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Abstract The heterogeneity of geospatial datasets is a mixed blessing in that it the-
oretically enables researchers to gain a more holistic picture by providing different
(cultural) perspectives, media formats, resolutions, thematic coverage, and so on, but
at the same time practice shows that this heterogeneity may hinder the successful
combination of data, e.g., due to differences in data representation and underlying
conceptual models. Three different aspects are usually distinguished in processing
big geospatial data from heterogeneous sources, namely geospatial data conflation,
integration, and enrichment. Each step is a progression on the previous one by tak-
ing the result of the last step, extracting useful information, and incorporating addi-
tional information to solve specific questions. This chapter introduces and clarifies
the scope and goal of each of these aspects, presents existing methods, and outlines
current research trends.

1 Introduction

Among the often mentioned four characteristics, i.e., volume, variety, velocity, and
veracity, of big data, variety is one of the most prominent in the geospatial do-
main. One grand challenge of consuming and utilizing big geospatial data is find-
ing ways to utilize heterogeneous data, despite differences in their representations,
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resolution, data quality, semantics, data collection strategy, data cultures, and so
forth (Janowicz, 2010). For example, remote sensing images are typically collected
based on a field view, while most Points-of-Interest (POI) data are constructed us-
ing an object view. The vocabularies, often called feature type ontologies, used to
categorize these POI vary between a handful and more than 1000 types making
their integration challenging. In terms of data formats, geospatial data can be in the
forms of unstructured data, semi-structured data, and structured data. A rich volume
of geospatial data (such as place names and addresses) are contained in unstruc-
tured natural language texts, such as Wikipedia, news, books, and even in social
media. Structured geospatial data have a well-defined schema and are contained in
geospatial databases, shapefiles, gazetteers, and knowledge graphs, e.g., so-called
Linked Data. Data will also show significant variation based on whether it is col-
lected and maintained in the form of Volunteered Geographic Information (VGI) or
by an authoritative source such as a government agency. In the age of Big Data, a
research project often requires the use and integration of geospatial data from dif-
ferent sources which may have been collected using different approaches. The most
common source of heterogeneity, however, are differences in semantics, i.e., in the
conceptualizations related to used domain vocabulary such as River, Poverty,
or Neighborhood (Harvey et al, 1999; Frank and Raubal, 1999; Bennett, 2001;
Kuhn et al, 2014; Scheider and Kuhn, 2015) as well as cultural difference. For ex-
ample, in Germany a bus stop is typically differentiated from other public spaces
such as pavement because it usually has a distinct area with a roof. In some other
countries, however, the concept of a bus stop may not exist at all (e.g., people in
Turkey can stop the bus wherever they want to get on).

In this chapter, we review how big geospatial data can be conflated, integrated,
and enriched (Kyriakidis et al, 1999; Arens et al, 1993; Samal et al, 2004; Lees
and Ritman, 1991; Cobb et al, 1998; Fonseca et al, 2002). These terms themselves
have different definitions across and even within communities. In the context of our
overview, conflation is usually the initial step which involves combining and con-
solidating multiple instances of the same geographic entity with various lineage. To
give an intuitive example from everyday experience, in order to gain a more compre-
hensive understanding of a Point of Interest, such as a particular restaurant, people
may check multiple sources, e.g., website listings, social media reviews from multi-
ple vendors such as Yelp, and even images, and cross-verify, combine, and mix them
to provide more accurate and complete thematic (the type of restaurant, the food
they serve, and other amenities for the restaurant), temporal (hours of operation),
and spatial (coordinates and neighborhood) components. After conflating all this in-
formation, the integration step comes into play by which the data are combined, e.g.
in the form of layers, into a larger project. One example for this integration step are
map mashups, a term first made popular in 2004 (Batty et al, 2010). Almost all web
maps we use today, e.g. Google Maps, are products of integration. These maps usu-
ally contain a base map and several thematic layers (such as the POI layer, terrain
layer, satellite imagery layer, traffic layer, and transit layer). These layers can be in
the form of vector data, raster data, or a combination of both. Different components
of the map complement each other so that users can obtain a more comprehensive
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view of geographic entities from different perspectives. In a general geospatial data
integration workflow, the conflation stage aims to retain accurate data, reconcile
conflicting data, and minimize redundant data by considering different but overlap-
ping sources; the integration stage aims to unify different aspects of the data after the
initial conflation stage. Today, geospatial data enrichment plays an increasing role
as an additional step following conflation and integration. With the current develop-
ment of Web-accessible knowledge graphs, the barrier for interlinking and enriching
geospatial data has become less severe. Geospatial data enrichment presents a con-
venient way of retrieving personalized, timely, and relevant geographic information.
In this stage, methods in text mining or scene classification are also frequently used
depending on whether text or image sources are considered. Machine learning and
data mining models are essential to the success of geospatial data enrichment. For
example, in semantic publishing1,2, in order to link different articles to the same
geographic entity, preprocessing steps typically include named entity recognition,
place name disambiguation, and coreference resolution. Another example is event
detection.3,4 Such enriched data includes texts, temporal information, spatial foot-
prints, and multimedia. Besides data mining approaches in obtaining events update
in a geographic context, structured and standardized data markup guidelines can
also facilitate the process. In this sense, geospatial data enrichment is the highlight
of the marriage of top-down theory-driven and bottom-up data-driven approaches.
It is worth noting that although there seems to be a linear order to which these three
phases are conducted during the whole process, they do have some overlap and are
not mutually exclusive, as shown in Fig. 1.

