensing: remote sensing (RS) image scene
classiication task. The advantages and problems of FM on diferent geospatial tasks are discussed accordingly.
Next, in Section 4, we detail the challenges involved in developing FMs for GeoAI. Creating one single FM for all
GeoAI data modalities can be a daunting task. To address this, we start this discussion by examining each data
modality used in GeoAI tasks. Then, we propose our vision for a novel multimodal FM framework for GeoAI that
tackles the aforementioned challenges. Finally, we highlight some potential risks and challenges that should be
considered when developing such general-purpose models for GeoAI in Section 5 and conclude this paper in
Section 6.

Our contributions can be summarized as follows:

• To the best of our knowledge, this is the irst work that systematically examines the efectiveness and
problems of various existing cutting-edge foundation models on diferent geospatial tasks across multiple
geoscience domains2. We establish various FM baselines on seven geospatial tasks for future Geospatial
Artiicial General Intelligence (GeoAGI) research.

• We discuss the challenges of developing a multimodal foundation model for GeoAI and provide a promising
framework to achieve this goal.

• We discuss the risks and challenges that need to be taken into account during the development and
evaluation process of the multimodal geo-foundation model.

2 RELATED WORK

2.1 Language Foundation Model

In less than a decade, computational natural language capabilities have been completely revolutionized [16, 85,
147, 155] by large-scale language modeling (LLMs). Language modeling [78] is the simple task of predicting the
next token in a sequence given previous tokens3, and it corresponds to a self-supervised objective in the sense
that no human labeling is needed besides a natural text corpus. When applied to vast corpora such as documents
of diverse topics from the internet, LLMs gain signiicant language understanding and generation capabilities.
Various transfer-learning and scaling studies [54, 57, 82] have demonstrated an almost linear relationship between
downstream task performance and the log sizes of self-supervised model and data. Combined with the ever-
increasing availability of data and computing, language modeling has become a reliable approach for developing
increasingly powerful models.

Representative examples of these LLMs are the OpenAI GPTs [16, 143, 144, 153, 154]. By pretraining from vast
amounts of Web data, the GPT models gain knowledge of almost all domains on the Web, which can be leveraged
to solve problems of diverse verticals [16]. The interfaces to access such knowledge have become increasingly
simple and intuitive ś ranging from supervised ine-tuning with labeled data [153, 154], to few-shot learning [16]
and instructions [144], to conversation [142] and multimodality [143]. In this study, we provide a comprehensive
analysis of the potentials and limitations of GPT and other LLMs when applied to diferent geospatial domains.

2.2 Vision Foundation Model

Computer vision has long been dominated by task-speciic models: for example, YOLO [162] for object detection,
Detectron [193] for instance segmentation, and SRGAN [98] for image super-resolution. ResNet [51] trained on

2This work is a signiicant extension of our previous 4-page vision paper published in ACM SIGPATIAL 2022 [119] by adding ive additional

tasks in Health Geography, Urban Geography, and Remote Sensing domains.
3There is also a diferent variant which predicts masked spans in text [85, 155].
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ImageNet [33] has been used as the backbone feature extractor for many such tasks. It can be seen as the early
form of a vision foundation model.
Inspired by the great success of language foundation models, the computer vision community builds large-

scale vision foundation models that can be adapted to any vision task. The most direct adoption of the idea
from language models in computer vision is the image generation models. Since the dominance of Generative
Adversarial Networks [44, 83], the quality of image generation models has seen a major breakthrough via the
development of difusion-based models [55]. Imagen [169] builds on large transformer-based language models
to understand text prompts and generates high-idelity images using difusion models. DALL-E·2 [156] trains
a difusion decoder to invert an image encoder from visual-language models such as CLIP. After pre-training,
it is able to generate images of various styles and characteristics. Stable Difusion [166] uses a Variational
Autoencoder (VAE) [88] to convert raw images from pixel space to latent space where the difusion processes are
more manageable and stable. It has shown great lexibility in conditioning over text, pose, edge maps, semantic
maps, and scene depths [213]. GigaGAN [80], on the other hand, is a recent attempt of scaling up GAN models.

Vision-Transformer (ViT) [34] is a widely used architecture in vision foundation models. Large-scale ViT has
been developed to scale up the model [208]. The Swin Transformer [112] model is designed to handle the unique
challenges of adapting regular transformer models with various spatial resolutions in images. Other large-scale
non-transformer models are also developed to reach the same level of performance: ConvNext [113] is the
“modernizedž version of convolutional neural networks that has a large number of parameters and shows a similar
level of performance as Swin Transformers. MLP-mixer [179] is an architecture that utilizes only multi-layer
perceptrons on image data. It shows competitive scores on image classiication datasets.

Recently, Segment Anything Model (SAM) [89] was proposed by Meta AI as a visual foundation model which
was pretrained on a large segmentation dataset with over 1 billion segmentation masks and can be transferred to
new image distributions and tasks in a zero-shot setting, i.e., SAM can be adapted to new tasks without any new
labeled examples.

2.3 Multimodal Foundation Model

Developing artiicial intelligence models that are capable of performing multimodal reasoning and understanding
on complex data is a promising idea. Humans naturally perform multimodal reasoning in daily life [146] for
example, when a person is thinking about the concept of ‘dog’, they will not only think about the English word and
its meaning but also a visual image and a sound associated with it. In the context of geospatial tasks, multimodal
data are ubiquitous. For example, diferent geospatial tasks related to the Forbidden City (FC) in Beijing, China
usually require diferent data modalities. A tourism question about the history and construction time of FC
requires a text description and knowledge graph triples about FC. A question about the spatial structure of FC and
its geographic context requires map information and remote sensing images of FC. In general, data from diferent
modalities provide diferent ‘views’ that complement each other and provide more information to facilitate a
holistic understanding of the data.
Recently, much progress has been made in building large-scale multimodal foundation models for joint

reasoning from various domains, in particular, vision and language. CLIP [69, 151] is one of the irst widely-adopted
vision-language joint training frameworks. It uses self-supervised contrastive learning to learn a joint embedding
of visual and text features. BLIP [103] improves over CLIP by training on synthetically-generated captions from
internet-collected images. It is designed to handle both visual-language understanding and generation tasks.
BEiT-3 [188] is a general-purpose multimodal foundation model that achieves state-of-the-art performance on
both vision and vision-language tasks. It combines features from multi-modality expert networks. Florence [206]
is a vision-language foundation model that learns universal visual-language representations for objects, scenes,
images, videos, as well as captions. Similarly, KOSMOS-1 [64] learns from web-scale multimodal data including

ACM Trans. Spatial Algorithms Syst.
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text and image pairs. It can transfer knowledge from one modality to another. Flamingo [6] is a family of visual
language models that can be adapted to novel tasks using only a few annotated examples, i.e., few-shot learning.
It encodes images or videos as inputs along with textual tokens to jointly reason about vision tasks. The newest
version of the GPT model, the GPT-4 [143], also can perform multimodal analysis including text, audio, images,
and videos.

3 EXPLORATION OF THE EFFECTIVENESS OF EXISTING FMS ON VARIOUS GEOSPATIAL
DOMAINS

The irst question we would like to ask is how the existing cutting-edge foundation models perform when compared
with the state-of-the-art fully supervised task-speciic models on various geospatial tasks. Geography is a very
broad discipline that includes various subdomains such as Geospatial Semantics [59, 61, 73, 76, 93, 126], Health
Geography [21, 31, 84, 167], Urban Geography, [19, 67, 81, 210, 225], Remote Sensing [18, 37, 99, 128, 129, 131, 136,
165], and so on. To address the aforementioned question, in the following, we conduct experiments using various
FMs on diferent tasks in the four geospatial subdomains mentioned earlier. The advantages and weaknesses of
existing FMs will be discussed in detail.

3.1 Geospatial Semantics

[Instruction] ...

Paragraph: Alabama State Troopers say a Greenville man has

↩→ died of his injuries after being hit by a pickup

↩→ truck on Interstate 65 in Lowndes County.

Q: Which words in this paragraph represent named places?

A: Alabama; Greenville; Lowndes

...

--

Paragraph:

↩→ The Town of Washington is to what Williamsburg is to Virginia.

Q: Which words in this paragraph represent named places?

A: Washington; Williamsburg; Virginia

Listing 1. Typonym recognition with LLMs, e.g., GPT-3. Yellow
block: the text snippet to be annotated. Orange box: GPT-
3 outputs. 8 few-shot samples are used in this prompt. We
only show 1 here while skipping others with "..." to save space.

[Instruction] ...

Paragraph: Papa stranded in home. Water rising above waist.

↩→ HELP 8111 Woodlyn Rd , 77028 #houstonflood

Q: Which words in this paragraph represent location

↩→ descriptions?

A: 8111 Woodlyn Rd , 77028

...

--

Paragraph:

↩→ HurricaneHarvey Help Need AT 7506 Jackrabbit Rd, Houston, TX 77095.

Q: Which words in this paragraph represent location

↩→ descriptions?

A: 7506 Jackrabbit Rd, Houston, TX 77095

Listing 2. Location description recognition with LLMs, e.g.,
GPT-3. Yellow block: the input text snippet. Orange box: GPT-
3 outputs. 11 few-shot samples are used while 1 is shown.

As a starting point for our discussion, we irst demonstrate empirically the promise of leveraging LLMs for
solving geospatial semantics tasks. We hope that our results not only demonstrate the efectiveness of such
general-purpose, few-shot learners in the geospatial semantics domain, but also challenges the current paradigm
of training task-speciic models as a common practice in GeoAI research.

We compare the performance of 4 pre-trained GPT-2 [154] models of varying sizes provided by Huggingface
as well as the most recent GPT-3 [16] (i.e., text-davinci-002), InstructGPT [144] (i.e., text-davinci-003), and
ChatGPT [142] (i.e., gpt-3.5-turbo) models developed by OpenAI with multiple supervised, task-speciic baselines
on two representative geospatial semantics tasks: (1) toponym recognition [45, 184], and (2) location description
recognition [62].
Both tasks aim at recognizing parts of the input sentence as named places or location descriptions. We have

adapted all seven pre-trained GPT models to these tasks by treating them as question-answering challenges
through the use of prompt instructions. As depicted in Figure 1 and 2, we irst embed 8 few-shot examples in the
prompt by using keywords: “Paragraphž, “Qž, and “Až. “Paragraph: ž precedes an input sentence. “Q: ž is followed
by a question which instructs LLMs what we expect them to do, i.e., “What words in this paragraph represent
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named places/location descriptions?ž “A: ž indicates the expected answers, i.e., a list of named places or a list of
location descriptions recognized from the input sentence which are separated by semicolons. Upon presenting
these eight few-shot examples in the Paragraph-Q-A structure, we provide a new paragraph highlighted in yellow
in Figure 1 and 2. This indicates the place for sentences from the evaluation dataset. Both prompts stop at the
last “A:ž. All 7 GPT models we used will take this prompt in and generate the subsequent tokens which will be
treated as the recognized place names or location descriptions. The generated outputs from GPT-3, marked in
orange, serve as illustrative examples. In the following, we will delve into the speciics of each task and present a
comprehensive evaluation of all models.

3.1.1 Toponym Recognition. Toponym recognition can be considered a subtask of named entity recognition
(NER), with the goal of identifying named places from a given text snippet. We use the Hu2014 [60] and Ju2016
[77] as two benchmark datasets for this task. The Hu2014 dataset is constructed by Hu et al. [60] based on
Wikipedia. It encompasses 134 entries of sentences containing two commonly used place names, Washington
and Greenville. Ju2016 is a larger dataset with 5,441 entries of sentences constructed by Ju et al. [77]. The dataset
was collected based on a list of ambiguous place names provided by Wikipedia. The complete names of these
places were subsequently utilized as queries in Bing Search and the sentences about these places were extracted
from the search results. More details about the two datasets are available in Hu et al. [60] and Ju et al. [77]. We
utilize 7 pre-trained GPT models to perform toponym recognition tasks on both datasets by using appropriate
prompts containing 8 few-shot training examples. As we described above, in the prompt, we provide several
training samples as few-shot learning samples in the form of natural language instructions. One example of such
a prompt is illustrated in Listing 1, while the full prompts can be found in List 7 in Appendix A.1. Note that, for
our experiments on both Hu2014 and Ju2016, these few-shot examples used in prompts are separately collected
and are not from the corresponding evaluation datasets. It is worth noting that ChatGPT , as a foundation model,
is optimized for chatbot purposes and expects conversational inputs rather than a single big prompt. In order to
conduct a controlled experiment, we irst use the same prompt shown in Listing 1 to instruct all 7 pre-trained
GPT models to perform toponym recognition. We also convert the few-shot examples into a list of conversations
and use them as the inputs for ChatGPT which is denoted as ChatGPT (Con.) while the ChatGPT using the
original prompt is indicated as ChatGPT (Raw.).

