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Abstract 

Background: Obesity is a serious public health problem. Existing research has shown a strong association between 
obesity and an individual’s diet and physical activity. If we extend such an association to the neighborhood level, 
information about the diet and physical activity of the residents of a neighborhood may improve the estimate of 
neighborhood-level obesity prevalence and help identify the neighborhoods that are more likely to suffer from obe-
sity. However, it is challenging to measure neighborhood-level diet and physical activity through surveys and inter-
views, especially for a large geographic area.

Methods: We propose a method for deriving neighborhood-level diet and physical activity measurements from 
anonymized mobile phone location data, and examine the extent to which the derived measurements can enhance 
obesity estimation, in addition to the socioeconomic and demographic variables typically used in the literature. We 
conduct case studies in three different U.S. cities, which are New York City, Los Angeles, and Buffalo, using anonymized 
mobile phone location data from the company SafeGraph. We employ five different statistical and machine learning 
models to test the potential enhancement brought by the derived measurements for obesity estimation.

Results: We find that it is feasible to derive neighborhood-level diet and physical activity measurements from 
anonymized mobile phone location data. The derived measurements provide only a small enhancement for obesity 
estimation, compared with using a comprehensive set of socioeconomic and demographic variables. However, using 
these derived measurements alone can achieve a moderate accuracy for obesity estimation, and they may provide a 
stronger enhancement when comprehensive socioeconomic and demographic data are not available (e.g., in some 
developing countries). From a methodological perspective, spatially explicit models overall perform better than non-
spatial models for neighborhood-level obesity estimation.

Conclusions: Our proposed method can be used for deriving neighborhood-level diet and physical activity meas-
urements from anonymized mobile phone data. The derived measurements can enhance obesity estimation, and can 
be especially useful when comprehensive socioeconomic and demographic data are not available. In addition, these 
derived measurements can be used to study obesity-related health behaviors, such as visit frequency of neighbor-
hood residents to fast-food restaurants, and to identify primary places contributing to obesity-related issues.
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Background
Obesity is a serious public health problem. In the 
United States, nearly 42.4% of the adult population are 
considered overweight or obese [1], and the estimated 
annual medical cost of obesity ranges from $147 bil-
lion to nearly $210 billion per year [2, 3]. Obesity can 
increase the risk of various health issues, including 
heart disease, type 2 diabetes, sleep apnea, depressive 
disorder, and others [4, 5]. Given its substantial costs 
to individuals and the society, reducing obesity is a 
critical task for public health policymakers and related 
organizations.

Existing research has shown a strong association 
between obesity and an individual’s diet and physical 
activity [6–9]. If we extend such an association to the 
neighborhood level, information about the diet and 
physical activity of the residents of a neighborhood 
may improve the estimate of neighborhood-level obe-
sity prevalence and help identify the neighborhoods 
that are more likely to suffer from high prevalence of 
obesity. This has important meaning as neighborhood 
environments, both physical and social environments, 
are known to affect the health behaviors of neighbor-
hood residents [10–14]. Accordingly, the ability to 
more accurately identify neighborhoods with high obe-
sity prevalence allows intervention and prevention pro-
grams to focus on these neighborhoods and mitigate 
their obesity issues by, for example, improving their 
built environment and enhancing social support in 
these communities [15, 16].

Researchers have examined a variety of neighbor-
hood-level factors and their associations with obesity-
related outcomes [17, 18]. These factors include race/
ethnicity composition, percentages of different age 
groups, percentages of different educational levels, 
median income, unemployment rate, poverty level, 
median home value, median home age (i.e., median 
year since built), and population density [19–21]. 
Neighborhood-level variables representing diet and 
physical activity of the neighborhood residents are 
much rarer, and studies that examined related factors 
typically focused on availability or access, such as the 
availability or proximity to fast food outlets and greens-
pace in or near neighborhoods [22–26]. The results of 
these studies, however, are mixed: some studies found 
significant associations between obesity and these 
availability based variables, whereas some other studies 
reported primarily null associations [14, 23, 25, 27, 28]. 
The fact that a fast-food restaurant or a greenspace is 

available in or near a neighborhood does not necessar-
ily mean that the neighborhood residents will consume 
fast food in such a restaurant or engage in physical 
activity in that greenspace.

One possible reason that variables measuring the 
health behaviors of neighborhood residents on diet and 
physical activity have been rarely used is that it is chal-
lenging to collect data. Compared with variables repre-
senting availability or access which can be calculated 
based on the locations of places (e.g., fast-food restau-
rants) and neighborhood boundaries, data about the 
health behaviors of residents typically need to be col-
lected via surveys and interviews. Conducting these 
surveys and interviews, however, requires considerable 
financial and labor resources. Even when those required 
resources are available, completing such surveys can 
take a long time. These resource and time requirements 
can become more difficult to manage when we need to 
collect health behavior data related to diet and physical 
activity for large geographic areas, such as the three dif-
ferent cities studied in this work.

Since the COVID-19 pandemic, there has been an 
increasing use of anonymized mobile phone location 
data in health studies [29, 30]. This type of data pro-
vides new opportunities for deriving measurements on 
the health behaviors of neighborhood residents related 
to diet and physical activity. These mobile phone loca-
tion data are mainly collected from applications installed 
on smartphones, such as navigation, weather, and social 
media applications [31–33]. Data companies, such as 
SafeGraph (whose data are used in this study), collected 
data from many mobile phone applications and then 
aggregated data to geographic areas (e.g., census tracts) 
and places visited by people, which are typically referred 
to as points-of-interest (POIs) in the literature [34, 35]. 
The data are anonymized and are not associated with any 
personal identifying information. In addition, because 
the data were aggregated to geographic areas and POIs, 
they do not contain any individual-level movement tra-
jectories. While having these limitations for good pri-
vacy protection reasons, these anonymized mobile phone 
location data do provide valuable information about how 
people living in a geographic area visit surrounding POIs. 
Among these POIs, there are places linked to diet and 
physical activity, such as fast-food restaurants, fitness 
centers, and nature parks.

The objective of this study is twofold. First, we pro-
pose a method for deriving neighborhood-level meas-
urements on diet and physical activity of neighborhood 
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residents from anonymized mobile phone location data 
and related POIs. Second, we investigate the research 
question: To what extent can the diet and physical activ-
ity measurements derived from anonymized mobile phone 
location data improve obesity estimation at the neighbor-
hood level? We conduct case studies in three different US 
cities and employ five different statistical and machine 
learning models to examine and understand the potential 
enhancement brought by the derived diet and physical 
activity measurements for obesity estimation.