Conflation Integration  Enrichment

Fig. 1 The overlaps between the conflation process and the integration process as well as between
the integration process and the enrichment process mean that there are no clear boundaries between
them.

The content of this chapter is organized following the thread of conflation, inte-
gration, and enrichment. In Section 2, we lay out the major obstacles in conflating
geospatial data from different sources, such as discrepancies in semantics, and ex-
amine previous research studies in tackling these challenges. In Section 3, we review

1 https://en.wikipedia.org/wiki/Semantic publishing
2 http://now.ontotext.com
3 http://eventregistry.org
4 https://developers.google.com/search/docs/data-types/event
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existing methods in spatial data integration, pointing out that the heterogeneous na-
ture of geospatial data is, in fact, a blessing in disguise. In Section 4, we introduce
a combination of top-down and bottom-up methods in enriching geospatial data
and demonstrate the ways in which geospatial domain knowledge can benefit ex-
isting machine learning models. Throughout these sections, we discuss the Linked
Data and geospatial semantics paradigm in which various knowledge graphs, such
as DBpedia5, Freebase6, Wikidata7, and LinkedGeoData8, emerged in an attempt to
faciliate the conflation, integration, and enrichment of geospatial data. While these
semantically-rich datasets improve the interoperability, they also bring new chal-
lenges. In addition, we discuss the reciprocal relationship between geospatial data
and various machine learning models: machine learning models can help integrate
geospatial data, while geospatial data can be integrated into various other domains
as complementary information sources for supporting cutting-edge models. In Sec-
tion 5 , we summarize the three phases and conclude our chapter.

2 Geospatial Data Conflation

In most geographic information systems and services, geospatial data can be ex-
plored from both a map-centric view and a tabular-centric view (Mai et al, 2016).
Research on facilitating geospatial data conflation can be organized from these two
perspectives as well.

From a map view, geospatial data most often comes in two flavors: raster data
and vector data. Accordingly, studies in geospatial data conflation have considered
raster and raster conflation, raster and vector conflation, and vector and vector con-
flation (shown in Fig. 2). For raster and raster conflation, Lynch and Saalfeld (1985)
described it as a problem of combining two raster maps to create a third map that is
better than each of the two input maps in some regards, e.g., by reducing NoData
cells. This definition considers geospatial data conflation as map conflation or map
compilation. Lupien and Moreland (1987) decomposed the task into two generic
problems, namely feature alignment and feature matching. In this context, raster
pixels for points, lines, and polygons on the maps are referred to as features. Since
different maps may have different projections and resolutions, feature alignment is
applied to transform the coordinates of one map to fit another one. A common tech-
nique called rubber-sheeting is utilized to solve this problem, which is a transforma-
tion technique that preserves the topology of different features on the map. Typical
rubber-sheeting algorithms utilize control points, triangulation, and other computa-
tional geometry concepts to provide computationally efficient ways to transform the
maps and induce coincidence between different maps (Saalfeld, 1985; White Jr and

