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The availability and use of geographic information technologies and data for describing the patterns and

processes operating on or near the Earth’s surface have grown substantially during the past fifty years. The

number of geographic information systems software packages and algorithms has also grown quickly during

this period, fueled by rapid advances in computing and the explosive growth in the availability of digital

data describing specific phenomena. Geographic information scientists therefore increasingly find themselves

choosing between multiple software suites and algorithms to execute specific analysis, modeling, and

visualization tasks in environmental applications today. This is a major challenge because it is often difficult

to assess the efficacy of the candidate software platforms and algorithms when used in specific applications

and study areas, which often generate different results. The subtleties and issues that characterize the field of

geomorphometry are used here to document the need for (1) theoretically based software and algorithms; (2)

new methods for the collection of provenance information about the data and code along with application

context knowledge; and (3) new protocols for distributing this information and knowledge along with the

data and code. This article discusses the progress and enduring challenges connected with these outcomes.

Key Words: application context knowledge, e-science, GIS, replicability, reproducibility, scientific workflow systems.

C
omputation has become a widely accepted, if

not an expected, component of geospatial

research, rising to the level of a “third branch”

of science along with theory and experimentation

(Deelman et al. 2009), or part of a “fourth paradigm”

of scientific discovery beyond the existing paradigms

of empiricism, laboratory analysis, and simulation

(Hey, Tansley, and Tolie 2009). A computational

approach to geospatial research allows the rapid utili-

zation of many disparate data sources and the applica-

tion of many variants of an algorithm to execute any

specific analysis. Modern geospatial research, however,

is based on an in silico science involving the complex

process of data acquisition, data management, analy-

sis, visualization, and dissemination of results.
We can use geomorphometry, the science of

quantitative land surface analysis, to illustrate the

current state of affairs. Great strides have been made

in geomorphometry during the past fifty years,

spurred on by new sources of digital elevation data,

the specification of new land surface parameters, the

extraction of landforms and other land surface

objects, the improving characterization of error and

uncertainty, and the development of code to facili-

tate and support digital terrain modeling workflows.
The calculation and use of land surface parame-

ters constitute the heart of geomorphometry. There

are now more than 100 primary and secondary land

surface parameters in common use (Wilson 2018).

The majority are primary parameters derived from

square-grid digital elevation models (DEMs) that

measure site-specific, local, or regional characteristics

of the land surface without additional input (Wilson

and Burrough 1999). The secondary parameters are

calculated using at least two primary parameters and

additional inputs in some instances and focus on

water flow and soil redistribution or energy and heat

regimes (Wilson and Gallant 2000). Many of these
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land surface parameters incorporate flow direction
and rely on preconditioning of the elevation source
data to delineate the channel system and fill spuri-
ous pits, before using one or more of the twenty-four
flow direction algorithms proposed during the past
thirty years. In addition, several of the newer flow
direction algorithms combine square-grid DEMs and
triangulated irregular networks to avoid some of the
shortcomings associated with using square-grid DEMs
to describe the surface and to take advantage of the
additional discretization afforded by triangulated
irregular networks (Wilson 2018).

That said, it is very difficult to assess the efficacy

of the aforementioned flow-routing algorithms and
their impact on flow accumulation and other land

surface parameters that incorporate them. The most
popular approaches have relied on four geometrical

shapes for which the flow directions are known (e.g.,
Zhou and Liu 2002), comparisons of the performance
of two or more of the aforementioned flow direction

algorithms in specific landscapes (e.g., Wilson, Lam,
and Deng 2007; Pilesj€o and Hasan 2014), or both. A

recent study by Buchanan et al. (2014) illustrates the
enormity of the challenge here. This study calculated

topographic wetness using more than 400 unique
approaches that considered different horizontal DEM
resolutions, the vertical accuracy of the DEM, flow

direction and slope algorithms, smoothing versus low-
pass filtering, and the inclusion of relevant soil proper-

ties, to compare the resulting topographic wetness maps
with observed soil moisture in agricultural fields.