This study addresses one important objective of the 
thematic issue “New horizons in geospatial lifestyle and 
food environment research”, i.e., using smart technolo-
gies and big geospatial data to obtain accurate and pre-
cise measurements related to overweight, obesity (OO) 
and type-2 diabetes (T2D) [36]. Instead of relying on 
the proximity of a neighborhood to fast-food restau-
rants, fitness centers, or nature parks, we derive meas-
urements on how neighborhood residents actually visit 
these places based on anonymized mobile phone loca-
tion data. This approach avoids making the assumption 
that people tend to visit the fast-food restaurants clos-
est to their neighborhoods, and enables us to use more 
precise and accurate measurements to study OO and 
T2D. The remainder of this paper is organized as follows. 
“Methods” section describes the study area and data, and 
presents our designed analyses and method for deriving 
neighborhood-level diet and physical activity measure-
ments. “Results” section presents the analysis results and 
“Discussion” section discusses the results and implica-
tions. Finally, “Conclusions” section concludes this work.

Methods
Study area and data
Study area
We selected three US cities for this study, which are 
New York City (NYC), Los Angeles (LA), and Buffalo. 
We chose these three cities because NYC and LA are 
two megacities located on the east coast and west coast 
respectively, while Buffalo is a medium-sized city that 
the authors are familiar with and it is located close to the 
Midwest region of the US. Although other cities could 
also be selected for this study, these three cities allow a 
comparison of the results from cities located in different 
geographic regions and of different sizes. The time period 
of our study is the year 2018, and the geographic unit 
of analysis is census tract which is roughly comparable 
to neighborhoods. We choose this time period and this 
geographic unit largely because of data availability: the 
obesity data used in this study is from the PLACES pro-
ject of the Centers for Disease Control and Prevention 
(CDC), whose data is in the year 2018 and the smallest 
geographic unit is census tract [37]. Figure  1 shows the 

city boundaries of NYC, LA, and Buffalo and their census 
tracts. The geographical boundaries of these three cities 
were obtained from the 2018 TIGER/line Shapefile prod-
ucts provided by the US Census Bureau.

Obesity data
The outcome variable that we focus on in this study is 
neighborhood-level obesity prevalence. We obtained 
the census tract-level obesity prevalence among adults 
(age ≥18) data from the CDC PLACES Project, and 
the obesity prevalence is recorded in percentages (e.g., 
a value of 26.6 indicates the obesity prevalence for that 
census tract is 26.6%). Among all the census tracts in 
the three studied cities, 227 census tracts (7.0%) were 
excluded from this study, because they either have fewer 
than 50 residents or their obesity prevalence is missing 
from the CDC data. The total number of census tracts 
included for analysis for NYC, LA, and Buffalo are 1995, 
947, and 77, respectively. Note that there are only 77 cen-
sus tracts in Buffalo, and this small number of geographic 
units affects our analysis results and training of machine 
learning models later. We will also compute global 
Moran’s I index for obesity prevalence. Global Moran’s I 
is a common metric for quantifying spatial autocorrela-
tion in data, and it is calculated based on both locations 
and values (e.g., obesity prevalence) at these locations. 
The value of global Moran’s I ranges between [−  1, 1], 
with −  1 indicating a strong negative spatial autocorre-
lation (i.e., different values tend to cluster together) and 
1 indicating a strong positive spatial autocorrelation (i.e., 
similar values tend to cluster together).

Anonymized mobile phone location data
The anonymized mobile phone location data used in this 
study are provided by the company SafeGraph, which 
opened their data for the research community for free. 
The data of SafeGraph were collected from over 45 mil-
lion smart mobile devices (mostly smartphones) and 
roughly 11.8 million POIs covering the entire United 
States [38, 39]. As noted previously, the data were aggre-
gated to census tracts and POIs, and we only have POI 
visits without individual-level GPS trajectories. Using a 
sample of data in NYC, we plot out the visits from census 
tracts to fast-food restaurants in a week of 2018 (Fig. 2). 
In this figure, each curve links a census tract (whose cen-
troid is represented by a yellow dot) and a fast-food res-
taurant (represented by a red dot), which indicates some 
residents from the census tract visited that fast-food res-
taurant during that week.

Neighborhood‑level socioeconomic and demographic data
In this study, we aim to understand to what extent 
the neighborhood-level diet and physical activity 
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Fig. 1 The city boundaries of NYC, LA, and Buffalo and their census tracts: a NYC; b LA; c Buffalo

Fig. 2 A map visualization of the visits from census tracts to fast-food restaurants in a week of 2018 in NYC
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measurements derived from anonymized mobile phone 
location data can enhance obesity estimation, in addition 
to the neighborhood-level socioeconomic and demo-
graphic variables typically used in existing studies. We 
select variables in six categories: (1) race and ethnicity, 
(2) gender, marital status, and age, (3) education, (4) eco-
nomic status, (5) housing condition, and (6) urbanicity. 
These variables are selected based on the existing litera-
ture. In particular, variables in categories (1), (2), (3), (4), 
(6) were used in previous studies, such as Ball et  al. in 
2002 [40], Black et al. in 2008 [17], Yan et al. in 2015 [24], 
and Puciato et al. in 2020 [41], and variables in category 
(5) were used in previous studies, such as Norman et al. 
in 2010 [42] and Fitzpatrick et  al. in 2018 [20]. Table  1 
presents the detailed notations and descriptions of these 

variables. We obtained data for these variables from the 
American Community Survey (ACS) of the US Census 
Bureau. Note that there is a potential limitation in the 
socioeconomic and demographic data from the Census 
and the obesity prevalence data from CDC. The estimates 
of these two datasets are interval estimates, and the qual-
ity of the data varies spatially as pointed out in the litera-
ture [43]. Nevertheless, these datasets are the best we can 
have for this study, and we acknowledge their limitations.