5 https://wiki.dbpedia.org/
6 https://en.wikipedia.org/wiki/Freebase
7 https://www.wikidata.org
8 http://linkedgeodata.org
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Griffin, 1985; Gillman, 1985). Feature matching is then applied after feature align-
ment and the performance of feature matching depends on the strength of the fea-
ture alignment. Nearest neighbor pairings and intersection matching are commonly
adopted for feature matching based on different criteria (Rosen and Saalfeld, 1985).
The feature alignment and feature matching processes are often done in an iterative
manner to increase the matched features. In order to solve the problem of positional
discrepancy and the challenge of conflation maps with different levels of detail,
Liu et al (2018) proposed a multiscale polygonal objectmatching approach, called
the minimum bounding rectangle combinatorial optimization (MBRCO). This algo-
rithm finds corresponding minimum bounding rectangles (MBRs) of matching pairs
and aligns them to identify object-matching pairs.

Vector Data Raster Data
Conversion process

Discretization,
interpolation,

approximation,
etc.

+ +

+

Vector and vector conflation Raster and raster conflation

Raster and vector conflation

Fig. 2 Vector data and raster data are two commonly used types. Practically, a conversion process
can be applied to switch between these two types. However, such a conversion is usually not loss-
less. As a result, three types of conflation, namely raster and raster conflation, vector and vector
conflation, and raster and vector conflation, are studied in relevant research.

For raster and vector conflation, the core idea is to find the registration between
the raster map data and the vector map data. For instance, Filin and Doytsher (2000)
utilized linear features as seed entities for registering map data by detecting the
counterpart elements, establishing correspondence between matched entities, and
transforming the data. Chen et al (2004) used point pattern matching and exploited
common vector datasets as ‘glue’ to automatically conflate street map imagery.
Raster and vector data conflation is closely related to feature/object extraction from
images and vector data update. As our geographic environment is constantly chang-
ing, updating vector maps automatically is of significance in order to provide the
most relevant and accurate information. By successfully conflating satellite imagery
with vector map data, street networks and other geographic features can be updated
in a more timely manner. Baltsavias and Zhang (2005) automated the process of 3D
road network reconstruction using aerial images and knowledge-based image anal-
ysis. Conflation of vector data and satellite imageries is also used for automatically
geocoding satellite imageries (Hild and Fritsch, 1998).
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For vector and vector conflation, existing research often examines three com-
ponents, namely geometric component (Beeri et al, 2004; Foley, 1997), spatial re-
lationship component (Fan et al, 2016), and attribute component (Hastings, 2008;
Samal et al, 2004). Many conflation models also combine all of the three compo-
nents, provided that such information is available in the dataset. For example, a
hierarchical rule-based approach was proposed to take into account both geometric
proximity and attribute information to match features (Cobb et al, 1998). A weighted
average of positional measure, shape measure, directional measure, and topological
measure was proposed as the criteria for point, linear, and areal feature matching and
achieved better results compared with traditional distance-based counterparts (Fan
et al, 2016). Li and Goodchild (2011) developed an optimization model to improve
linear feature matching that could handle one-to-one, one-to-many, and one-to-none
correspondence by making use of directed Hausdorff distance (an asymmetric dis-
similarity metric). Instead of using a proximity-based matching approach, Song et al
(2011) adopted a relaxation labeling approach by utilizing iterated local context up-
dates to match the road intersections for vector road datasets. After initializing the
point-to-point matching confidence matrix using the road connectivity information,
in each iteration update, the relative distances between points are incorporated into
the compatibility function. The proposed relaxation labeling approach yielded much
better result than proximity matching approaches.