Table 1 compares all 8 GPT models with 15 baselines on two datasets ś Hu2014 [60] and Ju2016 [77]. The same
test sets have been used to evaluate the performances of all models. In terms of model evaluation for 7 GPT
models, we parse the generated tokens into a list of identiied place names by splitting them at each semicolon (";")
and compare them with the ground truth. To make the evaluation comparable to the prior studies [45, 184, 185],
we adopt the same evaluation metric Accuracy ś the recognized place names are considered correct only if there
is an exact match between the generated token and the ground truth. It is important to note that the chosen
evaluation metric sets a stringent standard for all GPT models involved in our study. Unlike all 15 baselines we
use which are limited to selecting text spans directly from the input sentence, due to the prompt-based nature
of GPT models, we can not inherently adhere to this constraint. Instead, we only incorporate this requirement
as natural language instruction in the “Instruction: ž part of the prompt which does not enforce the same level
of restriction. This means that sometimes the generated sentences from GPT models might not be a text span
from the input sentence. This discrepancy has the potential to adversely impact the performance metrics of the
GPT models when compared to the baselines. Nevertheless, we proceed to juxtapose the performance of eight
GPT models against that of 15 baseline models. Those 15 baselines are classiied into three groups as shown in
Table 1: (A) general NER (named entity recognition) models; (B) no neural network (NN) based geoparsers; (C)
fully supervised task-speciic NN-based geoparsers. All models in Group C are trained in a supervised manner
on the same separated training datasets. Observing the results, it is noteworthy that the GPT models, which
operate solely based on a concise set of natural language instructions without necessitating any further training
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or stringent restrictions on the generated tokens, consistently surpass the performance of the fully-supervised
baselines on the Hu2014 dataset. This holds true for all variations of the Large Language Models (LLMs), with the
exception of the smallest GPT-2 model. GPT-3 in particular demonstrated an 8.7% performance improvement over
the previous SOTA (TopoCluster [32]). Interestingly, new GPT models such as InstructGPT and ChatGPT do not
show higher performances on the Hu2014 dataset. While InstructGPT shows a smaller performance drop which
is acceptable, two ChatGPT models show more signiicant performance decreases. One reasonable hypothesis
is that ChatGPT is further optimized based on InstructGPT for chatbot applications that may not be “lexiblež
enough to be adapted to new tasks such as toponym recognition.

Based on previous studies [184, 185], the Ju2016 dataset is a very diicult task. On this dataset, we found that
GPT2-XL outperforms the previous state-of-the-art, i.e., NeuroTPR [185], by over 2.5% while using only 8 few-shot
examples in the prompt. In contrast, a task-speciic model, such as NeuroTPR, requires supervised training on
599 labeled tweets and labeled sentences generated from 3000 Wikipedia articles. GPT-3 and InstructGPT does
not show performance improvement on the Ju2016 dataset over GPT2-XL. Similar to the inding on the Hu2014
dataset, ChatGPT shows a signiicant performance decrease on the Ju2016 dataset. In accordance with existing
empirical indings [16, 154], we also found that the performance of these LLMs tended to scale with the number
of learnable parameters.

3.1.2 Location Description Recognition. The location description recognition task is slightly more challenging ś
given a text snippet (e.g., a tweet), the goal is to recognize more ine-grained location descriptions such as door
number addresses, highway exits, and road intersections instead of large-scale geographic entities such as cities,
states, and countries. HaveyTweet2017 [61, 62] is used as one representative benchmark dataset for this task.
This dataset contains 1,000 tweets posted during Hurricane Harvey. Location descriptions in these tweets were
manually annotated and are in diferent forms such as door number addresses, road intersections, road segments,
and highway exits. More details about this dataset and its annotation process are available in [61, 62]. The same
set of pre-trained GPT models and 15 baselines are used for this task. By following Hu et al. [59], we use three
evaluation metrics: precision, recall, and F-score. Listing 2 shows one example prompt used in this task and the
full prompt can be seen in Listing 8 in Appendix A.1.

Table 1 summarizes the evaluation results of diferent models on the HaveyTweet2017 dataset. The same test
set of HaveyTweet2017 is used to evaluate all GPT models as well as 15 baseline models. On the HaveyTweet2017
dataset, GPT-3 achieves the best recall score across all methods. However, all LLMs have rather low precision (and
therefore low F1-scores). This is because LLMs implicitly convert the location description recognition problem
into a natural language generation problem (see List 2), meaning that they are not guaranteed to generate tokens
that appear in the input text as we discussed above. Based on the experimental results in Table 1, we can clearly
see that by using just a small number of few-shot samples, LLMs can outperform the fully-supervised, task-speciic
models on well-deined geospatial semantics tasks. This showcases the potential of LLMs to dramatically reduce
the need for customized architectures or large labeled datasets for geospatial tasks. However, how to develop
appropriate prompts to instruct LLMs for a given geospatial semantics task requires further investigation.

3.2 Health Geography

The next set of experiments focuses on an important health geography problem ś dementia death counts time
series forecasting for a given geographic region such as cities, counties, states, etc. With a growing share of older
adults in the population, it is estimated that more than 7 million US adults aged 65 or older were living with
dementia in 2020, and the number could increase to over 9 million by 2030 and nearly 12 million by 2040 [227].
Alzheimer’s disease, the most common type of dementia, has been reported to be one of the top leading causes of
death in the US, with 1 in 3 seniors dying with Alzheimer’s or another dementia by 2019 [9]. Notably, there are
substantial and longstanding geographical disparities in mortality due to dementia [4, 8]. Subnational planning
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Table 1. Evaluation results of various GPT models and baselines on two geospatial semantics tasks: (1) toponym recognition
(Hu2014 [60] and Ju2016 [77]) and (2) location description recognition (HaveyTweet2017 [62]) . We classify all models into
four groups: (A) General NER; (B) No Neural Network (NN) based geoparsers; (C) Fully-supervised NN-based geoparsers; (D)
Few-show learning with LLMs. "(#Param)" indicates the number of learnable parameters of LLMs. "(nar. loc.)" and "(bor. loc.)"
indicate narrow location models and broad location models defined in [185]. The results of all baselines (i.e., models in Group

A, B, and C) are obtained from [184] and [185] except "0.675†", which is obtained by rerunning the oficial code of [185]. The
evaluation results of diferent GPTmodels (GroupD) are done by using pre-trainedGPT2/GPT-3/InstructGPT/ChatGPTmodels
with appropriate prompts. The results of four GPT2 models are obtained by using Huggingface pre-trained GPT2models
with various model sizes. The last four models are obtained by using various OpenAI’s GPT models ś text-davinci-002, text-
davinci-003, and gpt-3.5-turbo ś which are denoted as GPT-3, InstructGPT, and ChatGPT respectively. Since ChatGPT expects
conversational inputs rather than a single big prompt, we experiment with two versions of ChatGPT. ChatGPT (Raw.) indicates
we use the same prompt as other GPT models while ChatGPT (Con.) indicates we convert the few-shot examples in the
prompt into a list of conversations. ∗Due to OpenAI API limitations, we evaluate GPT-3, InstructGPT, and ChatGPT on
randomly sampled 544 Ju2016 examples (10% of the dataset).

Model #Param
Toponym Recognition Location Description Recognition
Hu2014 Ju2016 HaveyTweet2017

Accuracy ↓ Accuracy ↓ Precision ↓ Recall ↓ F-Score ↓

(A)

Stanford NER (nar. loc.) [40] - 0.787 0.010 0.828 0.399 0.539
Stanford NER (bro. loc.) [40] - - 0.012 0.729 0.44 0.548
Retrained Stanford NER [40] - - 0.078 0.604 0.410 0.489
Caseless Stanford NER (nar. loc.) [40] - - 0.460 0.803 0.320 0.458
Caseless Stanford NER (bro. loc.) [40] - - 0.514 0.721 0.336 0.460
spaCy NER (nar. loc.) [58] - 0.681 0.000 0.575 0.024 0.046
spaCy NER (bro. loc.) [58] - - 0.006 0.461 0.304 0.366
DBpedia Spotlight[135] - 0.688 0.447 - - -

(B)
Edinburgh [7] - 0.656 0.000 - - -
CLAVIN [184] - 0.650 0.000 - - -
TopoCluster [32] - 0.794 0.158 - - -

(C)

CamCoder [45] - 0.637 0.004 - - -
Basic BiLSTM+CRF [97] - - 0.595 0.703 0.600 0.649
DM NLP (top. rec.) [189] - - 0.723 0.729 0.680 0.703
NeuroTPR [185] - 0.675† 0.821 0.787 0.678 0.728

(D)

GPT2 [154] 117M 0.556 0.650 0.540 0.413 0.468
GPT2-Medium [154] 345M 0.806 0.802 0.529 0.503 0.515
GPT2-Large [154] 774M 0.813 0.779 0.598 0.458 0.518
GPT2-XL [154] 1558M 0.869 0.846 0.492 0.470 0.481
GPT-3 [16] 175B 0.881 0.811∗ 0.603 0.724 0.658
InstructGPT [144] 175B 0.863 0.817∗ 0.567 0.688 0.622
ChatGPT (Raw.) [142] 176B 0.800 0.696∗ 0.516 0.654 0.577
ChatGPT (Con.) [142] 176B 0.806 0.656∗ 0.548 0.665 0.601

and prioritizing dementia prevention strategies require local mortality data. Prediction of dementia deaths at the
sub-national level will assist in informing future tailored health policies to eliminate geographical disparities in
dementia and to achieve national health goals.

In this work, we conduct time series forecasting on the number of deaths due to dementia in two geographic
region levels ś state level and county level. The dementia data are obtained from the US Centers for Disease
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Control and Prevention Wide-ranging Online Data for Epidemiologic Research (CDC WONDER4), which is a
publicly available dataset. The mortality due to dementia is based on information from all death certiicates iled
in the ifty states and the District of Columbia. The data from the death certiicates are coded by the states and
provided to the National Center for Health Statistics (NCHS) through the Vital Statistics Cooperative Program or
coded by NCHS from copies of the original death certiicates provided to NCHS by the State registration oices.
Dementia deaths are classiied according to the International Classiication of Diseases, Tenth Revision (ICD-10),
including unspeciied dementia (F03), Alzheimer’s disease (G30), vascular dementia (F01), and other degenerative
diseases of the nervous system, not elsewhere classiied (G31) [91].

3.2.1 US State-Level Dementia Time Series Forecasting. We collect annual time series of dementia death counts
for all 51 US states between 1999 and 2020. The time series from 1999 to 2019 are used as training data, and the
numbers in 2020 are used as ground truth labels. The same set of pre-trained GPT models used in Section 3.1 are
utilized in this task. Diferent from the geospatial semantics experiments, we utilize all GPT models in a zero-shot
setting since we think the historical time series data is enough for a LLM to perform the forecasting. For all GPT
models, we also treat the task as a natural language generation problem. Listing 3 shows one example prompt
we use in this experiment by using California as an example. we notice that even we ask GPT models to only
generate one single number as the prediction, in many cases GPT models will generate a long sentence as the
answer instead of a single number. In order to perform a fair comparison, for all the GPT models, we will use the
irst “number tokenž in the generated senetnce as the prediction of this model.
With only 51 time series, each consisting of 22 data points, many sequential deep learning models such as

RNNs (recurrent neural networks) and Transformers [182] are at risk of overitting on this dataset. So we pick
the state-of-the-art machine learning-based time series forecasting model ś ARIMA (Autoregressive integrated
moving average) as the fully supervised task-speciic baseline model. We train individual ARIMA models on
each state’s time series using data from 1999 to 2019, and perform forecasting on data in 2020. Hyperparameter
tuning is performed on all ARIMA hyperparameter combinations to obtain the best results. Additionally, we use
persistence model [141, 145] as a reference. A persistence model assumes that the future value of a time series
remains the same between the current time and the forecast time. In our case, we use the dementia death count
of each state in 2019 as the prediction for the value in 2020.