Overview of study design
The objective of this study is to derive neighborhood-
level diet and physical activity measurements from 
anonymized mobile phone location data and investigate 
to what extent the derived measurements can enhance 

Table 1 Notations and descriptions of the six categories of neighborhood-level variables

We do not include % age < 18 in category (2), because the obesity data from CDC do not include population below 18 years old

Variable notations Descriptions

(1) Race and ethnicity

 % White Percentage of population in White

 % Black Percentage of population in Black or African American

 % Ame Indi and AK Native Percentage of population in American Indian and Alaska Native

 % Asian Percentage of population in Asian

 % Nati Hawa and Paci Island Percentage of population in Native Hawaiian and Other Pacific Islander

 % Hispanic or Latino Percentage of Hispanic or Latino population

(2) Gender, marital status, and age

 % male Percentage of male population

 % married Percentage of married population age 15 or over

 % age 18–29 Percentage of population between age 18 to 29

 % age 30–39 Percentage of population between age 30 to 39

 % age 40–49 Percentage of population between age 40 to 49

 % age 50–59 Percentage of population between age 50 to 59

 % age ≥60 Percentage of population equal and over age 60

(3) Education

 % < highschool Percentage of population age 25 or over without high school completion

 % ≥highschool < university Percentage of population age 25 or over with high school completion and without bachelor degree

 %≥ university Percentage of population age 25 or over with bachelor degree or higher degree

(4) Economic status

 Med income Median household income

 % unemployment Percentage of unemployed labor force population age 16 or over

 % below poverty line Percentage of population below poverty line

 % food stamp/SNAP Percentage of households received food stamp/supplemental nutrition assistance program (SNAP) 
in the past 12 months

(5) Housing condition

 Median value units built Median value of the house units built (in dollars)

 Median year units built Median year of the house units built

 % renter-occupied housing units Percentage of renter-occupied housing units

(6) Urbanicity

 Population density Population density (people per square kilometer)
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obesity estimation. Figure 3 provides an overview of our 
study design, using NYC as an example. We first derive 
neighborhood-level diet and physical activity measure-
ments from anonymized mobile phone location data 
based on the visits of neighborhood residents to different 
types of POIs. In particular, we focus on three types of 
POIs, which are fast-food restaurants, fitness and sports 
centers, and nature parks. We will explain why we choose 
to focus on these three types of POIs in the next section. 
With the derived measurements, we conduct two sets of 
analyses to examine their ability to enhance obesity esti-
mation at the neighborhood level. In the first set of analy-
ses (baseline analyses), we estimate obesity prevalence at 
the neighborhood level using the six categories of socio-
economic and demographic variables (see Table 1); in the 
second set of analyses (test analyses), we add the derived 
diet and physical activity measurements to the socioeco-
nomic and demographic variables to examine the extent 
to which these derived measurements can help improve 
obesity estimation. We use five different statistical and 
machine learning models to perform these two sets of 
analyses.

Deriving neighborhood‑level diet and physical activity 
measurements
The neighborhood-level diet and physical activity meas-
urements are derived in the following three steps. First, 

we identify a number of POI types that are shown to be 
linked to diet and physical activity based on the litera-
ture. In particular, three types of POIs are identified in 
this study, which are fast-food restaurants [26, 44], fitness 
and sports centers [45, 46], and nature parks [47, 48]. It is 
worth noting that these three types of POIs only capture 
some aspects of the everyday life of people related to diet 
and physical activity, and they certainly do not represent 
all the places where people can do exercise or purchase 
healthy food. For example, people can purchase healthy 
food also from grocery stores and full-service restau-
rants. However, these places can serve unhealthy food 
as well [36]. Meanwhile, the anonymized mobile phone 
location data do not contain information about the spe-
cific products that a person purchased at a place. Thus, 
we do not know, e.g., whether a grocery store or full-ser-
vice restaurant visit also involves healthy food purchase 
or not. By contrast, visits to fast-food restaurants, fitness 
and sports centers, and nature parks have relatively clear 
associations with corresponding diet and physical activ-
ity. Thus, we eventually chose to focus on these three 
types of POIs.

Second, we utilize the anonymized mobile phone loca-
tion data to derive total number of visitors from the 
studied census tracts to these three types of POIs. The 
original SafeGraph data are organized focusing on POIs 
by providing information about the number of people 

Fig. 3 An overview of the study design using NYC as an example
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who have visited these POIs during a time period and the 
home census tracts of the POI visitors (inferred based 
on the nighttime locations of the mobile devices in the 
previous six weeks). Here, we reverse the focus of the 
data from POIs to census tracts and compute the total 
number of visitors from each census tract who visited a 
type of POIs. In this way, we can measure how the resi-
dents of neighborhoods (approximated by census tracts) 
visit different POIs. Figure 4 illustrates this process. It is 
worth noting that the residents of a neighborhood can 
visit POIs outside of their neighborhood and also out-
side of the studied city boundary (especially in the case 
of LA whose boundary has a narrow strip connecting to 
the southern parts of the city). When deriving POI visit 
information for a neighborhood, we included all POIs 
that were visited by the neighborhood residents regard-
less of whether the POIs are within the neighborhood or 
city boundary. The total numbers of POIs used to derive 
neighborhood-level visit information are provided in 
the Additional file 1: Table S1. There is a privacy related 
limitation in the data: SafeGraph recorded the number 
of visitors from a census tract to a POI as 4 if the actual 
number of visitors equals or is smaller than 4 for pri-
vacy protection. Thus, a census tract that has 4 visitors 
to a POI recorded in the data may in fact have 2, 3 or 4 
visitors (if a census tract has only 1 visitor to a POI, this 
visit is removed by SafeGraph for privacy protection). 
To address this data limitation, we generate randomized 
numbers from 2 to 4 following a power-law distribution 
typically observed in human travel behaviors [49, 50].

Third, we divide the total number of visitors aggregated 
to census tracts by the total number of devices residing 
in the same census tracts to obtain place visit frequency. 
Eq. (1) summarizes this computing process:

(1)

Place visit frequency for census tractj =

∑n
i=1 Vij

Sj

where  vij is the number of visitors from census  tractj to 
a  POIi related to diet and physical activity; n is the total 
number of POIs in one type of places (e.g., fast-food 
restaurants) in the study area; Sj is the total number of 
mobile devices in census  tractj. We apply Eq. (1) to each 
census tract and to each of the three types of POIs. As a 
result, we obtain three types of diet and physical activity 
measurements.