From a tabular view, geospatial data conflation can be performed based on place
names, spatial and non-spatial relations, and other attributes. McKenzie et al (2014)
used a weighted multi-attribute method that considered categorical information, ac-
tivities, and topic similarity to match place entries in the gazetteers of Foursquare
and Yelp. To reduce redundancy in a place database, Dalvi et al (2014) employed a
language model that encapsulates domain knowledge (core words) and geographic
knowledge (spatial context) to detect duplicate place entities. For example, in the
place name “Fresca’s Peruvian Restaurant”, “Fresca’s” is the core word and “Peru-
vian Restaurant” is the description word. By accurately detecting core words and
weighing them by their spatial context (such as the city or country these places are
located in), their model outperformed other models. Another research area that is
closely related to geospatial data conflation based on non-spatial attributes is place
name disambiguation. The task is to identify the corresponding geographic entity
given a place name in a text or other unstructured format. This problem is due to
the one-to-many mapping between place names and geographic entities, which is
also frequently encountered in geospatial data conflation. Hu et al (2014a) used
Wikipedia and enhanced Term Frequency-Inverse Document Frequency (TF-IDF)
with DBpedia terms to improve place name disambiguation. Ju et al (2016) inte-
grated entity co-occurrence and topic modeling and outperformed benchmark sys-
tems such as DBpedia Spotlight and Open Calais in terms of F1 score and Mean
Reciprocal Rank for place name disambiguation in short texts.

The recent marriage of geospatial data and the Linked Data paradigm (Kuhn et al,
2014) also increases the demand for data conflation from a tabular view. Linked
Data uses a graph data model based on the Resource Description Framework (RDF)
to describe both statements about the world and schema knowledge, called an on-
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tology. RDF triples or statements consist of three parts: subject, predicate, and ob-
ject. Subjects can be entities while objects can be both entities and literals. Predi-
cates are the relationships between subjects and objects. For example, in the triple
:Santa Barbara :isPartOf :California, :isPartOf is the predicate that connects the
subject :Santa Barbara and the object :California. Geospatial Linked Data are of-
ten conflated using a tabular view. Related research has focused on reconciling data
conflict, reducing data redundancy, and providing comprehensive data on both the
ontology level and instance level. Geo-ontology alignment itself is a research topic
that has attracted a lot of attention. Existing ontology matching or alignment sys-
tems include: Falcon (using a divide-and-conquer approach) (Hu and Qu, 2008),
DSSim (using an agent-based framework) (Nagy et al, 2006), RiMOM (using a
dynamic multi-strategy framework) (Li et al, 2009), AgreementMaker (Cruz et al,
2009), and so on. Although most ontology alignment systems are domain-agnostic,
some research specifically took a geospatial perspective. Janowicz (2012) proposed
an observation geo-ontology engineering framework that takes into account the-
matic, spatial, and temporal components. Zhu et al (2016a) implemented a feature
engineering approach using spatial statistics in an attempt to align three major geo-
ontologies, namely DBpedia Places9, GeoNames10, and Getty Thesaurus of Geo-
graphic Names (TGN)11. While these works emphasize aligning geographic con-
cepts or place types from different data sources, Yan (2016) investigated how mod-
eling bias would influence geo-ontologies and developed a data-driven method to
detect these issues in order to harmonize the conflict between geo-ontology and the
actual geographic entities that populate the ontology. Along the same line, Janow-
icz et al (2018) discussed the issue of bias in Linked Data from data, schema, and
inferential perspectives, implying potential challenges for data conflation. On the
instance level, Zhu et al (2016b) utilized spatial statistics and semantics to conflate
entities in different geospatial Linked Datasets. Systems that focus particularly on
the coreference resolution aspects of conflation include frameworks such as LIMES
(Ngomo and Auer, 2011) and SILK (Volz et al, 2009).

3 Geospatial Data Integration

Geospatial data integration focuses on combining data about different themes
or covering different geographic areas into a unified and semantically-consistent
database for various geospatial applications (Abdalla, 2016). It should be differen-
tiated from geospatial data conflation where the major goal is to reconcile the con-
flicts or duplications in datasets about the same theme and the same geographic
areas (e.g., conflating the transportation network data from OpenStreetMap and
Google Map within the same geographic area). In geospatial data integration, dif-

