
Health & Place 89 (2024) 103323

Available online 23 July 2024
1353-8292/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Opportunities and shortcomings of AI for spatial epidemiology and health
disparities research on aging and the life course

Hoda S. Abdel Magid a,b,*, Michael R. Desjardins c,d, Yingjie Hu e,f

a Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
b Dornsife Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
c Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
d Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, USA
e GeoAI Lab, Department of Geography, University at Buffalo, Buffalo, NY, USA
f Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, USA

A B S T R A C T

Established spatial and life course methods have helped epidemiologists and health and medical geographers study the impact of individual and area-level de-
terminants on health disparities. While these methods are effective, the emergence of Geospatial Artificial Intelligence (GeoAI) offers new opportunities to leverage
complex and multi-scalar data in spatial aging and life course research. The objective of this perspective is three-fold: (1) to review established methods in aging, life
course, and spatial epidemiology research; (2) to highlight some of the opportunities offered by GeoAI for enhancing research on health disparities across life course
and aging research; (3) to discuss the shortcomings of using GeoAI methods in aging and life course studies.

1. Introduction

Interdisciplinary fields such as life course and spatial epidemiology
have relied on a variety of traditionally established methods to under-
stand the impact of the built and natural environment on health dis-
parities among diverse populations. Spatial life course epidemiology, an
emerging area of science, seeks to investigate the life course effects of
environmental factors on individual behaviors and health outcomes at
high spatiotemporal resolution, accuracy, and precision (Jia et al., 2019;
Pearce et al., 2016). Established methods in these fields have allowed
several advances for understanding the impact of spaces and places on
health exposures and outcomes. With the increasing use of Artificial
Intelligence (AI) methods integrated with geospatial sciences, or GeoAI,
we may be able to further advance life course and spatial epidemiology
by incorporating GeoAI methods along with traditional methods to
address some of the issues faced in these interdisciplinary fields
(Janowicz et al., 2020). In this short essay, we first concisely review
established methods in spatial epidemiology and how AI, mainly GeoAI,
could enhance our understanding of health disparities across aging and
life course research. Next, we highlight how to incorporate GeoAI
methods in aging and life course studies including the many opportu-
nities and notable limitations. Finally, we provide concluding remarks
and suggest avenues for further investigation.

1.1. Established methods

Established methods in aging, life course, and spatial epidemiology
generally include long-term observational (e.g., longitudinal), birth
cohort, structural equation modeling (SEM), agent-based modeling
(ABMs), space-time ecological, and space-time regression studies.
Established spatial and life course methods have helped epidemiologists
describe and quantify the impact of the built and natural environments
on health by allowing the examination of the distribution of adverse
exposures, differential impacts of adverse exposures, and their overall
contributions to health inequities. This has been accomplished with the
methods’ three primary attributes: utility, flexibility, and interpret-
ability. First, these methods have been useful in allowing us to incor-
porate individuals’ spatial exposures from multiple environments
including individuals’ home, work, and school environments. We have
made advances in linking individual-level and area-level structural and
social determinants via administrative data sources. Second, the flexi-
bility of these methods has allowed for the incorporation of several
spatial scales (e.g., zip codes, census tracts, cities, etc.) across social
ecological health-related domains (e.g., built environment, education,
health care) to examine different health outcomes (e.g. infectious and
chronic diseases). Lastly, traditional methods have allowed spatial and
life course epidemiologists to readily interpret their findings for public
health impact and influencing policy and public health strategies.
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Notable examples include tobacco retail density and proximity with
adolescent tobacco use; historical residential segregation and present-
day cancer disparities; neighborhood-level air pollution, cardiovascu-
lar disease, cognitive outcomes among older adults(Crane et al., 2024;
Gao and Wang, 2024; Hirsch et al., 2022; Moored et al., 2022), and
COVID-19 (Holuka et al., 2020; Kephart et al., 2021; Letcher et al., 2023;
Settersten et al., 2020).

Despite the advancements and strengths of well-established spatial
life course methods, they are not designed to handle the need for high-
quality multi-scalar data for this type of longitudinal research; compu-
tational intensity of data processing, recoding, and analysis; and the
sheer volume of potential noise, complexity, and uncertainty of these
large spatiotemporal datasets (Delmelle et al., 2022; Desjardins et al.,
2023). The advent and recent growth of AI and GeoAI are particularly
salient approaches that may mitigate the analytical and computational
challenges of conducting high-quality and representative spatial life
course research.