Statistical and machine learning models
We use five different statistical and machine learning 
models to examine the potential improvement brought by 
the derived measurements for obesity estimation. These 
models are: ordinary least squares (OLS), geographically 
weighted regression (GWR), random forest (RF), deep 
neural network (DNN), and geographical random forests 
(GRF). The former two are statistical models while the 
latter three are machine learning or artificial intelligence 
(AI) models. We use machine learning models instead of 
only statistical models alone because there has been an 
increasing interest in using AI models for health studies 
[51–53]. AI models are often based on mechanisms quite 
different from statistical models, such as neurons and 
decision trees. Thus, using both statistical and machine 
learning models allows us to understand how the derived 
diet and physical activity measurements can function in 
models with different internal mechanisms. Among the 
five models, GWR and GRF are spatially explicit models 
that accommodate spatial heterogeneity typically existing 
in geographic data [54, 55], while OLS, RF and DNN are 
non-spatial models. In the following, we briefly describe 
each model.

Ordinary least squares
OLS is a statistical model of analysis that estimates the 
relationship between multiple input independent vari-
ables and the target outcome variable. The OLS model 
used in this work is in the form of Eq. (2):

Fig. 4 An illustration of deriving neighborhood-level diet and physical activity measurements by reversing the data focus from POIs to census 
tracts. The POIs visited by the residents of a neighborhood can be outside of the neighborhood or even outside of the city boundary
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where θ r, θ a, θ s, θ e, θ h , θ u are the coefficients for the 
six categories of socioeconomic and demographic vari-
ables respectively, and θ v are the coefficients for the three 
types of diet and physical activity measurements based 
on place visits. θ vv is within a pair of parentheses in the 
equation because diet and physical activity measure-
ments will not be included in the baseline analyses. Note 
that each of θ r, θ a, θ s, θ e, θ h , θ u, θ v contains multiple 
coefficients for the variables in that category (e.g., θ v con-
tains three regression coefficients for the three types of 
diet and physical activity measurements).

Geographically weighted regression
GWR has been frequently used in geographic data anal-
ysis to model spatially varying relationships between 
variables [56, 57]. GWR fits a local OLS model for each 
geographic unit (i.e., census tract in this study) based on 
weighted data from nearby geographic units, and there-
fore can be considered as an ensemble of local models 
[58]. Specifically, the GWR model used in this work is in 
the form of Eq. (3):

where ( x i, y i) is the spatial coordinates of the geographic 
unit i. The coefficients have the same meaning as used in 
OLS, but will vary across different geographic locations 
capturing the potentially heterogenous local processes. 
We configured the GWR model following the recom-
mendations of the GWR developers [59]: we employed 
the bisquare kernel to specify the weights of the data 
from nearby geographic units based on their distances to 
the current location, and we applied the golden section 
search approach to identify the optimal bandwidth which 
determines the number of nearby geographic units to be 
included for fitting the local model.

Random forest
Random forest is a bagging-based machine learning 
model that applies an ensemble learning technique by 
constructing a group of decision trees [60]. Compared 
with OLS that assumes a linear relation, RF can model 
nonlinear relations between input features and the target 
variable. Given this ability, RF has been used in a variety 
of previous studies in which the input features and the 
target variable likely have a nonlinear relation [61, 62].

(2)Obesity prevalence = θ0 + θrr + θaa+ θss + θee + θhh+θuu(+θvv)+ ε

(3)

Obesity prevalence = θ0(xi, yi)+ θr(xi, yi)r + θa(xi, yi)a

+ θs(xi, yi)s + θe(xi, yi)e + θh
(
xi, yi

)
h

+θu
(
xi, yi

)
u
(
+θv

(
xi, yi

)
v
)
+ εi

Deep neural network
DNNs and other deep learning models have shown out-
standing predictive power in recent years [63, 64]. A 
DNN is made of multiple successive layers of neurons and 
can learn a complex nonlinear relation between the input 
features and the target variables. The model architecture 
can be configured flexibly with different numbers of total 
layers and different numbers of neurons. Additional com-
ponents, such as dropout layers or batch normalization, 
could also be added depending on the application.

Geographical random forests
GRF is a disaggregation of a global RF model into mul-
tiple local RF models across different spatial locations 
[55]. The core idea of GRF is similar to GWR, in which 
a local RF model is fitted for each geographic unit. This 
means that for each location i, a local RF is trained but is 
based on only a number of nearby geographic units. Such 
a design allows the RF model to adapt to different local 
contexts.

For all the models, we implement them using Python 
and related packages: statsmodels for OLS, mgwr for 
GWR, scikit-learn for RF, tensorflow for DNN, and scikit-
learn for GRF. For machine learning models, we also per-
form hyperparameter tuning to identify the best model 
architecture. Two metrics,  R2 and root mean square error 
(RMSE), are utilized for assessing the accuracy of the five 
models for obesity estimation. For the statistical models, 
their  R2 and RMSE are directly obtained from the model 
fitting results. For the machine learning models, their  R2 
and RMSE are obtained via a tenfold cross-validation 
process. In addition, for the two statistical models, OLS 
and GWR, we also report their adjusted  R2 and Akaike 
information criterion (AIC) which take into account the 
increased model complexity when additional variables, 
i.e., the derived diet and physical activity measurements, 
are included. Given that GWR is an ensemble of local 
linear models, its AIC is calculated based on the log-
likelihood of the full model and the effective number of 
parameters derived based on the selected bandwidth. 
We used the mgwr package from the GWR developers to 
calculate its AIC values, and more details can be seen in 
their papers [59, 65].

Results
Neighborhood‑level obesity prevalence and derived diet 
and physical activity measurements
The obesity prevalence at the census tract level in NYC, 
LA, and Buffalo in the year of 2018 from the PLACES 
project are visualized as the first row (the top row) in 
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Fig.  5. The three diet and physical activity measure-
ments derived from the anonymized mobile phone 
location data are visualized in the second (fast-food 
restaurant visit frequency), third (fitness and sports 
center visit frequency), and fourth row (nature park 
visit frequency) in Fig. 5.

As can be seen, census tracts with high obesity preva-
lence in NYC tend to be clustered in the northern area 
(Bronx), the south of Queens, Brooklyn, and the north 
of Staten Island; in LA, high obesity prevalence tend 
to be clustered in the northern and southern areas of 
the city; and in Buffalo, high obesity prevalence tend to 
be clustered on the east side of the city, and we know 
that this region consists of mostly low-income neigh-
borhoods. Given the observed clusters, we compute 
the global Moran’s I index to examine the existence 
of spatial autocorrelation in obesity prevalence. The 
results show that the obesity prevalence in NYC, LA, 
and Buffalo all have statistically significant and posi-
tive spatial autocorrelations, with Moran’s I indexes 
0.740 (p < 0.001), 0.741 (p < 0.001), and 0.668 (p < 0.001), 

respectively. These results suggest that in all three cities 
neighborhoods with high obesity prevalence tend to be 
clustered together rather than being distributed more 
randomly within a city.