9 http://mappings.dbpedia.org/server/ontology/classes/
10 http://www.geonames.org/ontology/documentation.html
11 http://www.getty.edu/research/tools/vocabularies/tgn/index.html
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ferent datasets often provide perspectives that are complementary to each other. For
example, these datasets may provide different information, such as road network
and POI, about the same region. The datasets to be integrated may also focus on the
same theme but are about different geographic regions, and geospatial data integra-
tion can combine them and produce a whole dataset for the entire area. An example
is to integrate the temperature measurements from different sensors which moni-
tor the temperature in neighboring counties. Since the data from different sources
can have varied interpretation (e.g. some sensors measure temperature in Celsius
while others measure temperature in Fahrenheit), it is important to identify and ac-
commodate data inconsistency during the integration process to achieve semantic
interoperability. In other words, we need to ensure the semantic interoperability in
order to produce a correctly integrated dataset.

Geospatial data integration is closely related to spatial data infrastructure (SDI)
(Janowicz et al, 2010) and CyberGIS (Wang, 2010). One can distinguish five typi-
cal activities performed within SDIs in the context of Web-scale systems: finding,
accessing, updating, processing, and visualizing geospatial data. In fact, these five
activities are also among the most commonly used steps for geospatial data integra-
tion. In the following, we will discuss each of these five steps with an example of
disaster mapping for Santa Barbara County after the 2017 Thomas Fire, the largest
wildfire on record in California. In each step, we will emphasize the importance of
semantic interoperability, and discuss how Semantic Web and Linked Data can help
to ensure the propagation of semantics during the data integration process.

Discovering relevant data sources is the first step for geospatial data integration.
In order to produce a disaster map for the Thomas Fire, multiple datasets for Santa
Barbara county and Ventura County have to be retrieved, such as updated remote
sensing images, transportation network data, wind direction, wind speed, and air
pollution information from the sensor network, population data, and so on. Geo-
graphical information retrieval (GIR) systems (Jones and Purves, 2008) can sup-
port such a data discovery process. Query term recommendation and query expan-
sion techniques (Delboni et al, 2007; Mai et al, 2018) are necessary to reformu-
late the search query in order to find relevant datasets. In this step, semantically-
similar terms like similar geographic feature types can be suggested by using ei-
ther ontology-based methods like SIM-DL or machine learning based method like
Place2Vec (Yan et al, 2017).

Accessing the content and metadata of the retreived datasets is the next step for
geospatial data integration. It should be noted that the information required by dis-
aster mapping or other tasks are usually from different data sources, represented in
different data models, or have different internal meanings. Accordingly, it is essen-
tial to have a clear semantic interpretation of the data to achieve semantic interop-
erability. For example, we have two datasets about wind directions. Dataset A has
the wind direction for Goleta city with a wind blow from conceptualization while
Dataset B has the wind direction for Santa Barbara city with a wind blow to concep-
tualization. In this data accessing step, we need to have a clear understanding on the
semantics of the different datasets when pass these data to the following workflow.
Otherwise, such semantic inconsistency can introduce serious error in the analysis
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results. Semantic annotation (Janowicz et al, 2010) on the data can help to clarify
the semantic inconsistency and lead to a meaningful integration result, such as a
wind direction map layer of Santa Barbara County.

Registration of geospatial data is another step for integration. Data conflicts or re-
dundancy should be removed (if they were not done in data conflation). Also some
new updates that have not made to the datasets need to be added. For example,
some road segments were blocked during the Thomas Fire, and such real-time road
connectivity information is typically not available in the original transportation net-
work data. In the data registration process, semantically-supported integrity check
also needs to be done to preserve data quality.

Processing geospatial data is a necessary step when the initial datasets do not
directly satisfy the needs of an application. Consider the example of producing a
map showing the air pollution in the next 24 hours of Thomas Fire. An air pollution
dispersion model needs to be developed and executed based on the current wind di-
rection, wind speed, the current air pollution distribution, the digital elevation map,
and the fire locations. Let’s assume that we have a geoprocessing service available
for the air pollution dispersion model through an OGC Web Processing Service in-
terface (WPS). The challenge here is not to understand the theory behind this service
but to correctly interpret the intended meaning of the output of this service (Janow-
icz et al, 2010). Semantic inconsistency may occur when the semantics of the data
in hand is not in line with the semantic definition of the input for the current service.
For example, the wind speed data we have are measured in feet per second (ft/s)
while the service requires the input wind speed data to be measured in miles per
hour (mph). Using Semantic Web technologies to conceptualize the geoprocessing
services (Scheider and Ballatore, 2018) can help to clarify the semantics of each ser-
vice, improve their reusability, and achieve semantic interoperability among these
services.