Table 2 presents a comparison of model performances among diferent GPT models and two baselines. We select
four commonly used evaluation metrics: mean square error (MSE), mean absolution error (MAE), mean absolute
percentage error (MAPE), and �2. Interestingly, all GPT2 models perform poorly on all evaluation metrics. Their
performances are even worse than the simple persistence model. This suggests that GPT2 may struggle with
zero-shot time series forecasting. On the other hand, GPT-3, InstructGPT, and two ChatGPT models demonstrate
reasonable performances. Of particular interest is that InstructGPT outperforms the best ARIMA model on all
evaluation metrics even though InstructGPT is not inetuned on this speciic task. We propose two hypothetical
reasons for the strong performance of InstructGPT in the time series forecasting task: 1) After training on a
large-scale text corpus, InstructGPT may have developed the intelligence necessary to perform zero-shot time
series forecasting, which is fundamentally an autoregressive problem. 2) It is possible that InstructGPT and
GPT-3 may be exposed to US state-level dementia time series data during their training on the large-scale text
corpus.

While we cannot determine which of these reasons is the primary factor behind InstructGPT’s success, these
results are very encouraging. Similar to the results in Table 1, two ChatGPT models underperform InstructGPT.
More experiment analysis can be seen in the county-level experiments.

4https://wonder.cdc.gov/ucd-icd10.html
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Table 2. Evaluation results of various GPT models and baselines on the US state-level dementia time series forecasting
task. We classify all models into four groups: (A) Simple persistent model; (B) Fully supervised machine learning models
such as ARIMA; (C) Zero-shot learning with LLMs. "(#Param)" indicates the number of learnable parameters of LLMs. The
denotations of diferent GPT models are the same as Table 1. Four evaluation metrics are used: MSE (mean square error),
MAE (mean absolute error), MAPE (mean absolute percentage error), and R2. ↑ and ↓ indicate the direction of beter models
for each metric. For all GPT models, we encode time series information between 1999 and 2019 in the prompt and let it
generate data in 2020.

Model #Param MSE ↓ MAE ↓ MAPE ↓ R2 ↑

(A) Simple Persistence [141, 145] - 985,179 630 0.096 0.971

(B) Supervised ML ARIMA [74] - 562,768 462 0.067 0.984

(C) Zero shot LM

GPT2 [154] 117M 44,635,055 4,898 0.955 -0.271
GPT2-Medium [154] 345M 42,315,630 4,616 0.745 -0.209
GPT2-Large [154] 774M 39,039,733 4,250 0.779 -0.132
GPT2-XL [154] 1558M 35,355,840 3,912 0.709 -0.026
GPT-3 [16] 175B 587,263 474 0.070 0.983
InstructGPT [144] 175B 387,413 365 0.055 0.989

ChatGPT (Raw.) [142] 176B 1,143,675 623 0.121 0.967
ChatGPT (Con.) [142] 176B 4,224,811 1,131 0.240 0.890

[Instruction] This is a set of time series forecasting

↩→ problems.

The ❵Paragraph ❵ is a time series of the numbers of deaths

↩→ from alzheimer 's disease for one of US state from

↩→ 1999 to 2019.

The goal is to predict the number of deaths from alzheimer 's

↩→ disease at this state in 2020. Please give a

↩→ single number as the prediction.

--

--

Paragraph: At California , From 1999 to 2019, the numbers of

↩→ deaths from alzheimer 's disease are

↩→ 6761 in 1999, 6760 in 2000, 7474

↩→ in 2001, 8366 in 2002, 9760 in 2003, 9806 in 2004, 11497 in 2005,

↩→ 13520 in 2006, 13730 in 2007, 16395 in 2008, 16290 in 2009, 18000

↩→ in 2010, 19924 in 2011,20814 in 2012, 22061 in 2013, 22412 in 2014,

↩→ 23606 in 2015, 24060 in 2016, 25017 in 2017, 25218 in 2018, and

↩→ 25810 in 2019.

Q: Please forecast the number in 2020 at California?

A: 26670

Listing 3. US state-level Alzimier time series forecasting
with LLMs by zero-shot learning. Yellow block: the historical
time series data of one US state. Orange box: the outputs of
InstructGPT. Here, we use California as an example and the
correct answer is 29400.

[Instruction] This is a set of time series forecasting problems.

The ❵Paragraph ❵ is a time series of the numbers of deaths from

↩→ alzheimer 's disease for one of US counties from 1999

↩→ to 2019.

The goal is to predict the number of deaths from alzheimer 's

↩→ disease at this county in 2020. Please give a single

↩→ number as the prediction.

--

--

Paragraph: At Santa Barbara County , CA , from 1999 to 2019, the

↩→ numbers of deaths from alzheimer 's disease are

↩→ 126 in 1999, 114 in 2000, 124 in 2001, 127 in 2002, 156 in 2003,

↩→ 154 in 2004, 175 in2005, 172 in 2006, 171 in 2007, 248 in 2008, 204

↩→ in 2009, 241 in 2010, 260 in 2011, 297 in 2012, 283 in 2013, 308 in

↩→ 2014, 358 in 2015, 365 in 2016, 334 in 2017, 363 in 2018,

↩→ and 328 in 2019.

Q: Please forecast the number in 2020 at Santa Barbara County

↩→ , CA?

A: 345

Listing 4. US county-level Alzimier time series forecasting
with LLMs by zero-shot learning. Yellow block: the historical
time series data of one US county. Orange box: the outputs of
InstructGPT. Here, we use Santa Barbara County, CA as an
example and the correct answer is 373.

3.2.2 US County-Level Dementia Time Series Forecasting. In terms of county-level data, we utilized the dementia
death count time series of all US counties with available data, resulting in a total of 2447 US counties selected
for analysis. We only considered counties with dementia annual death records spanning more than four years
between 1999 and 2020. Similarly to Section 3.2.1, we utilize all available data up to the given year for training
ARIMA models and generating GPT prompts, and then make predictions for the following year. We employ the
same set of GPT models and baselines as in the state-level experiment to conduct the county-level experiment.
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Table 3. Evaluation results of various GPT models and baselines on the US county-level dementia time series forecasting
task. We use same model set and evaluation metrics as Table 2.

Model #Param MSE ↓ MAE ↓ MAPE ↓ R2 ↑

(A) Simple Persistence [141, 145] - 1,648 16.9 0.189 0.979

(B) Supervised ML ARIMA [74] - 1,133 15.1 0.193 0.986

(C) Zero shot LLMs

GPT2 [154] 117M 77,529 92.0 0.587 -0.018
GPT2-Medium [154] 345M 226,259 108.1 0.611 -2.824
GPT2-Large [154] 774M 211,881 94.3 0.581 -1.706
GPT2-XL [154] 1558M 162,778 99.8 0.627 -1.082
GPT-3 [16] 175B 1,105 14.5 0.180 0.986
InstructGPT [144] 175B 831 13.3 0.179 0.989

ChatGPT (Raw.) [142] 176B 4,115 23.2 0.217 0.955
ChatGPT (Con.) [142] 176B 3,402 20.7 0.231 0.944

Listing 4 shows one example prompt we use in this experiment by using Santa Barbara County, CA as an example.
The same setting and evaluation metrics as Table 2 are utilized in this task.

Table 3 compares the results of diferent models. Similar indings can be seen from these results. All GPT2models
perform poorly. However, both GPT-3 and InstructGPT outperform the best ARIMA models on all evaluation
metrics, while two ChatGPT models underperform them. Among the two ChatGPT models, ChatGPT (Con.) are
slightly better than ChatGPT (Raw.) on all metrics except MAPE.

To further understand the geographical distributions of prediction errors for each model, we visualize the pre-
diction errors of each model on each US county in Figure 1. In the igure, the red color represents overestimations
of the corresponding model while the blue colors indicate underestimations. Moreover, the intensity of the color
indicates the magnitude of the prediction error, with darker colors representing larger errors. We can see that
Persistence, ARIMA, GPT-3, and InstructGPT generally demonstrate better forecasting performance. However,
the prediction percentage errors are not uniformly distributed across diferent US counties. As persistence uses
the previous year’s data as the prediction, Figure 1a indicates that the growth rates of dementia death counts are
uneven for diferent counties. The southwest of the U.S. shows a recent increase in dementia death counts which
leads the persistence model to underestimate the true data. The current maps of prediction errors show that
the distributions of errors of GPT-3 and InstructGPT are not uniform across the US counties, and it is unclear
whether the uneven distribution is due to the geographic bias encoded in the models or the spatial heterogeneity
of the growth rate of dementia death counts. Further analysis is needed to determine the cause of these uneven
distributions.

One obvious observation from Figure 1 is that all GPT2 models turn to signiicantly underestimate the dementia
data. To understand the cause of this behavior and the superiority of GPT-3 and InstructGPT, we showcase
the generated answers of diferent GPT models for four US counties in Table 4. From Table 4, it is evident that
GPT2 many times will repeat the information provided in our prompt rather than generating novel predictions.
For example, in the Clarke County, GA and Santa Barbara County, CA cases, all three GPT2 models (i.e., GPT2-
Medium, GPT2-Large, and GPT2-XL) predict the same numbers as the data in 1999. This suggests that these
models rely heavily on the prompt information instead of learning from the time series data, which could
explain their inferior performance compared to other models such as GPT-3 and InstructGPT. In the other two
counties’ cases, the predictions of the GPT2 models vary signiicantly. In most cases, both InstructGPT and
ChatGPT (Raw.) generate a single number as the prediction, indicating that they understand the task they are
expected to perform. The only exception is the Santa Barbara County case, where ChatGPT (Raw.) generates
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(a) Persistence (b) ARIMA (c) GPT2

(d) GPT2-Medium (e) GPT2-Large (f) GPT2-XL

(g) GPT-3 (h) InstructGPT (i) ChatGPT (Raw.)

(j) ChatGPT (Con.)

Fig. 1. Prediction error maps of each baseline and GPTmodel on US county-level dementia death count time series forecasting
task. The color on each US count indicates the percentage error �� = (���������� − �����)/����� of each model prediction
on this county. Those counties in gray color indicate their dementia data during 1999 and 2020 are not available.

a short sentence containing a reasonable prediction. However, based on our evaluation, the predictions of
ChatGPT (Raw.) are not as good as those of GPT-3. Interestingly, when using ChatGPT in a conversational
context, i.e., ChatGPT (Con.), ChatGPT usually returns a very long sentence. In the New York County case,
ChatGPT (Con.) is unable to give a prediction, suggesting that ChatGPT is useful in a chatbot context but may
not be the best choice for other tasks such as time series forecasting.

3.3 Urban Geography

The third set of FM experiments focuses on research problems in the Urban Geography domain. Two representative
tasks are selected: 1) an urban function task that aims at predicting the urban functions of a geographic region
based on the Points of Interest (POIs) within it [66, 67, 140, 201, 207]; 2) an urban perception task that focuses
on predicting the urban neighborhood characteristics (e.g., housing price, safety, noise intensity level) based on
street view imagery (SVI) [81, 210, 220]. Since these tasks involve diferent data modalities such as point data,
text, and images, we use diferent foundation models to handle each task.
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Table 4. Generated answers by various GPTs models for four US counties in US county-level dementia time series forecasting
problem. łCountyž and łLabelž columns indicate the US county and its true dementia death count in 2020. łGenerated
Answerž indicates the generated answer for diferent GPT models in which the numbers in bold are the predictions we
extract from these answers.

County Label Model Generated Answer

Clarke County, GA 79

GPT2 The number of deaths from alzheimer’s disease is 21 in 1999, 37 in 2000, 32 in 2001, 25 in 2002, 29 in 2003,
44 in 2004, 38 in 2005, 41 in 2006, 52 in 2007, 46 in 2008

GPT2-Medium The number of deaths from alzheimer’s disease in Clarke County, GA is 21 in 2020.
GPT2-Large The number of deaths from alzheimer’s disease in 2020 is: 21 in 2020, 37 in 2021, 32 in 2022, 25 in 2023, 29

in 2024, 44 in 2025, 38 in 2026, 42 in 2027, 42
GPT2-XL The number in 2020 is: 21.
GPT-3 The number of deaths from Alzheimer’s disease in 2020 at Clarke County, GA is forecast to be 81.
InstructGPT 83
ChatGPT (Raw.) 78
ChatGPT (Con.) Based on the available historical data, the forecast for the number of deaths from Alzheimer’s disease in

Clarke County, GA in 2020 would be 81.

New York County, NY 835

GPT2 The number of deaths from alzheimer’s disease is 91 in 1999, 121 in 2000, 118 in 2001, 155 in 2002, 214 in
2003, 243 in 2004, 219 in 2005, 294 in 2006, 296 in 2007, 364 in 2008

GPT2-Medium The number of deaths from alzheimer’s disease in New York County, NY is 9,965.
GPT2-Large The number of deaths from alzheimer’s disease in New York County, NY is 91 in 2020.
GPT2-XL The number in 2020 is: 901.
GPT-3 The number of deaths from alzheimer’s disease in 2020 at New York County, NY is 932.
InstructGPT 902
ChatGPT (Raw.) 855
ChatGPT (Con.) Based on the historical data provided, a common approach for time series forecasting is to use methods such

as exponential smoothing or ARIMA. However, without further information on the speciic pattern or trend
in the data, it is diicult to provide an accurate prediction for the number of deaths from alzheimer’s disease
in New York County, NY for 2020. Therefore, I am unable to provide a single number as the prediction.