By further looking into the three derived diet and phys-
ical activity measurements (the second to the fourth row 
in Fig.  5), we can see interesting geographic patterns. 
In particular, the fast-food restaurant visit frequencies 
in NYC and LA are largely consistent with their corre-
sponding obesity prevalence patterns, i.e., census tracts 
with higher obesity prevalence tend to have higher fast-
food restaurant visit frequency. Meanwhile, the fitness 
and sports center visit frequencies in NYC and LA show 
largely inverted patterns compared with their obesity 
prevalence patterns, i.e., census tracts with higher obesity 
prevalence tend to have lower fitness and sports center 
visit frequency. For nature park visit frequencies, they 
show a similar inverted pattern as the fitness and sports 
center visit frequencies in NYC and LA, i.e., census 
tracts with higher obesity prevalence tend to have lower 
nature park visit frequencies. In Buffalo, this similarity 

Fig. 5 Neighborhood-level obesity prevalence and the three derived diet and physical activity measurements for NYC, LA, and Buffalo
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and difference in distribution patterns seem to be weaker, 
but we do observe that census tracts with higher obesity 
prevalence tend to have slightly higher fast-food restau-
rant visit frequency and census tracts with lower obesity 
prevalence tend to have slightly higher fitness and sports 
center visit frequency and slightly higher nature park visit 
frequency.

Multicollinearity diagnosis
Before examining the ability of the derived diet and phys-
ical activity measurements to enhance obesity estimation, 
we first carry out a series of diagnostic tests to examine 
whether there exists multicollinearity among the neigh-
borhood-level socioeconomic and demographic vari-
ables. To do so, we compute the variance inflation factor 
(VIF) for the 24 variables, and all variables are standard-
ized by their mean and standard deviation before the 
analyses. We then gradually remove the variables with 
the highest VIF values until they are all smaller than the 
typical cut-off value 5. Table 2 shows the results of these 
VIF tests.

As can be seen, the first test shows that three vari-
ables have extremely high VIF values (% < highschool, 
% >  = highschool < university, and % >  = university), sug-
gesting severe multicollinearity for these variables. This 
is likely due to the fact that the variables in the educa-
tion category are composition measures that add up 
to 1. Accordingly, in the second test, we remove the 
“% >  = highschool < university” variable in the education 
category. The result of the second test shows substan-
tially reduced VIF values but some of these values are 
still larger than 5. In the final test, we further remove two 
variables with high VIF values in two categories, which 
are “% White” in the race and ethnicity category and 
“% >  = university” in the education category. After these 
two variables are removed, the final test shows that the 
VIF values of all variables are smaller than 5, suggest-
ing low multicollinearity among them. We therefore use 
these remaining 21 socioeconomic and demographic var-
iables in the following analyses.

Results from the five statistical and machine learning 
models
One main objective of this study is to understand to 
what extent the diet and physical activity measurements 
derived from the anonymized mobile phone location 
data can help enhance obesity estimation at the neigh-
borhood level. To achieve this objective, we perform two 
sets of analyses in three different cities using five different 
statistical and machine learning models. In the baseline 
analyses, we use the 21 socioeconomic and demographic 
variables (identified through the multicollinearity tests) 
as the independent variables; in the test analyses, we 

use the three diet and physical activity measurements 
in addition to the 21 variables. Table  3 summarizes the 
obtained results, with the three cities as the three main 
rows (i.e., NYC, LA, and Buffalo) and the five statistical 
and machine learning models as the five main columns 
(i.e., OLS, GWR, RF, DNN, and GRF).

As can be seen in Table  3, adding the three diet and 
physical activity measurements to the input of the models 
increases the accuracy of obesity prevalence estimation 
in most of the analyses, as demonstrated by the higher 
 R2 and lower RMSE values in the test analyses. Note that 
we do not highlight the performance values when there 
is a tie between the test and baseline analyses in order to 
provide a more conservative view of the results, although 
most of these tied test analyses have slightly better per-
formance values than the baseline analyses beyond the 
third digit. This improvement is overall consistent even 

Table 2 VIF values obtained from the multicollinearity tests

Variable First test Second test Final test

(1) Race and ethnicity

 % White 58.265 58.261 –

 % Black 49.264 49.26 2.754

 % Ame Indi and AK Native 1.091 1.091 1.06

 % Asian 19.277 19.273 2.026

 % Nati Hawa and Paci Island 1.035 1.032 1.02

 % Hispanic or Latino 44.031 44.031 4.729

(2) Gender, marital status, and age

 % male 1.333 1.332 1.317

 % married 4.26 4.26 4.133

 % age 18–29 4.314 4.314 4.216

 % age 30–39 3.402 3.401 3.219

 % age 40–49 1.792 1.792 1.765

 % age 50–59 1.763 1.763 1.762

 % age >  = 60 3.574 3.574 3.347

(3) Education

 % < highschool  > 1000 6.079 4.946

 % ≥highschool < university  > 1000 - -

 % ≥university  > 1000 8.586 -

(4) Economic status

 Median income 5.934 5.934 4.501

 % unemployment 1.448 1.448 1.433

 % below poverty line 4.395 4.395 4.309

 % food stamp/SNAP 3.95 3.95 3.843

(5) Housing condition

 Median value units built 2.356 2.354 2.258

 Median year units built 1.181 1.181 1.173

 % renter-occupied housing 
units

4.644 4.642 4.466

(6) Urbanicity

 Population density 1.647 1.647 1.603
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when we take into consideration model complexity as 
demonstrated by the adjusted  R2 and AIC values, and is 
overall consistent across the five different models even 
though these models have different inner mechanisms. 
However, the improvement is small compared with using 
the 21 neighborhood-level socioeconomic and demo-
graphic variables for obesity estimation. We will further 
discuss this result in the Discussion section.

Regression coefficients and feature importance
We present the regression coefficients output by the 
OLS model and the feature importance output by the RF 
model in order to understand the roles played by differ-
ent independent variables in estimating neighborhood-
level obesity prevalence. Table  4 shows the regression 
coefficients from the OLS model.