Visualizing the integrated dataset is the last step for geospatial data integration.
After we have obtained various geographic layers such as the transportation layer,
the predicted air pollution layer, the fire zones layer, the POI layer, we need to
combine them to produce a visualization to end users. In this step, semantics also
plays an important role because the visualization need to be aware of the semantics
of different geographic features in order to select the appropriate styles and symbols
for each element. For example, we cannot use the blue color to represent fire zones
because they may be confused with water bodies which are also colored blue on
maps.

Fig. 3 shows the five important steps in geospatial data integration which corre-
spond to five activities in SDI. In conclusion, geospatial data integration combines
heterogeneous data for addressing various spatial problems. Semantic interoperabil-
ity and propagations are critical for effectively and correctly integrating geospatial
datasets from different sources.
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Data Discovery RegistrationData Access VisualizationGeoprocessing

Fig. 3 Five important activities of spatial data infrastructure and geospatial data Integration

4 Geospatial Data Enrichment

Geospatial data enrichment aims to augment existing datasets with additional cross-
domain information, typically streamed on-the-fly from an external API or knowl-
edge graph endpoint. This can be seen as a way to contextualize data (Janowicz
et al, 2019). Compared with geospatial data conflation and integration which are
probably the bread and butter for harnessing heterogeneous big data, geospatial
data enrichment is a relatively novel step that emerged within the last few years.
However, it is playing an increasingly important role with the fast advancements in
machine learning models as well as knowledge engineering in the context of global,
Web-accessible knowledge graphs such as Linked Data that aims at breaking apart
data silos. A simple example would be to access up-to-date demographic data from
within a GIS while loading a shapefile about towns and cities. However, the term
should be defined more broadly, e.g., including data about events, relevant research
literature that uses the area currently loaded into a GIS as study area (Gahegan and
Adams, 2014; Lafia et al, 2016), the biographies of historic figures and their trav-
els, enriching 3D models with semantic annotations from social media (Jones et al,
2014), and so on.

There are many areas that may benefit from geospatial data enrichment. One is
to enrich data streams with geosocial events that happened at certain locations dur-
ing a particular time period. The challenge of event detection stems from the sheer
amount of streaming data and the overwhelmingly large number of noise associated
with them. Weng and Lee (2011) attempted to tackle these problems by proposing a
clustering algorithm with wavelet-based signals using Twitter streams and showed
promising result. In order to detect important geospatial events such as earthquakes,
Sakaki et al (2010) examined Twitter streams, applied Kalman filtering and parti-
cle filtering, and developed a probabilistic spatiotemporal model to find the center
and the trajectory of the event location. Pat and Kanza (2017) utilized geotagged
posts in social media and developed a geosocial search system that effectively finds
geospatial events. Zhu et al (2017) developed a deep learning framework to analyze
geo-tagged videos in a real-time manner in order to recognize events and activities
on the map. Balduini et al (2013) used their streaming Linked Data Framework to
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give city managers real-time access to event data for large-scale events and integrate
the data with GIS functionality such as heatmaps.

Geospatial data enrichment is not limited to the domain of geography. The core
idea of geospatial data enrichment lies in its intricate interplay between other do-
main areas or knowledge. In the following, we provide two examples that demon-
strate the value of enriching datasets in other domains with geographic informa-
tion. The first example is in scientometrics, and, in particular, spatial scientomet-
rics which study the spatial aspect of science systems (e.g., scientific collaboration)
(Frenken et al, 2009). By enriching scientometrics data with geospatial information
such as the countries from which conference participants and authors came, the ge-
ographic distributions of co-authorship, the local or global scope of certain subdis-
ciplines, and so on, researchers are able to explore spatial distributions of citations,
spatial biases in collaborations, and differences between local and global citation
impact. Frenken et al (2009) also pointed out that the affiliation information that is
frequently used to provide the geographic knowledge has some issues. For example,
it only reflects the home institute of a visiting scholar, and the granularity of this in-
formation is very coarse. Gao et al (2013) proposed a series of s indices to evaluate
the spatial impact of scientists and developed a framework that used the statistics of
categorical places, spatiotemporal kernel density estimations, cartograms, distance
distributions, and point-pattern analysis to identify spatiotemporal citation patterns.
Hu et al (2013, 2014b) developed several visualization components using scien-
tometrics and geospatial Linked Data to provide analysis functions for scientific
knowledge discovery from a geographic perspective.