San Francisco County, CA 592

GPT2 The number of deaths from alzheimer’s disease is 1,000. The number of deaths from alzheimer’s disease is
2,000. The number of deaths from alzheimer’s disease is 3,000. The number of deaths from

GPT2-Medium The number of deaths from alzheimer’s disease is 201 in 2020.
GPT2-Large The number of deaths from alzheimer’s disease in 2020 is 574.
GPT2-XL The number in 2020 is 201.
GPT-3 571
InstructGPT 590
ChatGPT (Raw.) 579
ChatGPT (Con.) Based on the historical data provided, a possible forecasting method is to use a time series model, such as

ARIMA or exponential smoothing. Without itting such a model, a simple approach would be to assume a
trend of similar magnitude to recent years and a similar level of annual variation. Using this approach, a
possible prediction for the number of deaths from alzheimer’s disease in San Francisco County, CA in 2020
is 583.

Santa Barbara County, CA 373

GPT2 The number of deaths from alzheimer’s disease is 126 in 1999, 114 in 2000, 124 in 2001, 127 in 2002, 156 in
2003, 154 in 2004, 175 in 2005, 172 in 2006, 171 in 2007, 248 in 2008

GPT2-Medium The number of deaths from alzheimer’s disease in Santa Barbara County, CA is 126 in 2020.
GPT2-Large The number of deaths from alzheimer’s disease in Santa Barbara County, CA is: 126 in 2020.
GPT2-XL The number in 2020 is: 126.
GPT-3 The number of deaths from alzheimer’s disease in 2020 at Santa Barbara County, CA is expected to be

about 350.
InstructGPT 345
ChatGPT (Raw.) I predict the number of deaths from alzheimer’s disease in 2020 at Santa Barbara County, CA to be 356.
ChatGPT (Con.) Based on the historical data provided, the prediction for the number of deaths from Alzheimer’s disease in

2020 at Santa Barbara County, CA is 327.

3.3.1 POI-Based Urban Function Classification. The irst experiment focuses on predicting the urban functions
of a geographic region based on the Points of Interest (POIs) within it. This is a common Urban Geography task
aimed at understanding the structure of the urban space [66, 67, 140, 201, 207].

To quantitively evaluate the performance of LLMs on this urban function prediction task, we utilize a Points of
Interest (POI) dataset from Shenzhen, China which consists of 303,428 POIs and 5,461 urban neighborhoods with
POIs [35, 36, 217, 218]. We denote this dataset as��������5� . Figure 2 shows the geographic distributions of the
POIs and regions. The ground truth data is from the Urbanscape Essential Dataset of Peking University. The dataset
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Fig. 2. The spatial distributions of POI data in the��������5� dataset.

provides detailed spatial distributions of ten urban function types in the study area: forest, water, unutilized,
transportation, green space, industrial, educational & governmental, commercial, residential, and agricultural.
To simplify the task, we merge the uncommon urban function types forest, water, unutilized, green space, and
agricultural into the function type outdoors and natural. This results in six urban function types: (1) residential;
(2) commercial; (3) industrial; (4) education, health care, civic, governmental and cultural, (5) transportation
facilities, and (6) outdoors and natural. In total, 5,344 of the regions have ground truth labels. We randomly split
this dataset into training, validation, and test sets with the ratio 60%:20%:20%. The test dataset is used to evaluate
the performance of diferent models, while the validation set is only used for supervised baselines.
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[Instruction] There are six land use types: (1) residential , (2) commercial , (3) industrial , (4)

↩→ education , health care , civic , governmental and cultural , (5) transportation facilities ,

↩→ and (6) outdoors and natural.

Paragraph: In this urban region , there are 128 points of interest , including 2 Chinese restaurant , 1

↩→ food restaurant , 2 hotel , 2 apartment hotel , 1 daily life service , 1 mobile communication

↩→ shop , 24 company , 1 logistics company , 1 real estate agency , 1 lottery retailer , 3 beauty

↩→ shop , 1 manicure , 2 barber shop , 4 Internet cafe , 3 bath massage , 2 stadium , 4 training

↩→ institutions , 1 pharmacy , 4 automative sale , 6 car service , 2 car repair , 1 Car rental , 1

↩→ Automobile parts , 3 shopping , 5 shop , 5 parking lot , 5 Parking lot entrance , 2

↩→ transportation facility , 1 port harbor , 1 road intersection , 1 atm machine , 2 office

↩→ building , 2 residential area , 7 building , 1 real estate , 1 park , 1 factory , 7

↩→ administrative agency , 1 entrance and exit , 3 gate door , 6 convenience store , 4 home

↩→ building materials.

Q: What is the primary land use category of this urban region?

A: outdoors and natural

Paragraph: In this urban region, there are 17 points of interest, including 1 food restaurant, 3 public toilet, 3 funeral service, 2 road station for walking and cycling,

↩→ 1 beach, 2 parking lot, 2 road intersection, 1 corporate company enterprise, 2 administrative agency.

Q: What is the primary land use category of this urban region?

A: outdoors and natural

Listing 5. POI-based urban function classification with LLMs, e.g., ChatGPT (Raw.). Yellow block:
the POI statistic of a new urban neighborhood to be classified. Orange box: ChatGPT (Raw.) outputs.

In order to enable a LLM to handle such a task, we convert the set of POIs inside an urban region into a textual
paragraph that describes the frequencies of POIs with diferent place types. Then, we ask the LLM to predict
the urban function of the region based on the paragraph (here we ask for the most dominating function, in
spite of the common presence of mix-used urban regions). Listing 5 shows one example prompt for this task,
which includes a paragraph-question-answer tuple as a demonstration. LLMs adapted by this kind of prompt is
conducting prediction under a one-shot setting. The paragraph highlighted in yellow in Listing 5 indicates the
POI types and frequency information of a new neighborhood we would like to classify. And the text highlighted
in orange is the generated answers from GPT-3 which are treated as the prediction results. For the zero-shot
setting, we simply remove this paragraph-question-answer tuple from the prompt. We use GPT2 with various
sizes, GPT-3, and two ChatGPT models to perform this task under both zero-shot and one-shot settings. For
comparison, we use two supervised learning neural network baselines:

• Place2Vec: We irst learn POI category embeddings following the Place2Vec method [197]. Then, given an
urban region with � POIs, we convert each POI into its corresponding Place2Vec embedding and perform
mean pooling to obtain region embeddings as Zhai et al. [207] did. The resulting neighborhood embeddings
are fed into a one-hidden-layer multilayer perceptron (MLP) to supervise learning its urban function over
the��������5� training dataset.

• HGI: HGI is an unsupervised method for learning region representations based on POIs. It takes into
account the categorical semantics of POIs, as well as POI-level and region-level spatial adjacency, and the
multi-faceted inluence from POIs to regions [67]. The HGI region embeddings are fed into an MLP with
the same setup to predict the primary urban function. HGI is currently considered a state-of-the-art method
that generates efective region embeddings for the urban function task.

Table 5 shows the evaluation results of all models on the test dataset of��������5� . Additionally, we visualize
the confusion matrics of two baseline models, 7 zero-shot GPT models, and 7 one-shot GPT models in Figure 3, 4,
and 5. We can see that:

• In the zero-shot setting, GPT-3 achieves the best precision scores among all GPT models but still underper-
forms HGI models.
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Table 5. Evaluation results of various GPT models and supervised baseline on the��������5� dataset for the POI-based
urban function classification task. We divide the models into three groups: (A) supervised learning-based neural network
models; (B) Zero-shot learning with LLMs. (C) One-shot learning with LLMs. We use accuracy, weighted precision, and
weighted recall as evaluation metrics. We do not include weighted F1 scores since it is the same as the accuracy score. The
best model of each group is highlighted.

Model Accuracy Precision Recall

(A) Supervised NN
Place2Vec [197, 207] 0.540 0.512 0.516
HGI [67] 0.584 0.568 0.563

(B) Zero-shot LLMs

GPT2 [154] 0.318 0.105 0.158

GPT2-Medium [154] 0.025 0.102 0.040
GPT2-Large [154] 0.005 0.001 0.002
GPT2-XL [154] 0.001 0.108 0.002
GPT-3 [16] 0.144 0.448 0.141
ChatGPT (Raw.) [142] 0.075 0.376 0.106
ChatGPT (Con.) [142] 0.051 0.232 0.046

(C) One-shot LLMs

GPT2 [154] 0.149 0.079 0.085
GPT2-Medium [154] 0.317 0.104 0.156
GPT2-Large [154] 0.057 0.083 0.021
GPT2-XL [154] 0.324 0.105 0.159
GPT-3 [16] 0.176 0.486 0.190
ChatGPT (Raw.) [142] 0.195 0.524 0.245

ChatGPT (Con.) [142] 0.093 0.451 0.085

• Interestingly, in the zero-shot setting, the smallest GPT2 achieves the best accuracy and recall scores
which is counter-intuitive. The reason can be seen in Figure 4a. GPT2 predicts almost all neighborhood as
“Residentialž which account for 30+% of the ground truth data.

• In the one-shot setting, ChatGPT (Raw.) becomes the best model among all GPT models in terms of both
precision and recall. It achieves 52.4% precision which is only 4.4% less than HGI . Its confusion matrix in
Figure 5f also demonstrates that ChatGPT (Raw.) has reasonably good performance on all urban function
classes.

• In the one-shot setting, GPT2-XL has the highest accuracy. However, Figure 5d shows that GPT2-XL is
highly biased towards the “Residentialž class.

These experimental results highlight the challenges of using LLMs for urban function classiication. Two main
reasons contribute to their inadequate performance:

• POIs are initially used for search in online map services, and by nature, they contain rich information about
commercial venues like restaurants and hotels. On the contrary, the venues that are not closely related to our
daily life, e.g., factories, are often missing. In this regard, Shenzhen is a heavily industrial-oriented city, and
the ground truth data indicates that there are many more industrial regions than commercial ones. However,
LLMs tend to predict that a large number of regions are commercial, in view of the commercial-related
POIs fed into it.

• In addition, LLMs are unable to access the spatial distributions of POIs, which highly inluence POI-based
urban function prediction since diferent spatial distributions of POIs yield diferent spatial interaction
patterns and thus diferent urban functions. Although both supervised methods Place2Vec and HGI are
learned from POI spatial distributions during their place type embedding unsupervised training stage, it is
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(a) Place2Vec (b) HGI

Fig. 3. Confusion matrices of Place2Vec and HGI (Group A in Table 5) on the��������5� dataset.

(a) GPT2 (b) GPT2-Medium (c) GPT2-Large (d) GPT2-XL

(e) GPT-3 (f) ChatGPT (Raw.) (g) ChatGPT (Con.)

Fig. 4. Confusion matrices of all GPT models (Group B in Table 5) on the��������5� dataset under zero-shot seting.

not possible to inform LLMs of the spatial distributions of POIs. Converting a POI set into an image will
also not work. This is because diferent POI types usually have spatial distributions with very diferent
characteristics [125]. POIs with types of nightclubs or bars are usually clustered together while other POI
types such as post oices, ire stations, and elementary schools are rather evenly distributed. A large pixel
size will make a large number of POIs with the former types fall into one single pixel. On the other hand, a
iner pixel size will make the image of an urban space too large and cannot be handled by other deep image
encoders. Moreover, an urban space image with a iner pixel size will have very sparse information which is
hard for image encoders to learn. In other words, we need to use specialized neural architectures to directly
handle point data (also polyline data and polygon data). This calls for the necessity of incorporating

encoding architectures of various geospatial vector data such as location encoding [123, 125],

polyline encoding [157, 204], and polygon encoding techniques[127] into the GeoAI foundation

model development. We will discuss this in detail in Section 4.6.

3.3.2 Street View Image-Based Urban Noise Intensity Classification. Street view images (SVI) are widely used in
many Urban Geography studies to understand diferent characteristics of an urban neighborhood such as safety
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(a) GPT2 (b) GPT2-Medium (c) GPT2-Large (d) GPT2-XL

(e) GPT-3 (f) ChatGPT (Raw.) (g) ChatGPT (Con.)

Fig. 5. Confusion matrices of all GPT models (Group C in Table 5) on the��������5� dataset under the one-shot seting.