As can be seen, variables related to poverty level, such 
as median income, % below poverty line, and median 
value units built, all show statistically significant associa-
tions with neighborhood-level obesity prevalence across 
the three different cities. Variables related to racial and 
ethnic composition, in particular % Black, also show sig-
nificant associations with obesity prevalence. Racial and 
ethnic variables, however, are often intertwined with 
socioeconomic status. Overall, NYC and LA share more 
similarity in the obtained regression coefficients com-
pared with those in Buffalo. For example, the variables of 
% < highschool, % food stamp/SNAP, and % renter-occu-
pied housing units, all show statistically significant associ-
ations with obesity prevalence in NYC and LA but not in 
the city of Buffalo. For the three diet and physical activity 

measurements, fast-food restaurant vf shows significant 
and positive associations (p < 0.001) with the obesity 
prevalence in both NYC and LA, and fitness and sports 
center vf shows significant and negative associations 
(p < 0.05 and p < 0.01) also in NYC and LA. Nature park 
vf does not show a significant association with obesity 
prevalence in all three cities, and the three variables do 
not show significant associations with obesity in Buffalo.

The RF model provides feature importance values indi-
cating the relative importance of different input variables 
for helping the RF model predict neighborhood-level 
obesity prevalence. The importance values output by the 
model are normalized to the range of [0, 1] and sum up 
to 1. Figure 6 shows the feature importance values in the 
three cities. Since we have used tenfold cross-validation, 
10 RF models are trained for each city which result in 
10 sets of feature importance values. Figure 6 shows the 
mean importance value for each variable.

As can be seen in Fig.  6, the three diet and physi-
cal activity measurements derived from anonymized 
mobile phone location data play important roles in 
helping the RF model predict obesity prevalence, 
despite the fact that they bring only small improve-
ments to the overall model performance as shown 
previously in Table  3. In particular, fitness and sports 
center vf is ranked as the 2nd most important feature 
in NYC, the 7th in LA, and the 8th in Buffalo among 
the 24 input variables. Fast-food restaurant vf is ranked 
as the 11th important variable in NYC, the 10th in LA, 
and the 18th in Buffalo. Nature park vf is ranked as the 
17th in NYC, the 11th in LA, and the 17th in Buffalo. 

Table 3 A summary of the results for testing the effectiveness of the derived diet and physical activity measurements for enhancing 
obesity estimation using five statistical and machine learning models (i.e., OLS, GWR, RF, DNN, and GRF)

Adjusted  R2 and AIC can only be calculated for the two statistical models; DNN model cannot be trained for Buffalo due to the small number of data records (only 77 
data records)

Numbers in bold indicate improvements over the baseline analyses

OLS GWR RF DNN GRF

City Fit measures Base line Test Base line Test Base line Test Base line Test Base line Test

NYC R2 0.861 0.869 0.975 0.977 0.894 0.898 0.879 0.895 0.934 0.934

RMSE 2.194 2.127 0.926 0.898 1.916 1.881 2.045 1.907 1.508 1.506
adjusted  R2 0.860 0.868 0.968 0.969 – – – – – –

AIC 8840.7 8723.0 6244.3 6237.8 – – – – – –

LA R2 0.963 0.964 0.972 0.974 0.950 0.950 0.924 0.912 0.951 0.951

RMSE 1.043 1.034 0.903 0.872 1.213 1.210 1.495 1.613 1.204 1.208

adjusted  R2 0.962 0.963 0.968 0.970 – – – – – –

AIC 2811.5 2800.7 2732.3 2696.6 – – – – – –

Buffalo R2 0.976 0.976 0.982 0.983 0.869 0.873 – – 0.877 0.875

RMSE 1.088 1.079 0.934 0.914 2.514 2.478 – – 2.444 2.456

adjusted  R2 0.966 0.965 0.969 0.968 – – – – – –

AIC 275.4 280.1 272.6 276.8 – – – – – –
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Note that unlike the regression coefficients obtained 
in the OLS model, feature importance from the RF 
model only tells us the relative importance of an input 
variable in helping the RF model make correct pre-
dictions, and does not indicate whether a variable is 
positively or negatively associated with obesity preva-
lence. The feature importance values for the socioeco-
nomic and demographic variables are overall consistent 
with the results obtained from the OLS model. Vari-
ables related to poverty level (e.g., median income, % 
food stamp/SNAP, and % below poverty line), educa-
tion (e.g., % < highschool), and racial and ethnic com-
position (e.g., % Black and % Asian) are all ranked as 
highly important features for the RF model to predict 

neighborhood-level obesity prevalence across the three 
cities.

In addition to OLS and RF, we have also obtained 
more detailed local regression coefficients and local 
feature importance from the GWR and GRF mod-
els respectively. However, due to the relatively small 
improvement brought by the derived three diet and 
physical activity measurements, we do not discuss them 
here to avoid making this paper longer and the results 
are included in Additional file  1: Figs. S2, S3. For the 
DNN model, it functions more like a “black box”, and 
we cannot directly obtain much information about the 
roles of individual input variables.

Discussion
Deriving neighborhood‑level diet and physical activity 
measurements
Neighborhood-level diet and physical activity measure-
ments, such as how neighborhood residents visit fast-
food restaurants, fitness and sports centers, and nature 
parks, can be important information for supporting 
public health policies and decisions related to obesity 
prevention and intervention. Collecting such informa-
tion typically requires considerable financial and labor 
resources, and even when such resources are available, 
the data collection process can take much time resulting 
in lags in the collected data (e.g., one or several years). 
In this study, we have proposed a method for deriving 
neighborhood-level diet and physical activity measure-
ments from anonymized mobile phone location data. 
Because these data cover large geographic areas (e.g., 
the entire United States) and are being collected con-
tinuously with small temporal lags (e.g., within one or 
a few months), this method has potential to be applied 
to deriving diet and physical activity measurements for 
large geographic areas. We have demonstrated the fea-
sibility of this method in three different US cities. The 
derived neighborhood-level measurements show con-
sistent geographic patterns with the obesity prevalence 
from the CDC PLACES Project, i.e., neighborhoods with 
higher obesity prevalence tend to have higher fast-food 
restaurant visit frequencies and lower fitness center and 
nature park visit frequencies. To further quantify this 
consistency, we perform correlation analysis between the 
derived three types of diet and physical activity measure-
ments and obesity prevalence. Considering that the rela-
tions may not be linear, we perform both Pearson’s and 
Spearman’s correlation, and the results are reported in 
Table  5. The correlation analysis results show that the 
three derived measurements are overall correlated with 
obesity prevalence in the three cities (although there is an 
exception in Buffalo). In particular, Fast-food restaurant 