2. Incorporating AI methods

2.1. Opportunities

There is a critical need to address these research gaps and shift our
science to leverage and generate AI methods specifically for spatial
epidemiology. AI can provide the tools to address these gaps by doing
what natural intelligence can’t – “everything all at once.” In the context of
aging research, AI methods can potentially allow us to simultaneously (1)
incorporate multilevel and life course influences operating through
multiple pathways, (2) examine and disentangle complexities of
changing spaces and places, (3) incorporate a life course approach
focusing on longitudinal studies and full life spans, (4) incorporate a-
priori assumptions while revealing unknown associations for multiple
health outcomes, and (5) keep up with the changing health data land-
scape while providing real-world and timely results.

AI methods provide new possibilities for spatial epidemiology and
health disparities research over the life course. Here, AI methods refer to
computational approaches that can complete tasks that previously
require human intelligence. More specifically, AI methods include ma-
chine learning methods, deep learning methods, and other approaches
(e.g., rule-based approaches). Machine learning methods refer to more
traditional AI models, such as support vector machine and random
forest, while deep learning methods refer to deep neural network based
AI models, such as convolutional neural network (CNN), recurrent
neural networks (RNN), and generative adversarial network (GAN).
While there is a lot of support for deep learning methods, existing
research has shown that machine learning methods perform better on
small and more structured datasets while deep learning methods
perform better on large datasets involving images and natural language
texts (Gao et al., 2019; Hu et al., 2021). GeoAI adds an additional
emphasis on geographic locations which are critical for linking diverse
datasets in health research (e.g., linking residential locations to nearby
greenspace) (Hu et al., 2019). GeoAI methods also often consider spatial
autocorrelation and spatial heterogeneity which commonly exist in
geographic data (Li et al., 2021). There are many possible applications of
GeoAI in health research (Kamel et al., 2019; VoPham et al., 2018).
Aging research specifically represents a significant starting point for
using AI in epidemiology. Aging outcomes can be affected by a wide
variety of factors, uniquely lending this type of research to the appli-
cations of AI. Below, we discuss a number of aspects that AI can
contribute to aging research.

• Extracting environmental features difficult to be captured previ-
ously. While the living environment is known to be associated with
aging outcomes, it was traditionally difficult to capture environment
features especially over long time periods. The availability of street
view images (e.g., Google Street View and Mapillary) and deep

learning models (e.g., CNN) make it possible to extract important
environmental features, such as greenness of a neighborhood space,
housing conditions, environmental hazards, and important amenities
to support urban accessibility and well-being for older adults (e.g.,
benches, sidewalks, crosswalks, parks, etc.) (Amaya et al., 2022;
Ottoni et al., 2016; Rosso et al., 2011). Street view image data are
updated periodically, and the extracted environmental features can
be stored over time to enable the examination of their long-term
effects on aging outcomes (Kang et al., 2020).

• Improving the resolution and accuracy of environmental data.
Environmental data used in previous studies may have coarse spatial
resolutions and limited accuracy, due to the data collection proced-
ure and the used instruments. For example, images collected by
satellites may have a spatial resolution that is too coarse to conduct
more precise health modeling, while data collected by air quality
sensors may be limited by the locations where these sensors can be
installed. Machine learning and deep learning models, such as
random forest and RNN, have been used to generate environmental
data with higher resolution and higher accuracy, such as PM 2.5
concentration data(Bi et al., 2022; Lin et al., 2017; Tong et al., 2019).
These finer and more accurate environmental data may help us
better understand the effects of environmental factors on aging
outcomes, such as dementia and other cognitive disorders.

• Identifying important predictors for aging outcomes and generating
hypotheses. Traditional methods often require a manual selection of
a small set of predictors to study their associations with an aging
outcome. While such an approach is effective in many cases,
manually selecting from a large set of possible predictors (e.g., 100
predictors) is time-consuming and could miss certain important
predictors. AI models, combined with recent explainable AI frame-
works (e.g., the SHapley Additive exPlanations) can automate the
selection and testing of predictors from a large set of candidates to
identify the important ones and to further support hypothesis gen-
eration. In addition, machine learning and deep learning can help
test the importance of new predictors not examined in previous
studies for health outcomes. (Lundberg and Lee, 2017; Chang et al.,
2022; Zhou et al., 2022). Furthermore, existing vital statistics and
health behavior measures are crucial variables for robust predictors
of aging (Nguyen et al., 2021; Tian et al., 2023; Wu et al., 2021).