This state of affairs suggests two major challenges.

The first is that different software tools might pro-
duce different results when the same spatial analysis

technique (i.e., the same flow direction approach in
this instance) is applied to the same data or the
results cannot be reproduced by the same software

due to the lack of proper metadata or provenance
documenting the spatial processing parameters that

were used. Qin et al. (2016) recently used case-based
formalization and reasoning methods to acquire

application context knowledge that might help to
address the latter issue. These authors selected 125
cases of drainage network extraction (fifty for evalu-

ation, seventy-five for reasoning) from peer-reviewed
journal articles and used these cases to determine

the catchment area threshold for extracting drainage
networks. This approach could be applied to many
of the challenges currently encountered in digital

terrain modeling workflows, but it would likely not
solve the second problem.

The second problem is that there is every reason

to believe that spatial scientists will need to be espe-

cially concerned about replicability because it is

highly likely that the results generated in one geo-

graphic area will not be replicable in other geo-

graphic areas (cf. Waters [2020], who described how

geographically weighted regression could be used for

replicating the validity of models across space). New

approaches, such as the computationally efficient

version of the theoretical derivation of specific

catchment area by Hutchinson and Gallant (2011),

recently offered by Qin et al. (2017), might help to

minimize these problems, but for the fact that many

of the current techniques for spatial analysis lack a

sound theoretical justification.
These shortcomings suggest the need for new

work to strengthen the replicability and reproducibil-

ity of geospatial research. The following sections

tackle the aforementioned two challenges by focus-

ing on three aspects. First, we propose a five-star

guide for measuring replicability and reproducibility.

We then explore how e-science and scientific work-

flow software might help to achieve these goals.

After summarizing what we have accomplished to

date to operationalize replicability and reproducibil-

ity in the geospatial sciences, we offer some conclu-

sions and suggestions for future work.

New Protocols for Distributing the Data
and Code of Geospatial Research

The data and code of a study need to be shared

to address the aforementioned challenges and effec-

tively support replicability and reproducibility in

geospatial research. They can include the geospatial

data used by a study, such as the data themselves,

the geographic areas of data, data sources, and other

metadata, as well as information about many aspects

of the performed spatial analysis, such as the soft-

ware and algorithm choices, software package ver-

sions, parameter settings, preprocessing steps, and

others. Sharing all such information in a well-for-

matted manner, however, is a daunting task for

many researchers.
Here, we propose a five-star practical guide for

sharing data and code in geospatial research, mod-

eled after the five-star system offered by Berners-Lee

(2009) for publishing linked open data on the Web

(Figure 1). Instead of asking researchers to share all

pieces of data and code, this five-star guide
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encourages a simple start of data and code sharing,
and researchers can move to a higher level when

time and other resources allow.

� One star: Sharing the data and code of a geospatial

study under an open license. At this level, researchers

only need to make their data and code available via a

shared Web link or a GitHub repository. The shared

data and code should have an open license, such as

an MIT or GNU General Public license. Researchers

do not need to clean their code or make any meta-

data available, however.

� Two stars: Sharing the data and code as well as some

metadata and provenance information. At this level,

researchers are expected to provide some additional

metadata describing their data and code, such as the

studied geographic area, the geographic information

systems (GIS) software package and version used, the

time of data collection, the meaning of individual

attributes of a data set, and comments on individual

lines of code, including the parameter settings of spa-

tial analysis methods. The metadata and provenance

information do not have to be complete or structured.

� Three stars: Sharing the data and code as well as

complete and well-structured metadata and prove-

nance information. The criteria used to specify com-

pleteness include descriptions of each attribute of a

data table and the provision of the coordinate infor-

mation for geographic data sets. Structured metadata

and provenance information using comma-separated

values, JavaScript Object Notation, Resource

Description Framework, or some other open format

is preferred.

� Four stars: Sharing the data and code as well as com-

plete and well-structured metadata and provenance

information encoded following geospatial standards.