Table 4 Regression coefficients obtained via the OLS model in 
NYC, LA, and Buffalo

*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001

Variables NYC LA Buffalo

(1) Race and ethnicity

 % Black 2.5460*** 1.366*** 3.5307***

 % Ame Indi and AK Native – 0.0550 0.0371 0.0154

 % Asian – 1.5253*** – 1.5574*** – 0.0841

 % Nati Hawa and Paci Island – 0.0200 – 0.0263 – 0.0763

 % Hispanic or Latino 1.1223*** 1.3375*** – 0.0823

(2) Gender, marital status, and age

 % male 0.0611 0.0269 0.1607

 % married 0.0632 0.0549 – 0.4479

 % age 18–29 – 0.5314*** – 0.7602*** – 1.7860***

 % age 30–39 – 0.1871* – 0.1909** 0.2533

 % age 40–49 0.0983 – 0.0605 0.1242

 % age 50–59 0.1825** 0.0852 – 0.1283

 % age >  = 60 – 0.7922*** – 0.1804* – 0.5141

(3) Education

 % < highschool 0.4386*** 0.7150*** 0.5131

(4) Economic status

 Med income – 0.8246*** – 0.3493*** – 0.8983*

 % unemployment 0.0858 0.0894* 0.1544

 % below poverty line 1.1520*** 1.2396*** 1.4296***

 % food stamp/SNAP 0.4041*** 0.5628*** 0.3141

(5) Housing condition

 Median value units built – 0.3446*** – 0.1955** – 0.8326*

 Median year units built 0.2663*** – 0.0964* 0.0784

 % renter-occupied housing 
units

– 0.8679*** 0.2952*** 0.1380

(6) Urbanicity

 Population density – 0.4485*** 0.0247 – 0.7433***

(7) Three derived diet and physical activity measurements

 Fast-food restaurant visit 
frequency (vf )

0.6903*** 0.1797*** – 0.1673

 Fitness and sports center vf – 0.2361** – 0.1660* 0.0294

 Nature park vf – 0.0436 – 0.0048 – 0.0037
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visit frequency has a weak correlation with obesity preva-
lence in NYC and LA (with coefficients ranging between 
0.283 and 0.331); fitness and sports center visit frequency 
has a strong correlation with obesity prevalence in all 
three cities (with coefficients ranging between –  0.803 
and – 0.628); and nature park visit frequency has a weak 
to moderate correlation with obesity prevalence in all 
three cities (with coefficients ranging between –  0.514 

and –  0.272). Results from the two types of correlation 
analyses are also consistent.

Implications for neighborhood‑level obesity estimation
Accurately estimating neighborhood-level obesity prev-
alence has important meaning. Existing evidence has 
shown that neighborhood environments can directly or 
indirectly influence the health behaviors of neighborhood 

Fig. 6 Feature importance of the independent variables output by the RF model for NYC, LA, and Buffalo

Table 5 Correlation coefficients between the three types of diet and physical activity measurements and obesity prevalence

*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001

Pearson’s correlation Spearman’s correlation

NYC LA Buffalo NYC LA Buffalo

Fast-food restaurant vf 0.291*** 0.283*** 0.110 0.299*** 0.331*** 0.037

Fitness and sports center vf − 0.628*** − 0.692*** − 0.651*** − 0.653*** − 0.803*** − 0.720***

Nature park vf − 0.294*** − 0.460*** − 0.299** − 0.328*** − 0.514*** − 0.272*
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residents [10, 11, 14, 17, 18]. Knowing the neighborhoods 
that are more likely to suffer from high obesity prevalence 
therefore allows obesity prevention and intervention pro-
grams to focus on these neighborhoods and potentially 
improve their environments. This can be especially help-
ful when resources are limited, and effort focusing on a 
smaller number of neighborhoods could have a higher 
positive impact than effort more evenly distributed 
throughout an entire city.

The three neighborhood-level diet and physical activity 
measurements derived from anonymized mobile phone 
data in this study are correlated with neighborhood-
level obesity prevalence, as shown in Table  5. However, 
they provide only small improvements to obesity esti-
mation compared with using 21 socioeconomic and 
demographic variables. This result suggests that the 
information provided by the three derived measure-
ments possibly overlap with the other socioeconomic 
and demographic variables. To further understand this 
possibility, we perform correlation analyses between the 
three derived diet and physical activity measures and the 
other socioeconomic and demographic variables, and 
the results are reported in Additional file  1: Tables S4–
S6. In particular, fast-food restaurant vf shows a weak to 
moderate correlation with median value units built (with 
coefficients ranging from −  0.504 to −  0.312); fitness 
and sports center vf shows a moderate to strong correla-
tion with % food stamp/SNAP (with coefficients ranging 
from − 0.798 to − 0.499), and a weak to strong correla-
tion with % < highschool (with coefficients ranging from 
− 0.846 to − 0.323); and nature park vf shows a weak to 
moderate correlation with median income (with coeffi-
cients ranging from 0.231 to 0.597). Overall, the results 
show that the three derived measurements are correlated 
with many socioeconomic and demographic variables, 
especially those related to poverty level, education, and 
median housing value.

We also perform stepwise regression analysis to further 
understand the socioeconomic and demographic vari-
ables that may be redundant with the three derived meas-
urements. We start with the three derived measurements 
and gradually add the other socioeconomic and demo-
graphic variables in a stepwise manner. The results are 
reported in Additional file 1: Tables S7–S9. Three highly 
interesting observations can be obtained. First, using the 
three derived diet and physical activity measurements 
alone can already provide a moderate estimation accu-
racy for obesity prevalence at the neighborhood level. 
When starting with the three derived measurements, 
we can already achieve an  R2 of 0.437 for NYC, 0.486 for 
LA, and 0.480 for Buffalo. Second, fast-food restaurant 
vf and fitness and sports center vf play important roles 
for the models to estimate neighborhood-level obesity 

prevalence in NYC and LA. These two measurements 
were kept in all the steps and the final models, after being 
compared with other socioeconomic and demographic 
variables in the stepwise regression. Interestingly, nature 
park vf became insignificant and was dropped from the 
models after the addition of % Black in both NYC and 
LA. This result suggests that there might be a high level 
of redundancy between % Black and nature park vf in 
NYC and LA, which is worth future investigations. Third, 
the result of Buffalo seems to be quite different from the 
results of NYC and LA in that all three measurements 
were eventually dropped by the model. In particular, 
nature park vf and fast-food restaurant vf were dropped 
after the addition of % food stamp/SNAP, and fitness and 
sports center vf was dropped after the addition of median 
value units built. Both % food stamp/SNAP and median 
value units built are linked to poverty, and this result 
suggests that poverty may be more predictive of health 
behaviors in Buffalo than in NYC and LA where fast-food 
restaurant vf and fitness and sports center vf were kept 
in the final models along with % food stamp/SNAP and 
median value units built.