[210], beauty, aluence [100], depressing [210], housing prices [81], noise intensity levels [220], accessibility [50],
etc. It becomes an important data source that complements remote sensing images.
In this work, we use a recently developed street view image noise intensity dataset developed by Zhao et al.

[220] as a representative urban perception task. This dataset consists of 579 street-view images collected from
Singapore. The noise intensity scores (between 0 and 1) were collected based on a human survey. Please refer
to their Github5 for a detailed description of this dataset. Since the sound intensity score is not a commonly
agreed metric but an indicator deined by Zhao et al. [220], it would be challenging for visual foundation models
trained on general web data such as OpenCLIP [69] and BLIP [103] to directly predict such a score. Therefore, we
discretize the original noise intensity score of each street view image into four classes: very quiet (0 - 0.25), quiet
(0.25 - 0.50), noisy (0.50 - 0.75), and very noisy (0.75 - 1.00). We denote this dataset as ����������� �579. Figure 6
illustrates some street view image examples from each noise intensity class. We randomly split ����������� �579
into 50% training and 50% testing sets, where the testing dataset is used to evaluate diferent CNN and foundation
models.
Since all GPT models (except GPT-4) used in previous experiments are pure language models that cannot

handle data modalities such as images. So for the street view image-based noise intensity prediction task, we
select the latest high-performance open visual-language foundation models (VLFM) including OpenCLIP [69],
BLIP [103], and OpenFlamingo-9B [11]. Although, there exist more powerful visual-language foundation models
such as DeepMind’s Flamingo-9B [6], KOSMOS-1 [64], and GPT-4 [143], they are not openly accessible, nor do
they provide API access yet6. We describe the setting of each VLFM as follows:

• OpenCLIP-L: We use an OpenCLIP [69] ViT L/14 model pre-trained with the LAION-2B English subset of
LAION-5B7 as a small-sized OpenCLIP model. We download the pre-trained model from Huggingface8.

5https://github.com/ualsg/Visual-soundscapes
6Note that the GPT-4 API still does not support visual question answering at the time we submit this paper.
7https://laion.ai/blog/laion-5b/
8https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K

ACM Trans. Spatial Algorithms Syst.

https://github.com/ualsg/Visual-soundscapes
https://laion.ai/blog/laion-5b/
https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K


Foundation Models for GeoAI • 19

Table 6. Evaluation results of various vision-language foundation models and baselines on the urban street view image-based
noise intensity classification dataset, SingaporeSVI579 [220]. We classify models into two groups: (A) Supervised finetuned
convolutional neural networks (CNNs); (B) Zero-shot learning with visual-language foundation models (VLFMs). We use
accuracy and weighted F1 scores as evaluation metrics. The best scores for each group are highlighted.

Model #Param Accuracy F1

(A) Supervised Finetuned CNNs

AlexNet [92] 58M 0.452 0.405
ResNet18 [51] 11M 0.493 0.442

ResNet50 [51] 24M 0.500 0.436
DenseNet161 [63] 27M 0.486 0.382

(B) Zero-shot FMs

OpenCLIP-L [69, 152, 171] 427M 0.128 0.089
OpenCLIP-B [69, 152, 171] 2.5B 0.169 0.178
BLIP [102, 103] 3.9B 0.452 0.405

OpenFlamingo-9B [11] 8.3B 0.262 0.127

• OpenCLIP-B: We use the OpenCLIP [69] ViT-bigG/14 model trained with the LAION-2B English subset of
LAION-5B as a larger-sized OpenCLIP model. The pre-trained model is from Huggingface9.

• BLIP: We use the pre-trained BLIP-2 model [102] provided by Huggingface10 which consists of a CLIP-like
image encoder, a Querying Transformer (Q-Former), and a large language model (Flan T5-xl).

• OpenFlamingo-9B: We use the pre-trained OpenFlamingo-9B model [11] provided by Huggingface11

which consists of an image encoder (CLIP ViT-L/14 [69]) and a large language model (LLaMA-7B [180]).

All VLFMs are evaluated on the testing set of ����������� �579 in a zero-shot setting. Since diferent VLFMs
require diferent image input formats and expect diferent styles of text prompts, we describe the zero-shot
pipeline for each VLFM below:

• OpenCLIP-L andOpenCLIP-B: We irst encode four noise intensity class names into four text embeddings
by using a text template of the form “a city area with the noise intensity of [NOISE_INTENSITY_CLASS]ž.
Then given a street view image, we use OpenCLIP ViT image encoder to encode them into an image
embedding. The cosine similarity between this image embedding and all four class text embeddings are
computed and the class with the highest similarity will be picked as the prediction.

• BLIP: Given a street view image, we use a prompt of the form “What is the noise intensity of this area, is it
1. very quiet, 2. quiet, 3. noisy, or 4. very noisy?ž to instruct the language encoder of BLIP to predict its noise
intensity class.

• OpenFlamingo-9B: We use a prompt of the form “There are four noise intensity levels: 1. very quiet, 2. quiet,
3. noisy, or 4. very noisy. <image>The noise intensity of this area isž to instruct OpenFlamingo-9B to predict
the noise intensity of the given image. Here “<image>ž denotes an image token and CLIP ViT-L/14 is used
as the encoder.

We select four convolutional neural network models (CNNs) as the alternative baselines to compare against
these VLFMs: AlexNet [92], ResNet18 [51], ResNet50 [51], and DenseNet161 [63]. The weights of all CNNs models
are irst initialized by the Place365 pre-trained weights [222], and only their inal softmax layers are inetuned
with full supervision on the ����������� �579 training dataset. We choose this linear probing method instead of
fully inetuning the whole CNN architecture due to the very limited training data size.

9https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
10https://huggingface.co/Salesforce/blip2-lan-t5-xl
11https://huggingface.co/openlamingo/OpenFlamingo-9B
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(a) Veryuiet (0.100) (b) uiet (0.350) (c) Noisy (0.600) (d) Very Noisy (0.965)

Fig. 6. Some street view image examples in ����������� �579 dataset. The image caption indicates the noise intensity class
this image belongs to and the numbers in parenthesis indicate the original noise intensity scores from Zhao et al. [220].

(a) AlexNet (b) ResNet18 (c) ResNet50 (d) DenseNet161

(e) OpenCLIP-L (f) openclipb (g) BLIP (h) OpenFlamingo-9B

Fig. 7. Confusion matrices of all baselines and visual-language FMs on ����������� �579 dataset.

Table 6 compares the performances of diferent inetuned CNN models with four zero-shot VLFMs. The results
show that BLIP achieves the best accuracy and weighted F1 score among all VLFMs in the zero-shot learning
setting. The performance of BLIP is comparable to those of AlexNet but is still slightly worse than the best model,
ResNet18 and ResNet50. To further understand the classiication accuracy of diferent models on each noise
intensity class, we visualize the confusion matrices of all models in Figure 7. We can see that the predictions
of OpenCLIP-L, OpenCLIP-B, and OpenFlamingo-9B are highly biased. OpenCLIP-L and OpenCLIP-B tend to
classify most street view images as ‘very quiet’ while OpenFlamingo-9B classiies most images as ‘very noisy’. On
the other hand, only BLIP shows balanced and reasonable predictions on all four noise intensity classes, similar
to those ine-tuned CNN models.
These results are very encouraging with zero-shot BLIP achieving comparable performance with ine-tuned

models. We can observe from Figure 7g that BLIP has a general sense of the noisy intensity level of the target
urban area, e.g., it misclassiies most “very noisyž areas as simply “noisyž. This implies that BLIP understands
noisy intensity levels on a diferent scale. For example, a “very noisyž place annotated by a human interviewee in
Singapore might not qualify as “veryž for BLIP, which might have seen many much noisier urban areas. To this
end, BLIP is generally competent for this urban perception task. At the same time, we recognize that most of
the open visual-language foundation models are still not powerful enough to connect visual features to their
important yet nuanced semantics and concepts in urban studies. For example, when presented with a construction
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site in Figure 6d, we expect a VLFM to predict that this is a very noisy neighborhood. When seeing a large
vegetation coverage in Figure 6d, a VLFM should associate this visual feature with the concept of ‘quiet’ in the
language space. This study highlights the fact that the current VLFMs have certain capabilities in understanding
the characteristics of urban neighborhoods given visual inputs. However, their ability is still generally not as
strong as the current LLMs on language-only tasks. Furthermore, we think the urban perception task, as a classic
task in urban geography, is more challenging than current visual question-answering tasks commonly used in
VLFM research [64, 151] partly due to their partially subjective nature and the rarity of annotated datasets. This
further emphasizes the unique challenges faced by foundation model research in GeoAI.

3.4 Remote Sensing

Our inal experiment focuses on a typical remote sensing (RS) task ś remote sensing image scene classiication.
We choose a widely-used aerial image scene classiication dataset, ��� [194], which consists of 10K scenes and
30 aerial scene types. These data were collected from Google Earth imagery. Please refer to Xia et al. [194] for
a detailed description of this dataset. ��� does not provide an oicial dataset split, so we split the dataset into
training and testing sets using stratiied sampling with a ratio of 80% for training and 20% for testing, ensuring
that both sets have similar scene type label distributions.

Similar to the street view image classiication task from Section 3.3.1, we use four CNN models (i.e., AlexNet,
ResNet18, ResNet50, and DenseNet161) and four visual-language foundation models (i.e., OpenCLIP-L, OpenCLIP-
B, BLIP, and OpenFlamingo-9B). For all CNN models, their weights are irst initialized by the ImageNet-V1
pre-trained weights, and their inal softmax layers are ine-tuned with full supervision on the ��� training
dataset. For the VLFMs, their model performances are highly dependent on whether their language model
component can correctly comprehend the semantics of each RS image scene type. However, many RS image
scene types of ��� are vague such as “centerž, and “commercialž. We ind that if keeping their original scene
type names, models like OpenCLIP would assign no RS image to those two types. Therefore, we modify the
names of “centerž to “theaterž (although only partially covers the semantics of this class), and “commercialž to
“commercial areaž and use them in the prompt. Models with such prompts are denoted as “(�������)ž while
“(������)ž denotes the original RS image scene type names from ��� being used in the prompt. We evaluate all
VLFMs in a zero-shot learning setting. Following the street view image classiication task in Section 3.3.1, similar
prompt formats are used on the ��� dataset.

Table 7 summarizes the experiment results of four ine-tuned CNN models and zero-shot VLFMs. We can see
that AlexNet achieves the best accuracy and F1 score among all CNNmodels. Surprisingly, OpenCLIP-L (�������)

obtains the best accuracy and F1 score among all VLFMs. We observe that bigger models do not necessarily lead
to better results in this task. For example, the largest model, OpenFlamingo-9B only achieves a 0.206 accuracy.
One possible reason is that these larger VLFMs might not see remote-sensing images in their training data, which
usually contain general web-crawled images and texts. OpenCLIP , on the other hand, explicitly includes satellite
images in their pre-training data[69]. However, both BLIP and OpenFlamingo-9B did not mention whether they
utilized remote sensing images during the pre-training stage. Note that street view images are quite similar to
Internet images which are widely used for VLFM pre-training. RS images, on the other hand, such as satellite
images and UAV (unmanned aerial vehicles), are visually distinguished from Internet photos where the majority
of them are captured using consumers’ digital cameras at the ground level. If the visual encoders of BLIP and
OpenFlamingo-9B are not pre-trained on RS images, the features they extracted will not align well with text
features that share similar semanticsśthis leads to poor performance on the ��� dataset. Our study highlights
the importance of pre-training VLFMs on a diverse set of visual inputs, including RS images, to improve their
performance on remote sensing tasks.
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Table 7. Evaluation results of various vision-language foundation models and baselines on the remote sensing image scene
classification dataset, ��� [194]. We use the same model set as Table 6. ł(������)ž denotes we use the original remote
sensing image scene class name from ��� to populate the prompt while ł(�������)žindicates we update some class names
to improve its semantic interpretation for FMs. We use accuracy and F1 score as evaluation metrics.

Model #Param Accuracy F1

Supervised Finetuned CNNs

AlexNet [92] 58M 0.831 0.827

ResNet18 [51] 11M 0.752 0.730
ResNet50 [51] 24M 0.757 0.738
DenseNet161 [63] 27M 0.818 0.807

Zero-shot FMs

OpenCLIP-L (������) [69, 152, 171] 427M 0.708 0.688
OpenCLIP-L (�������) [69, 152, 171] 427M 0.710 0.698

OpenCLIP-B (������) [69, 152, 171] 2.5B 0.699 0.668
OpenCLIP-B (�������) [69, 152, 171] 2.5B 0.705 0.686
BLIP (������) [103] 2.5B 0.500 0.473
BLIP (�������) [103] 2.5B 0.520 0.494
OpenFlamingo-9B [11] 8.3B 0.206 0.154

Another important observation is that the semantics embedded in the prompts play a pivotal role in determining
the model’s performance. For example, when using the original scene type name “centerž, generally none of the
models is able to understand the underlying ambiguous meaning. However, simply changing “centerž to “theaterž
could help OpenCLIP correctly ind relevant RS scenes, although this is not a perfect name to describe this class.
Nevertheless, this simple change demonstrates the importance of choosing expressive prompts while using FMs
for geospatial tasks.
Compared with the results in Table 5, the experimental results in Table 7 highlight the unique challenges of

remote sensing images. We will discuss the improvement of FMs for remote sensing in detail in Section 4.4.