• Providing time-series predictions based on historical data. Life
course health research can accumulate long-term data about in-
dividuals and their surrounding environments. These long-term
historical data allow us to perform time-series predictions for
future health outcomes and future environmental conditions. Deep
learning, especially RNNs and transformer models, have demon-
strated outstanding performance for time-series based prediction
tasks (Géron, 2022; Vaswani et al., 2017). Existing research has
leveraged deep learning models and personal health data collected
from wearable devices to predict health issues (Coutts et al., 2020;
Sathyanarayana et al., 2016). This direction also has potential to
enhance precision medicine, i.e., to predict potential health issues
based on personal health data and to further prescribe treatment
based on the identified issues (Denny and Collins, 2021). Other
important historical data that can enhance longitudinal analyses is
family health history, which are strongly associated with individual
health outcomes across the life course, especially among older aged
adults (Baldwin et al., 2021; Fadlon and Nielsen, 2019; Umberson
and Thomeer, 2020).

• Reconstructing historical exposures by using GeoAI to geoimpute
and create harmonized databases of placed-based and individual-
level measures of health (Delmelle et al., 2022). Since there has
been a recent shift towards more neighborhood-level life course
studies, it is critical to accurately link residential histories with
archived census-type data sources. However, census tracts did not
cover the entire United States until 1990 (for example), creating
challenges for spatially explicit life course analyses. Therefore, a
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variety of ancillary data sources are required, such as archived paper
maps that need to be georeferenced and satellite imagery from the
20th century. GeoAI approaches can be developed to georeference a
massive number of maps to facilitate historical address locators for
geocoding and classify these maps to geoimpute study populations to
habitable areas in the subsequent digital maps. Moreover, advance-
ments in AI technologies, parallel computing, and cloud-based
platforms have significantly enhanced the scalability and efficiency
of GeoAI solutions, enabling them to process massive amounts of
geospatial data in a timely manner. This scalability makes GeoAI
well-suited for applications requiring georeferencing, geocoding,
and geoimputation across large datasets.

The above five aspects, while exciting, are not exhaustive, and GeoAI
methods could contribute to many other aspects in life course spatial
epidemiology. When applied to communities in different geographic
areas (e.g., different census tracts) or individuals in different de-
mographic groups, GeoAI methods can further contribute to advancing
health disparities research. When individual-level health data are
involved, additional caution and research steps should be taken to
protect privacy, such as carefully following Institutional Review Board
(IRB) guidelines or using proper privacy protection algorithms (Wang
et al., 2022). In addition, new AI methods and models are being devel-
oped constantly, such as the recent large language models like ChatGPT.
There are many opportunities to explore new integrations between AI
and health research in the coming years (Lin et al., 2017; Tong et al.,
2019). It is important to acknowledge that AI and traditional statistics
are not mutually exclusive but rather complementary. AI can handle
large, complex datasets and uncover patterns that traditional methods
might miss, while traditional statistics provide robust, interpretable
models. Hybrid approaches can be utilized, where AI is used for initial
data processing and pattern recognition, followed by traditional statis-
tical methods for inference and validation. Furthermore, since
placed-based and environmental predictors contain bias and uncertainty
(Delmelle et al., 2022), AI approaches should incorporate individual
health-based measures such as EMR, family health and residential his-
tories, and vital statistics and behavioral measures, as discussed above.

3. Shortcomings

GeoAI’s promising opportunities come with a variety of notable
limitations. First, AI methods, especially deep learning models, require a
large set of representative and labeled datasets for model training. The
phrase “garbage in and garbage out” is well known in AI research
(Amaya et al., 2022). However, it is often time-consuming and
labor-intensive to obtain high-quality labeled training data, especially
for life course epidemiology which requires “living laboratory” datasets
over populations’ full life spans. Meanwhile, this difficulty of obtaining
labeled training data may also be alleviated in life course and aging
research where we can leverage historical data, i.e., historical health
outcomes can be directly used as labeled data for training predictive
models. Second, applying modern AI methods to examine health and
place also faces challenges arising from model generalizability and
spatial heterogeneity. An AI model trained on the geographic data from
one spatial area may not necessarily be generalized to another spatial
area, though this is an issue with spatial models in general (Hu et al.,
2019). Third, engaging AI without active considerations of foundational
theories in epidemiology and spatial sciences may lead to a deviation of
the fundamental objective of spatial sciences – to understand ‘the prin-
ciples by which the human and environmental worlds operate.’ (Hu
et al., 2024) This is manifested in many ways including focusing on
prediction and data driven exercises and repackaging established
traditional methods as GeoAI while only adding spatial variables.
Continuing to use AI for prediction in health research perpetuates
limited generalizability and slows down discovery of innovative GeoAI
approaches to answer important research questions. Fourth, While AI

can potentially identify predictors of aging outcomes, the generation of
hypotheses remains the domain of human researchers. AI can indeed
support hypothesis generation by offering insights that human re-
searchers can further explore and validate. Finally, misuses of geospatial
data in AI research pose significant threats to ethical scientific inquiry to
address public health issues (Kamel et al., 2022). One notable issue is
privacy, especially geoprivacy, in which personal information and sen-
sitive locations are accidently revealed when AI models are not properly
used or designed. Recent research has made progress in protecting in-
dividual privacy in AI and health research (Rao et al., 2023; Wang and
Kwan, 2020). Privacy and other ethical issues will need our further
attention when we use AI and GeoAI methods.