Given the small improvements brought by the derived 
diet and physical activity measurements, it seems less 
needed to include these measurements for obesity 
estimation when we already have socioeconomic and 
demographic data. Then, what other values could be 
brought by the derived diet and physical activity meas-
urements? We think there are at least three other situ-
ations under which these derived measurements can 
be useful. First, when only limited socioeconomic and 
demographic data are available, these derived measure-
ments may provide stronger enhancement for neigh-
borhood-level obesity estimation. It is worth noting 
that the small improvements obtained in our results 
are based on 21 socioeconomic and demographic vari-
ables. While such comprehensive data are available in 
the United States, they are not always available in many 
other countries, especially developing countries. Mean-
while, mobile phone location data seems to be available 
in some developing countries [66, 67]. As shown in the 
stepwise regression analysis, using the three derived 
measurements alone already provides a moderate accu-
racy for neighborhood-level obesity estimation. When 
only a few socioeconomic and demographic variables are 
available (or no data is available at all), diet and physi-
cal activity measurements derived from mobile phone 
location data may help provide better enhancement for 
obesity estimation. Second, the derived measurements 
can be used as the dependent or outcome variables to 
study health behaviors. For example, they can be used in 
studies that aim to understand the factors that affect the 
visit frequency of neighborhood residents to fast-food 
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restaurants, or in studies that aim to evaluate the extent 
of a prevention strategy, such as park renovation [68], 
in improving related health behaviors, such as increased 
park visits from nearby neighborhoods. Third, these diet 
and physical activity measurements, given their ability 
to link neighborhoods and related places (e.g., fast-food 
restaurants), can help identify the places that may be the 
primary contributors to obesity. For example, they can 
help answer the question: which fast-food restaurants 
are mostly visited by the residents of a neighborhood with 
a high obesity prevalence? The answer may not be the 
fast-food restaurant that has the shortest distance to the 
neighborhood. Identifying these primary contributing 
places can help investigate the underlying issues and use 
suitable prevention strategies at these places, e.g., requir-
ing fast-food restaurants to make the caloric content of 
foods visible on menu boards if this was not done yet.

Methodological implications
This study also sheds light on neighborhood-level obe-
sity estimation from a methodological perspective. We 
tested five different models, including both statistical 
and machine learning models, across three different cit-
ies. We included machine learning models in addition to 
statistical models because there is an increasing interest 
in using AI for health studies and in particular for obesity 
estimation [51, 69–71]. Overall, the three machine learn-
ing models performed better than the OLS model but 
not as good as the GWR model. The outstanding perfor-
mance of GWR can be attributed to its ability to explic-
itly model spatial autocorrelation, a local effect we have 
observed in neighborhood-level obesity prevalence dur-
ing the analysis stage. While deep learning models have 
demonstrated outstanding performances in image rec-
ognition and natural language processing [64], their per-
formance on tabular data (i.e., data structured into rows 
and columns, such as those used in this study) seems to 
be similar to statistical models and other “shallow learn-
ing” models such as random forest. Similar results have 
also been reported in the literature [72–74]. Among the 
five models, GWR is a spatial statistical model which per-
formed better than the non-spatial OLS model, and GRF 
is a spatial machine learning model which performed 
better than the two other non-spatial machine learning 
models, i.e., RF and DNN. This result suggests that spatial 
models should be preferred when spatial autocorrelation 
exists in obesity prevalence data. In terms of the comput-
ing processes, fitting the two statistical models took less 
time compared with training the three machine learning 
models, likely due to their simpler model architectures. 
While this study shows that GWR is the best among the 

five tested models for neighborhood-level obesity esti-
mation in both prediction accuracy and computing time, 
more research is needed to further test these models in 
other cities based on other datasets.

Limitations
This study is not without limitations. First, we have used 
census tracts as the geographic units for analysis, because 
the obesity data from the CDC PLACES project are at 
this geographic level. While census tracts are overall suf-
ficient for this current study, results at finer geographic 
units, such as census block groups, may allow us to iden-
tify neighborhoods that have obesity issues more accu-
rately and to develop more precise prevention strategies. 
When new data have become available, future stud-
ies could be conducted at the census block group level. 
Second, this study has focused on three cities, namely 
NYC, LA, and Buffalo, which are located in different 
geographic areas and have different city sizes. We could 
extend this study to other cities to examine the roles of 
place visits related to diet and physical activity in enhanc-
ing obesity prevalence prediction. Given the larger dif-
ference between Buffalo and the other two megacities 
shown in the results of this study, it would be especially 
interesting to include more mid-sized or small cities in 
future research.

Conclusions
This study investigates the feasibility of deriving neigh-
borhood-level diet and physical activity measurements 
from anonymized mobile phone location data and their 
ability to enhance obesity estimation. We have proposed 
a method for deriving neighborhood-level diet and physi-
cal activity measurements by leveraging anonymized 
mobile phone location data, POI data, and census tracts. 
We have conducted case studies in three different US 
cities, namely NYC, LA, and Buffalo, using five different 
statistical and machine learning models. We find that it 
is feasible to derive neighborhood-level diet and physical 
activity measurements from anonymized mobile phone 
location data. These derived measurements provide only 
small enhancement for obesity estimation compared 
with using a comprehensive set of 21 neighborhood-
level socioeconomic and demographic variables. How-
ever, the derived measurements are overall correlated 
with neighborhood-level obesity prevalence from the 
CDC PLACES project across the three cities. Also, using 
the three derived measurements alone can already pro-
vide a moderate accuracy for obesity estimation. These 
derived diet and physical activity measurements may 
provide a stronger enhancement when comprehensive 
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socioeconomic and demographic data are not available 
(e.g., in some developing countries). They can also be 
used for studying health behaviors and identifying pri-
mary places contributing to obesity-related issues.
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