4 A MULTIMODAL FOUNDATION MODEL FOR GEOAI

Section 3 explores the efectiveness of applying existing FMs on diferent tasks from various geospatial domains.
We can see that many large language models can outperform fully-supervised task-speciic ML/DL models
and achieve surprisingly good performances on several geospatial tasks such as toponym recognition, location
description recognition, and time series forecasting of dementia. However, on other geospatial tasks (i.e., the two
tested Urban Geography tasks and one RS task), especially those that involve multiple data modalities (e.g., point
data, street view images, RS images, etc.), existing foundation models still underperform task-speciic models. In
fact, one unique characteristic of many geospatial tasks is that they involve many data modalities such as text
data, knowledge graphs, remote sensing images, street view images, trajectories, and other geospatial vector data.
This will put a signiicant challenge on GeoAI foundation model development. So in this section, we discuss the
challenges unique to each data modality, then propose a potential framework for future GeoAI which leverages a
multimodal FM.

4.1 Geo-Text Data

Despite the promising results showed in Table 1, LLMs still struggle with more complex geospatial semantics
tasks such as toponym resolution/geoparsing [7, 45, 106, 184] and geographic question answering (GeoQA)
[22, 29, 48, 94, 117, 121, 122, 126, 132, 149, 170], since LLMs are unable to perform (implicit) spatial reasoning in a
way that is grounded in the real world. As a concrete example, we illustrate the shortcomings of GPT-3 on a
geoparsing task. Using two examples from the Ju2016 dataset, we ask GPT-3 to both: 1) recognize toponyms; and
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2) predict their geo-coordinates. The prompt is shown in List 6 while the geoparsing results are visualized in
Figure 8. We see that in both cases, GPT-3 can correctly recognize the toponyms but the predicted coordinates
are 500+ miles away from the ground truth. Moreover, we notice that with a small spatial displacement of the
generated geo-coordinates, GPT-3’s log probability for this new pair of coordinates decreases signiicantly. In
other words, the probability of coordinates generated by the LLM does not follow Tobler’s First Law of Geography
[178]. GPT-3 also generates invalid latitudinal/longitudinal coordinates, indicating that existing LLMs are still far
from gracefully handling complex numerical and spatial reasoning tasks.

Figure 9 provides another example of unsatisfactory results of LLMs in answering geographic questions related
to spatial relations. In this example, Monore, in the generated answer by the ChatGPT generated answer is
not in the north of Athens, GA, but in the southwest of Athens. This example indicates that LLMs do not fully
understand the semantics of spatial relation. The reason for this error could be that ChatGPT generates answers to
this spatial relation question based on searching through its internal memory of text-based knowledge rather than
performing spatial reasoning. One potential solution to this problem could be the use of geospatial knowledge
graphs[20, 226], which can guide the LLMs to perform explicit spatial relation computations. We will discuss this
further in the next section.

(a) [TEXT]: Franklin is a city in and the county seat of simpson
county, ...

(b) [TEXT]: the city of Fairview had a population of 260 as of
july 1, 2015. ...

Fig. 8. Geoparsing examples of GPT-3 on the Ju2016 dataset comparing the predicted coordinates (dropped pins) and the
ground truth coordinates (starting points). The recognized toponyms are underlined in text.

4.2 Geospatial Knowledge Graph

Despite the superior end-to-end prediction and generation capability, LLMs may produce content that lacks
suicient coverage of factual knowledge or even contains non-factual information. To address this problem,
knowledge graphs (KGs) can serve as efective sources of information that complement LLMs. KGs are factual
in nature because the information is usually extracted from reliable sources, with post-processing conducted
by human editors to further ensure incorrect content is removed. As an important type of domain knowledge
graphs, geospatial knowledge graphs (GeoKG) such as GeoNames [2], LinkedGeoData [10], YAGO2 [56], GNIS-LD
[164], KnowWhereGraph [71], EVKG [150], etc. are usually generated from authoritative data sources and spatial
databases. For example, GNIS-LD was constructed based on USGS’s Geographic Names Information System
(GNIS). This ensures the authenticity of these geospatial data.

In particular, developing multimodal FMs for GeoAI which jointly consider text data and geospatial knowledge
graphs can lead to several advantages. First, from the model perspective, (geospatial) knowledge graphs could be
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integrated into pre-training or ine-tuning LLMs, through strategies such as retrieving embeddings of knowledge
entities for contextual representation learning [148], fusing knowledge entities and text information [52, 216],
designing learning objectives that focus on reconstructing knowledge entities [219] and triples [173, 202]. Second,
from the data perspective, GeoKGs could provide contextualized semantic and spatiotemporal knowledge to
facilitate prompt engineering or data generation, such as enriching prompts with contextual information from
KGs [15, 192] and converting KG triples into natural text corpora for speciic domains [1]. Third, from the
application perspective, it is possible to convert facts in geospatial knowledge graphs into natural language
to enhance text generation [205], to be used in scenarios such as (geographic) question answering [39, 124]
and dialogue systems [191]. Last, from a reasoning perspective, GeoKGs usually provide spatial footprints of
geographic entities which enable LLMs to perform explicit spatial reasoning as Neural Symbolic Machine did
[107]. This can help avoid the errors we see in Figure 9.

4.3 Street View Image

Section 3.3.1 has demonstrated the efectiveness of existing visual-language foundation models on a street
view-based geospatial task. However, the performance gaps between the task-speciic models and VLFMs shown
in Table 6 inform us that there are some unique characteristics of urban perception tasks we need to consider if
we want to develop a FM for GeoAI.

Although street view images are like the natural images used in common vision-language tasks, one major
diference is that common vision-language tasks usually focus on factual knowledge in images (e.g., “how many
cars in this imagež) while urban perception tasks are usually related to high-level human perception of the images
such as the safety, poverty, beauty, and sound intensity of a neighborhood given a street view image [209, 210].
Compared with factual knowledge, this kind of high-level perception knowledge is rather hard to estimate and
the labels are rather rare. Moreover, many perception concepts are vague and subjective which increases the
diiculties of those tasks. So in order to develop a GeoAI FM that can achieve state-of-the-art performances on
various urban perception tasks, we need to conduct some domain studies to provide a concrete deinition of each
urban perception concept and develop some annotated datasets for GeoAI FM pre-training.

[Instruction] ...

Paragraph: San Jose was founded in 1803 when allotments of

↩→ land were made ...

Q: Which words in this paragraph represent named places?

A: San Jose; New Mexico

Q: What is the location of San Jose?

A: 35.39728 , -105.47501

...

--

Paragraph:

↩→ the city of fairview had a population of 260 as of july 1, 2015. ...

Q: Which words in this paragraph represent named places?

A: Fairview

Q: What is the location of Fairview?

A: 41.85003, -87.65005

Listing 6. Geoparsing with LLMs, e.g., GPT-3. Yellow block:
the text snippet to be geoparsed. Orange box: GPT-3 outputs.

Fig. 9. One example in which ChatGPT gives wrong answers
to a geographic question about topological relations. In this
example, Monore is not in the north, but the southwest of
Athens, GA.

ACM Trans. Spatial Algorithms Syst.



Foundation Models for GeoAI • 25

4.4 Remote Sensing

With the advancement of computer vision technology, deep vision models have been successfully applied to
diferent kinds of remote sensing (RS) tasks including image classiication/regression [12, 131, 165], land cover
classiication [12, 28, 87], semantic segamentaion [212], and object detection[96]. Unlike the usual vision tasks
which usually work on RGB images, RS tasks are based on multispectral/hyperspectral images from diferent
sensors. Most existing RS works focus on training one model for a speciic RS task using data from a speciic
sensor [96]. Researchers often compare performances of diferent models using the same training datasets and
decide on model implementation based on accuracy statistics. However, we see the trend of FMs in the CV ield
such as CLIP [151], Flamingo-9B [6] to be further developed to meet the unique challenges of remote sensing tasks.
RS experiments in Section 3.4 demonstrate that there is still a performance gap between current visual-language
foundation models and task-speciic deep models. To ill this gap and develop a GeoAI FM that can achieve
state-of-the-art performances on various RS tasks, we need to consider the uniqueness of RS images and tasks.

Aside from being task-agnostic, the desiderata for a remote sensing FM include being: 1) sensor-agnostic: it
can seamlessly reason among RS images from diferent sensors with diferent spatial or spectral resolutions [129];
2) spatiotemporally-aware: it can handle the spatiotemporal metadata of RS images and perform geospatial
reasoning for tasks such as image geolocalization and object tracking; 3) environmentally-invariant: it can
decompose and isolate the spectral characteristics of the objects of interest across a variety of background
environmental conditions and landscape structure. Recent developments here include geography-aware RS
models [12] or self-supervised/unsupervised RS models [12, 128, 165], all of which are task-agnostic. However,
we have yet to develop a FM for RS tasks which can satisfy all such properties.

In summary, eforts should be focused on developing GeoAI FMs using remote sensing to address pressing
environmental challenges due to climate change. It would require complex models which look beyond image
classiication toward modeling ecosystem functions such as forest structure, carbon sequestration, urban heat,
coastal looding, and wetland health. Traditionally remote sensing is widely used to study these phenomena but
in a site-speciic and sensor-speciic manner. Sensor-agnostic, spatiotemporally-aware, and environmentally-
invariant FMs have the potential to transform our understanding of the trends and behavior of these complex
environmental phenomena.

4.5 Trajectory and Human Mobility

Trajectory, which is a sequence of time-ordered location tuples, is another important data type in GeoAI. The
proliferation of digital trajectory data generated from various sensors (e.g., smartphones, wearable devices,
and vehicle on-board devices) together with the advancement of deep learning approaches has enabled novel
GeoAI models for modeling human mobility patterns, which are crucial for city management and transportation
services, etc. There are four typical tasks in modeling human dynamics with deep learning [114], including
trajectory generation [26, 157, 160], origin-destination (OD) low generation [115, 175, 200], in/out population
low prediction [75, 104], and next-location/place prediction [109, 158].
In order to develop GeoAI FMs for supporting human mobility analysis, we need to consider the following

perspectives: 1) pre-training and generation of task-agnostic trajectory embedding [137, 186], which represent
high-level movement semantics (e.g., spatiotempporal awareness, routes, and location sequence) from various
kinds of trajectories [109]; 2) context-aware contrastive learning of trajectory: human movements are constrained
from their job type, surrounding built environment, and transportation infrastructure as well as many other
spatiotemporal and environmental factors [114, 174, 187]; GeoAI FMs should be able to link trajectories to various
contextual representations such as road networks (e.g., Road2Vec [110], [24]), POI composition or land use
types [211], urban morphology [23], and population distribution [68]; 3) user geoprivacy [86] should be protected
when training such GeoAI FMs since trajectory data can reveal individuals’ sensitive locations such as home
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and personal trips. The privacy-preserving techniques by utilizing cryptography or diferential privacy [5] and
federated learning framework may be incorporated in the GeoAI FMs training process for trajectories [158].

4.6 Geospatial Vector Data

Another critical challenge in developing FMs for GeoAI is the complexity of geospatial vector data which are
commonly used in almost all GIS and mapping platforms. Examples include the US state-level and county-level
dementia data (polygon data) discussed in Section 3.2, urban POI data (point and polygon data) introduced in
Section 3.3.1, cartographic polyline data [204], building footprints data [198], spatial footprints of geographic
entities in a geographic knowledge graph [127], road networks (composed by points and polylines), and many
others. In contrast with NLP and CV where text (1-D) or images (2-D) are well-structured and more suitable to
common neural network architectures, vector data exhibits more complex data structures in the form of points,
polylines, polygons, and networks [123]. So it is particularly challenging to develop a FM which can seamlessly
encode or decode diferent kinds of vector data.