Despite these limitations, there is also a fundamental risk in staying
within our comfortable zone by using only the same establishedmethods
over time for health research. Failing to explore novel AI methods may
miss good opportunities to advance spatial epidemiology and can be in
of itself a danger that will widen the time gap between science and
technology even further beyond the 17-year odyssey (Green et al.,
2009). We also encourage researchers to utilize AI techniques to
enhance established techniques in spatial optimization, geostatistical
prediction, space-time regression, etc. Finally, we acknowledge that the
gap between research and improved policies strongly depends on
stakeholders and decision-makers that may have differing agendas,
limited resources, and lack of scientific expertise. Therefore, researchers
in GeoAI should carefully consider approaches to improve communi-
cation and policy implications to inform those responsible for imple-
menting evidence-based change.

4. Conclusion

GeoAI offers new opportunities for advancing transdisciplinary
spatial and life course epidemiologic research. By focusing on aging and
life course epidemiology, this short essay discusses five aspects where AI
(especially GeoAI) can make effective contributions: extracting envi-
ronmental features, improving the resolution and accuracy of environ-
mental data, identifying important health predictors, providing time-
series based predictions, and reconstructing historical exposures.
These AI-enhanced aspects may help increase our scientific under-
standing of the complex, bidirectional, and interdependent relationships
of the environment and population health during our lifetime. While not
without shortcomings, incorporating AI methods into our established
scientific frameworks may strengthen our science, advance health eq-
uity, and provide significant insights for long-term health.
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Géron, A., 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, Inc.

Green, L.W., Ottoson, J.M., Garcia, C., Hiatt, R.A., 2009. Diffusion theory and knowledge
dissemination, utilization, and integration in public health. Annu. Rev. Publ. Health
30, 151–174.

Hirsch, J.A., Michael, Y.L., Moore, K.A., et al., 2022. Longitudinal neighbourhood
determinants with cognitive health and dementia disparities: protocol of the Multi-
Ethnic Study of Atherosclerosis Neighborhoods and Aging prospective cohort study.
BMJ Open 12 (11), e066971.

Holuka, C., Merz, M.P., Fernandes, S.B., et al., 2020. The COVID-19 pandemic: does our
early life environment, life trajectory and socioeconomic status determine disease
susceptibility and severity? Int. J. Mol. Sci. 21 (14), 5094.

Hu, Y., Gao, S., Lunga, D., Li, W., Newsam, S., Bhaduri, B., 2019. GeoAI at ACM
SIGSPATIAL: progress, challenges, and future directions. Sigspatial Special 11 (2),
5–15.

Hu, Y., Quigley, B.M., Taylor, D., 2021. Human mobility data and machine learning
reveal geographic differences in alcohol sales and alcohol outlet visits across US
states during COVID-19. PLoS One 16 (12), e0255757.

Hu, Y., Goodchild, M., Zhu, A.-X., et al., 2024. A five-year milestone: reflections on
advances and limitations in GeoAI research. Spatial Sci. 1–14.

Janowicz, K., Gao, S., McKenzie, G., Hu, Y., Bhaduri, B., 2020. GeoAI: Spatially Explicit
Artificial Intelligence Techniques for Geographic Knowledge Discovery and beyond.
Taylor & Francis, pp. 625–636.

Jia, P., Lakerveld, J., Wu, J., et al., 2019. Top 10 research priorities in spatial lifecourse
epidemiology. Environ. Health Perspect. 127 (7), 074501.

Kamel Boulos, M.N., Peng, G., VoPham, T., 2019. An overview of GeoAI applications in
health and healthcare. Int. J. Health Geogr. 18 (1), 7.

Kamel Boulos, M.N., Kwan, M.-P., El Emam, K., Chung, A.L.-L., Gao, S., Richardson, D.B.,
2022. Reconciling public health common good and individual privacy: new methods
and issues in geoprivacy. Int. J. Health Geogr. 21 (1), 1.

Kang, Y., Zhang, F., Gao, S., Lin, H., Liu, Y., 2020. A review of urban physical
environment sensing using street view imagery in public health studies. Spatial Sci.
26 (3), 261–275.
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