Semantic publishing provides a second example where geospatial data enrich-
ment can benefit the analysis of the initial data. The idea of semantic publishing
is to enhance online documents with linked metadata, which facilitates machines
and softwares to understand the structure and consume the information in order to
provide richer content. Many of the online documents contain spatial as well as tem-
poral information. In order to extract semantics and create structured content, meth-
ods involving geographic information retrieval are frequently utilized. For instance,
place name disambiguation is used to determine the corresponding geographic en-
tity for geographic terms in the document and coreference resolution is used to
connect different surface forms of the same geographic entity. By enriching these
geographic entities with semantic content, users can either follow their nose to ex-
plore the information or the system can generate analytics and graphs to summarize
the geographic knowledge. OpenCalais12 is such a system that can highlight places
mentioned in a document and link them to facts from an external knowledge graph.

Geospatial data enrichment can also improve machine learning models by en-
riching the input training data with additional geographic information. For example,
aiming to provide better embeddings for map search and location recommendation,
Yan et al (2017) devised an augmented spatial context-based algorithm that con-
sidered both local and global geographic context to learn embeddings for different
place types and achieved better results based on three different evaluation schemes.

12 http://www.opencalais.com/
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Berg et al (2014) estimated the spatiotemporal priors given locations of bird species
and developed an image classifier that can greatly improve the accuracy of catego-
rizing highly similar species of birds. Tang et al (2015) explored different ways of
encoding features extracted from the GPS information of images into Convolutional
Neural Networks (CNN) and improved the mean average precision on classifying
Flickr images by 7%. Along the same line, Yan et al (2018) incorporated location
Bayesian priors based on spatial contexts into the state-of-the-art CNN models, such
as ResNet and DenseNet, using different approaches, such as co-occurrence models
and Long Short-Term Memory (LSTM), and improved the classification of the exte-
rior and interior images of different places collected on Google Maps, Google Street
View, and Yelp by over 40% in accuracy. In addition, Mai et al (2020) proposed a
general-purpose location encoding model called Space2Vec. By combining it with
the state-of-the-art image classification model, the hybrid model achieved better per-
formances on fine-grained image recognition tasks. All these examples have shown
that geospatial data and domain knowledge can further enhance machine learning
models.

5 Summary

In this chapter, we discussed three aspects of harnessing the power heterogeneous
geospatial data, namely conflation, integration, and enrichment. These three parts
are not mutually exclusive and can overlap. Conflation deals with reconciling data
from multiple sources to resolve inconsistencies and arrive at a new dataset that is
improved in terms of spatial accuracy, feature completeness, logical consistency, and
so on. Data integration focuses on combining datasets in meaningful ways, e.g., as
part of larger workflows or to arrive at a new, more holistic data product. In many re-
gards conflation can be considered as a strategy of data integration (Saalfeld, 1988),
e.g., in the form of vector and raster conflation to correct street networks. However,
conflation is just one such strategy, and, thus, we decided to address both separately
here and also focus on integration as a driver of cross-thematic analysis. This view
seems more in line with the recent thinking about heterogeneity in the context of
big data. A similar concept that often occurs in discussions about the integration of
geospatial data is semantic interoperability which studies how to ensure that services
can exchange information meaningfully, i. e., in a way that preserves the intended
interpretation of domain vocabularies. Finally, enrichment is the step of getting ad-
ditional information, e.g., in the form of statements from a knowledge graph, about
entities in the current dataset or project to provide additional contextual informa-
tion. A typical example would be up-to-date demographics for a study area as well
as events that happened in the past. This last enrichment step is part of ongoing
research.
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