Noticeably, recently developed location encoding [123, 125, 131], polyline encoding [157, 204], polygon encoding
[127], and spatial scene encoding [47] techniques can be seen as a fundamental building block for such a model
[130]. Moreover, since encoding (e.g., geo-aware image classiication[125]) or decoding (e.g., geoparsing [184])
geospatial vector data, or conducting spatial reasoning (e.g., GeoQA [126]) is an indispensable component for
most GeoAI tasks, developing FMs for vector data is the key step towards a multimodal FM for GeoAI. This point
also diferentiates GeoAI FMs from existing FMs in other domains.

4.7 A Multimodal FM for GeoAI

Except for those data modalities, there are also other datasets frequently studied in GeoAI such as geo-tagged
videos, spatial social networks, sensor networks, and so on. Given all these diverse data modalities, the question
is how to develop a multimodal FM for GeoAI that best integrates all of them.

When we take a look at the existing multimodal FMs such as CLIP [151], DALL·E2 [156], MDETR [79], VATT
[3], BLIP [103], DeepMind Flamingo [6], KOSMOS-1 [64], we can see the following general architecture: 1)
starting with separate embedding modules to encode diferent modalities of data (e.g., a Transformer
for texts and ViT for images [151]); 2) (optionally) mixing the representations of diferent modalities by
concatenation; 3) (optionally)more Transformer layers for across modality reasoning, which can achieve a
certain degree of alignment based on semantics, e.g., the word “hospitalž attending to a picture of a hospital; 4)
generative or discriminative prediction modules for diferent modalities to achieve self-supervised training.
One weak point of these architectures is the lack of integration with geospatial vector data, which is the

backbone of spatial reasoning and helps alignment among multi-modalities in GeoAI. This is considered central
and critical for GeoAI tasks. Therefore, we propose to replace step 2 with aligning the representations of
diferent modalities (e.g., geo-tagged texts and RS images) by augmenting their representations with location
encoding [125, 131] before mixing them as Mai et al. did [128]. Figure 10 illustrates this idea. Geo-tagged text
data, street view images, remote sensing images, trajectories, and geospatial knowledge graphs can be easily
aligned via their geographic footprints (vector data). The key advantages of such a model are to enable spatial
reasoning and knowledge transfer across modalities.

5 RISKS AND CHALLENGES

Despite the recent progress, several challenges are emerging as more advanced FMs have been released [221].
First, as FMs continue to increase in size, there is a need to improve the computational eiciency for training
and ine-tuning these models. Second, as an increasing number of LLMs are not open-sourced, it becomes
challenging to incorporate knowledge into these models without accessing their internal parameters. Third, as
LLMs are increasingly deployed in remote third-party settings, protecting user privacy becomes increasingly
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Geospatial Vector Data Remote Sensing Images

StreetView Images

Pier 39

Coit Tower

Geo-tagged Text

Pier 39 is a shopping center and
popular tourist attraction built on
a pier in San Francisco,
California.  ...

Coit Tower is a 210-foot tower in
the Telegraph Hill neighborhood of
San Francisco, California, offering
panoramic views over the city and
the bay...

Multimodal
Foundation Model 

based on  
Geospatial Alignment  

Geo-tagged Video/Audio; Spatial Social Networks; ...

Pier
39

...

San
Francisco

USA Coit
Tower

Geospatial Knowledge Graphs

isLocatedIn

isLocatedIn

country

country

country

Trajectories

Fig. 10. A multimodal FM which achieves alignment among diferent data sources via their geospatial relationships.

important[159]. Except for these challenges for FMs in general, there are also many unique challenges and

risks during the process of GeoAI FMs development.

5.1 Geographic Hallucination

Many large languagemodels (LLMs) have faced criticism for their tendency to produce “hallucinationsž, generating
content that is nonsensical, inaccurate given the context, or untruthful according to world knowledge [65, 143, 161,
180]. Therefore, recent works have reported truthfulness evaluations with publicly available benchmarks such as
TruthfulQA [108] prior to their launch of FMs. For example, ChatGPT and GPT-4 have undergone OpenAI internal
adversarially-designed factuality evaluations [143]. Similarly, in a geographic context, generating geographic
faithful results is particularly important for almost all GeoAI tasks. In addition to Figure 9 in Section 4.1, Figure
11 illustrates two geographically inaccurate results generated from ChatGPT and Stable Difusion. In Figure
11a, the expected answer should be “Washington, North Carolinaž12. However, ChatGPT indicates there is no
Washington in North Carolina. Moreover, the largest city in Washington State should be Seattle and there is no
city in this state named Washington13. Figure 11b visualizes 4 generated remote sensing images generated by
Stable Difusion14. Although those images appear similar to satellite images, it is rather easy to tell that they are
fake RS images since the layouts of geographic features in these images are clearly not from any city in the world.

12https://en.wikipedia.org/wiki/Washington,_North_Carolina
13Note that the generated answers to this question may vary at diferent times and diferent model runs. Sometimes, ChatGPT can answer

this question correctly. However, we observe that FMs will generate geographic inaccurate results even with a simple question as shown in

Figure 11a.
14https://huggingface.co/spaces/stabilityai/stable-difusion
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(a) Geographically inaccurate results from ChatGPT
(b) Geographically inaccurate results from Stable Difu-
sion

Fig. 11. Some geographically inaccurate results generated from diferent language and vision foundation models. (a) The
expected answer łWashington, North Carolinaž is not generated correctly. Moreover, there is no city in the state of Washington.
The largest city in Washington State should be Seatle. (b) The generated remote sensing images from Stable Difusion do
not have correct geographic layouts such as road networks, waterbodies, etc.

In fact, generating faithful RS images is a popular and important RS task [49, 53] in which geometric accuracy is
very important for the downstream tasks.

The irst step to addressing such a problem is to develop geographic truthfulness evaluation datasets for
various LLMs based on their generated results formats. For example, we can construct an adversarially-designed
geographic question answering dataset to evaluate the geographic truthfulness of various large language models.
In the case of image editing and generation models such as stable difusion, a collection of prompt-geospatial
image pairs could be gathered to evaluate the geographic accuracy of the generated content.

5.2 Geographic Bias

It is well known that foundation models have the potential to amplify existing societal inequalities and biases
present in the data [14, 180, 215]. A key consideration for GeoAI in particular is geographic bias [38, 111, 133, 134],
which is often overlooked by AI research. For example, Liu et al. [111] showed that all current geoparsers are
highly geographically biased towards data-rich regions. The same issue can be observed in current LLMs. Faisal
et al. [38] investigated the geographic and geopolitical bias presented in pre-training language models (PLMs).
They show that the knowledge learned by PLMs is unequally shared across languages and countries and many
PLMs exhibit so-called geopolitical favoritism which is deined as an over-ampliication of certain country’s
knowledge in the learned representations (e.g., countries with higher GDP, geopolitical stability, military strength,
etc). Figure 12 shows two examples in which both ChatGPT and GPT-4 generate inaccurate results due to
the geographic bias inherited in these models. Compared with łSan Jose, California, USAž, łSan Jose, Batangas,
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Philippinesž15 is a less popular place name in many text corpus. Similarly, compared with łWashington State,
USAž and łWashington, D.C., USAž, łWashington, New Yorkž16 is also a less popular place name. That is why
both ChatGPT and GPT-4 interpret those place names incorrectly. Compared to task-speciic models, FMs sufer
more from geographic bias since: 1) the training data is collected in large-scale which is likely to be dominated
by overrepresented communities or regions; 2) the huge number of learnable parameters and complex model
structures make model interpretation and debiasing much more diicult; 3) the geographic bias of the FMs can
be easily inherited by all the adapted models downstream [14], and thus bring much more harm to the society.
This indicates a pressing need for designing proper (geographic) debiasing frameworks.

To solve the above-mentioned geographic bias problem, the key is to understand the causes of geographic bias
and design bespoke solutions. Liu et al. [111] classiied geographic bias into four categories: 1) representation
bias: whether the distribution of training/testing data is geographically biased; 2) aggregation bias: whether the
discretization of the space can lead to diferent prediction results, thus diferent conclusions17; 3) algorithmic

bias: whether the used model will amplify or bring additional geographic bias; 4) evaluation bias: whether the
evaluation metric can relect fairness across geographic space.
The issue of representation bias concerning geography is widely acknowledged. Numerous commonly used

labeled geospatial datasets exhibit geographic data imbalance, including the species ine-grained recognition
datasets (e.g., BirdSnap [13], iNatlist 2018 [27, 116, 131], iNatlist 2021 [199], etc.), satellite image classiication and
object segmentation datasets (e.g., BigEarthNet [176], SpaceNet [181], xView [96], Agriculture-Vision [25], etc.),
and geoparsing datasets (e.g., WikTOK [46], GeoCorporal [183], etc.). In addition, many general-purpose corpora
such as Wikipedia, and the DBpedia knowledge graph have also been found to be geographically biased [72]. To
solve this issue, except for collecting more data in the data sparse area, we can also leverage the massive amount
of unlabelled geospatial datasets (which are usually less geographically imbalanced) to perform geographic
self-supervised pre-training [128] to make foundation models become more robust to the geographic bias in the
labeled training datasets.
The issue of aggregation bias is mainly caused by the common practice of performing spatial partition/dis-

cretization before AI model training [177, 203, 223]. One possible way to avoid this is to treat the geographic
space as a continuous space and learn a location-aware neural network as [90, 121, 125, 224] did.

One example of the algorithm bias is the utilization of population bias for geoparsing [95] ś the model tends
to favor ranking places with larger populations more prominently. This heuristic might negatively impact the
model performance on geoparsing datasets containing many less-used place names such as Ju2016 [77]. Since
foundation models are expected to provide a generalized solution for various tasks and datasets, adding such
algorithm bias may beneit some tasks but hurt others. This reminds us to systematically check the possible
algorithm bias during foundation model design and training.

The evaluation bias is a crucial concern often overlooked in the assessment process. Many geospatial datasets
(e.g., iNatlist 2018) have much less testing data on underdeveloping regions. Consequently, even if the model’s
performance is subpar in these regions, it may not substantially afect the overall evaluation of the model’s
performance on such a dataset. A comprehensive framework is needed to solve such bias which includes a
set of geographic bias metrics and evaluation datasets that can be used to quantify such bias. In fact, many
language foundation models undergo bias evaluation in terms of gender, religion, race/color, sexual orientation,
age, profession, and socioeconomic status prior to their release [143, 180, 215]. Many bias evaluation datasets are
constructed for this purpose such as CrowS-Pairs [139], WinoGender [168], and StereoSet [138]. However, as

15https://en.wikipedia.org/wiki/San_Jose,_Batangas
16https://en.wikipedia.org/wiki/Washington,_New_York
17The well-known Modiiable Areal Unit Problem (MAUP) [30, 214] tells us that how we partition the space and the spatial granularity of

the partition cells in model training and/or evaluation will signiicantly afect the model prediction results which might lead to diferent

conclusions. This is further validated by Kulkarni et al [95].
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(a) Inaccurate results generated by ChatGPT due to geographic
bias

(b) Inaccurate results generated by GPT-4 due to geographic
bias

Fig. 12. Some inaccurate results generated from diferent ChatGPT and GPT-4 due to geographic bias. (a) San Jose, California,
USA is a more popular place name compared with San Jose, Batangas. So ChatGPT interprets the name łSan Josež incorrectly
and leads to a wrong answer. (b) Washington State, USA and Washington, D.C., USA are two popular places with name
łWashingtonž. The correct answer łWashington, New Yorkž is less popular which leads to an inaccurate answer.

far as we know, there is no such work on quantifying geographic bias in foundation models and this will be an
exciting future research direction.

5.3 Temporal Bias

Similar to geographic bias, FMs also sufer from temporal bias which also can be attributed to four causes:
temporal representation bias, temporal aggregation bias, algorithm bias, and evaluation bias. Among them,
temporal representation bias is understandable to be the main driver of temporal bias since there is much more
training data available for current geographic entities than for historical ones. Temporal bias can also lead to
inaccurate results. Two examples are shown in Figure 13. In both cases, the names of historical places are used for
other places nearby. GPT-4 fails to answer both questions due to its heavy reliance on pre-training data which
are biased towards current geographic knowledge. Temporal bias and geographic bias are critical challenges that
need to be solved for the development of GeoAI FMs.

One concrete step is to develop an evaluation framework and a dataset to quantify the temporal bias presented in
various foundation models. In addressing the issue of temporal bias, one potential solution entails the development
of a temporal debiasing framework. Nevertheless, it’s worth noting that such a debiasing framework may have
adverse efects on model performance for tasks requiring the most up-to-date information. Consequently, an
alternative solution to consider is the formulation of a model ine-tuning strategy tailored to downstream tasks
that involve historical events.

5.4 Low Refreshment Rate

Another temporal-related challenge is the slow refresh rate of foundation models. The signiicant eforts, resources,
and costs required to train large-scale foundation models make it impractical to update them frequently. For
example, ChatGPT was trained on data up to September 2021. Consequently, it cannot provide answers to
questions about recent events, which is crucial in many domains such as communication, journalism, medicine,
and even AI, given the rapid pace of technological advancements. For example, chatbot applications (e.g. chatGPT)
without using external knowledge (e.g. search engines). The freshness problem can be signiicantly reduced when
Geospatial FMs are used in combination with external knowledge (e.g., maps [105], search engines [31, 41], or
knowledge graphs) so that FMs can focus more on spatial understanding and reasoning capabilities, which need
less update over time. Nevertheless, we believe that there is a pressing need for a sustainable foundation model
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(a) Inaccurate results generated by ChatGPT due to temporal
bias

(b) Inaccurate results generated by GPT-4 due to temporal
bias

Fig. 13. Some inaccurate results generated from GPT-4 due to temporal bias. (a) Flagler Beach, Florida used to be named as
Ocean City during 1913 ś 1923 while Ocean City, Florida now is used to call another place in Florida. GPT-4 fails to recognize
this and returns a wrong answer. (b) Fountain City, Indiana was named by Newport during 1834 - 1878 while now Newport is
used to call another city, Newport, Indiana in Vermillion County. GPT-4 fails to answer it correctly.

ecosystem [172] capable of achieving eicient model training and cost-efective updates in line with the latest
information. We believe this will be the next major focus in foundation model research.

5.5 Spatial Scale

Geographic information can be represented in diferent spatial scales, which means that the same geographic
phenomenon/object can have completely diferent spatial representations (points vs. polygons) across GeoAI
tasks. For example, an urban traic forecasting model must represent San Francisco (SF) as a complex polygon,
while a geoparser usually represents SF as a single point. Since FMs are developed for a diverse set of downstream
tasks, they need to be able to handle geospatial information with diferent spatial scales, and infer the right spatial
scale to use given a downstream task. Developing such a module is a critical component for an efective GeoAI
FM.
One possible way to make geospatial FMs spatial-scale-aware is leveraging the instruction tuning stage to

teach the FMs which spatial representations and spatial operations are available for diferent spatial scales and
showcase which spatial scales should be selected for a given geospatial task.

5.6 Generalizability v.s. Spatial Heterogeneity

Spatial heterogeneity refers to the phenomenon that the expectation of a random variable (or a confounding of the
process of discovery) varies across the Earth’s surface [43, 101] whereas geographic generalizability refers to the
ability of a GeoAI model to replicate or generalize the model’s prediction ability across space. An open problem
for GeoAI is how to achieve model generalizability (“replicabilityž [43]) across space while still allowing the
model to capture spatial heterogeneity. Given geospatial data with diferent spatial scales, we desire a FM that can
learn general spatial trends while still memorizing location-speciic details. Will this generalizability introduce
unavoidable intrinsic model bias in downstream GeoAI tasks? Will this memorized localized information lead to
an overly complicated prediction surface for a global prediction problem? With large-scale training data, this
problem can be ampliied and requires care.
Many spatial statistic models have been developed to capture the spatial heterogeneity while still being able

to learn the general trend such as geographic weighted regression [17] and multiscale geographic weighted
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regression [42]. However, as far as we know, all current foundation models cannot capture spatial heterogeneity,
thus leading to poor geographic generalizability. One possible solution is to take spatial heterogeneity into
account during model pre-training and/or ine-tuning. Possible methods are spatial heterogeneity-aware deep
learning framework [195] which automatically learns the spatial partitions and trains diferent deep neural
networks in diferent partitions. Another way to increase geographic generalizability is to conduct zero-shot or
few-shot learning on geographic regions with lower model performance [101]. Another promising direction is
adding location encoding [123, 125, 128, 131] as part of the foundation model input, which can help the model
adapt to diferent locations in a data-eicient way. How to develop a geographically generalizable (or so-called
spatial replicable [43]) deep neural net, e.g., language foundation models, is a promising research direction.

6 CONCLUSION

In this paper, we explore the promises and challenges for developing multimodal foundation models (FMs) for
GeoAI. The potential of FMs is demonstrated by comparing the performance of existing LLMs and visual-language
FMs as zero-shot or few-shot learners with fully supervised task-speciic SOTA models on seven tasks across
multiple geospatial subdomains such as Geospatial Semantics, Health Geography, Urban Geography, and Remote
Sensing. While in some language-only geospatial tasks, LLMs, as zero-shot or few-shot learners, can outperform
task-speciic fully-supervised models, existing FMs still underperform the task-speciic fully-supervised models
on other geospatial tasks, especially tasks involving multiple data modalities (e.g., POI-based urban function
classiication, street view image-based urban noise intensity classiication, and remote sensing image scene
classiication). We realize that the major challenge for developing a FM for GeoAI is the multimodality nature of
geospatial tasks. After discussing the unique challenges of each geospatial data modality, we propose our vision
for a novel multimodal FM for GeoAI that should be pre-trained based on the alignment among diferent data
modalities via their geospatial relations. We conclude this work by discussing some unique challenges and risks
for such a model.
At this very exciting moment of foundation model development, there are numerous interesting future

research directions for spatial data scientists and GeoAI researchers. An intriguing and distinctive avenue for
geo-foundation models involves incorporating geospatial vector data, such as points, polylines, and polygons,
as an additional data modality. Given that location serves as the linchpin for aligning diverse geospatial data
modalities, this approach will establish the groundwork for the creation of multimodal foundation models for
GeoAI, as discussed in Section 4.7. Another research avenue involves investigating methods to incorporate
spatial heterogeneity into geo-foundation model frameworks, with the aim of enhancing the resulting model’s
geographic generalizability across the globe. Moreover, another interesting question to ask is which role the
classic machine learning models (e.g., random forest) can play in the foundation model research. Classic machine
learning methods such as random forest are powerful and commonly used approaches to leverage expert-designed
features and capture highly nonlinear responses to these features. However, their structures are not very suitable
to be used as a foundation model backbone. This is because, unlike neural networks, there are no clearly deined
intermediate representation layers in random forests, which is usually needed for training FMs in an unsupervised
or self-supervised fashion ś training the model to predict part of unlabeled data from the rest of the data and then
using the pretrained intermediate representation for downstream tasks. Nevertheless, we believe that predictions
made by FMs are well suited to be added to random forest models as extra features so that the beneits of random
forest and FMs can be seamlessly combined in future GeoAI development.
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A APPENDIX

A.1 The Full Prompts Used in Various Experiment

This i s a s e t o f p l a c e name r e c o g n i t i o n prob lems
The ❵Paragraph ❵ i s a s e t o f t e x t c on t a i n i n g p l a c e s .
The goa l i s t o i n f e r which words r e p r e s e n t named

↩→ p l a c e s in t h i s paragraph , and s p l i t the
↩→ named p l a c e s with ❵;❵

−−

−−

Paragraph: Alabama S t a t e Troopers say a G r e e n v i l l e

↩→ man has d i ed o f h i s i n j u r i e s a f t e r be ing
↩→ h i t by a p ickup t r u ck on I n t e r s t a t e 65 in
↩→ Lowndes County .

Q: Which words in t h i s paragraph r e p r e s e n t named

↩→ p l a c e s ?

A: Alabama ; G r e e n v i l l e ; Lowndes

−−

. . .
−−

Paragraph: S e t t l i n g in the Xenia a r e a in 1856 , the

↩→ year a f t e r Bourbon County was o rgan i z ed in
↩→ 1855 , were John Van Syck le , Samuel
↩→ Stephenson and Cha r l e s Anderson .

Q: Which words in t h i s paragraph r e p r e s e n t named

↩→ p l a c e s ?

A: Xenia ; Bourbon

−−

−−

Paragraph: [TEXT]

Q: Which words in t h i s paragraph r e p r e s e n t named

↩→ p l a c e s ?

A:

Listing 7. The prompt used by GPT-2 and GPT-3 models for
typonym recognition on the test set of Hu2014 and Ju2016
dataset. One "Paragraph", "Q", and "A" tuple makes up one
language instruction sample. "[TEXT]" will be replaced with
the text to be annotated. We use in total 8 samples in this
prompt while only 2 are shown here to save space.

This i s a s e t o f l o c a t i o n d e s c r i p t i o n r e c o g n i t i o n prob lems
The ❵Paragraph ❵ i s a s e t o f t e x t c on t a i n i n g l o c a t i o n

↩→ d e s c r i p t i o n s .
The goa l i s t o i n f e r which words r e p r e s e n t l o c a t i o n

↩→ d e s c r i p t i o n s in t h i s paragraph , and s p l i t d i f f e r e n t
↩→ l o c a t i o n d e s c r i p t i o n s with ❵ ; ❵ .

−−

−−

Paragraph: Papa s t r and ed in home . Water r i s i n g above wa i s t .

↩→ HELP 8111 Woodlyn Rd , 77028 # hou s t on f l ood

Q: Which words in t h i s paragraph r e p r e s e n t l o c a t i o n

↩→ d e s c r i p t i o n s ?

A: 8111 Woodlyn Rd , 77028

−−

. . .
−−

Paragraph: Major f l o o d i n g a t Clay Rd & Queenston in west

↩→ Houston . Lo t s o f r e s c u e s go ing on f o r pp l t r apped .

Q: Which words in t h i s paragraph r e p r e s e n t l o c a t i o n

↩→ d e s c r i p t i o n s ?

A: Clay Rd & Queenston ; west Houston

−−

−−

Paragraph: [TEXT]

Q: Which words in t h i s paragraph r e p r e s e n t l o c a t i o n

↩→ d e s c r i p t i o n s ?

A:

Listing 8. The prompt used by GPT-2 and GPT-3 models for local
description recognition on the test set of HaveyTweet2017 dataset.
One "Paragraph", "Q", and "A" tuple makes up one language instruction
sample. "[TEXT]" will be replaced with the text to be annotated. We use
in total 11 samples in this prompt while only 2 are shown here to save
space.
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This i s a s e t o f g e o g r a ph i c a l l o c a l i z a t i o n prob lems .
The ❵Paragraph ❵ i s a s e t o f t e x t c on t a i n i n g p l a c e s .
The goa l i s t o i n f e r which words r e p r e s e n t named p l a c e s in

↩→ t h i s paragraph , and s p l i t the named p l a c e s with ❵;❵
Then , the nex t goa l i s t o l o c a l i z e each named p l a c e as

↩→ geog raph i c c o o r d i n a t e s with 5 dec ima l p l a c e p r e c i s i o n
↩→ .

−−

−−

Paragraph: Alabama S t a t e Troopers say a G r e e n v i l l e man has

↩→ d i ed o f h i s i n j u r i e s a f t e r be ing h i t by a p ickup
↩→ t r u ck on I n t e r s t a t e 65 in Lowndes County .

Q: Which words in t h i s paragraph r e p r e s e n t named p l a c e s ?

A: G r e e n v i l l e ; Alabama ; Lowndes County

Q: What i s the l o c a t i o n o f G r e e n v i l l e ?

A: 3 1 . 8 3 2 8 3 , −86 . 63270

Q: What i s the l o c a t i o n o f Alabama ?

A: 3 2 . 9 2 0 4 0 , −86 . 83519

Q: What i s the l o c a t i o n o f Lowndes County ?

A: 3 2 . 1 6 3 1 4 , −86 . 64631

−−

−−

Paragraph: San J o s e was founded in 1803 when a l l o tm en t s o f

↩→ l and were made to 45 men and two women by the Span i sh
↩→ government o f New Mexico .

Q: Which words in t h i s paragraph r e p r e s e n t named p l a c e s ?

A: San J o s e ; New Mexico

Q: What i s the l o c a t i o n o f San J o s e ?

A: 3 5 . 3 9 7 2 8 , −105 . 47501

Q: What i s the l o c a t i o n o f New Mexico ?

A: 3 4 . 6 8 9 6 5 , −106 . 05006

−−

−−

Paragraph :

↩→ the city of fairview had a population of 260 as of july 1, 2015. fairview ranks

↩→ in the lowerquartile for diversity index when compared to the other cities, towns

↩→ and census designated places (cdps) in .

Q: Which words in t h i s paragraph r e p r e s e n t named p l a c e s ?

A: Fairview

Q: What is the location of Fairview?

A: 41.85003, -87.65005

Listing 9. The prompt used by GPT-3 for geoparsing on the test set
of Ju2016 dataset. We use two samples as language instructions. The
yellow block indicate one text snippet in Ju2016 dataset and the orange
block indicates the generated answers. The generated coordinates in
the last line are treated as the geoparsing results.
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