This level adds to the previous one by encouraging

researchers to encode their data and metadata using

standards, such as those from the Federal Geographic

Data Committee, the International Organization

for Standardization, and the Open Geospatial

Consortium (OGC). There might also be links pro-

vided to the appropriate application program-

ming interfaces.

� Five stars: Sharing the data and code along with com-

plete and well-structured metadata and provenance

information encoded following geospatial standards

and encapsulated using standard containers such as

Docker. This level expects researchers to share data

and code in a way that enables the complete recovery

of the working environment of a study. For example,

Docker provides virtualization at the level of the

operating system and supports the reproduction of a

study under the same computing environment.

E-Science and Scientific Workflow
Software as a Framework for Facilitating
Replicability and Reproducibility

The five-star guide for sharing data and code illus-

trated in Figure 1 shows how every aspect of the

research process must be captured and shared to

achieve replicability and reproducibility (cf. Tullis

and Kar 2020; Waters 2020, N€ust and Pebesma

Figure 1. Five-star guide to encourage more researchers and GIS practitioners to share their data and code, modeled after the five-star

system for publishing linked open data on the Web proposed by Berners-Lee (2009). GIS ¼ geographic information systems.
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2020). N€ust and Pebesma (2020), for example, sug-

gested replacing the traditional text-centric research

paper with executable research compendia that

include digital artifacts that encapsulate the data,

the scripted workflow and its computing environ-

ment, and the article based on a notebook. E-science

offers a framework to integrate technology into all

aspects of the research process and automate the

acquisition of the information required to reproduce

or replicate research. The e-science framework

encourages the research process to be viewed as a

scientific workflow or set of sequential, iterative, or

branched tasks that are required to carry out a com-

putational experiment (Deelman et al. 2009). Often,

these systems are represented by “dataflow languages

in which workflows are represented as directed

graphs, with nodes denoting computational steps and

connections representing data dependencies (and data

flow) between steps” (McPhillips et al. 2009, 542).

Both open-source and commercial off-the-shelf soft-

ware packages exist to help scientists create, manage,

and share workflows (see Garijo et al. [2014] for

a review).

Scientific workflow systems document and poten-

tially automate the capture of data, analytical, and

visualization provenance information. Their visual

nature promotes understanding and reuse. Garijo et al.

(2014) outlined several advantages to workflow reuse:

It supports researcher attribution of established meth-

ods, improves quality through iterative and collabora-

tive workflow development, and makes the research

process more efficient. Encapsulation of the research

process in a scientific workflow system facilitates shar-

ing of workflows. For example, myexperiment (https://

www.myexperiment.org/) is a repository of nearly

4,000 workflows from a variety of workflow manage-

ment systems (Goble et al. 2010).
We turn next to describe the progress among

researchers, instructors, students, engineers, software

developers, and practitioners for facilitating replica-

bility and reproducibility in geospatial studies.

New Methods to Operationalize
Replicability and Reproducibility in
Spatial Analysis and Geospatial Software

The operationalization of replicability and repro-

ducibility requires an effective mechanism to trace

automatically the flow of data in geospatial software.

Metadata and provenance become essential elements

in such an endeavor. Metadata is a kind of data; it

often uses standard language to encode information

about the data, such as a spatial reference system, a

bounding box, the data provider, and the data con-

tent (Goodchild 2007). Provenance is a kind of

metadata that focuses on describing the lineage of

the data (Missier, Belhajjame, and Cheney 2013).

Current metadata and provenance have been limited

to the modeling of data, which is only one element

in a scientific workflow (cf. Costello et al. 2013;

Tullis and Kar 2020). To enable full automation and

reproducibility, we argue that it is equally, if not

more, important to capture runtime information

about both the data and the spatial operation, or

spatial operation chains, in a complex problem-solv-

ing environment.

Metadata and Provenance in a Spatial
Analytical Workbench

Anselin, Rey, and Li (2014) encoded metadata

and provenance into open-source spatial analysis

libraries to improve interoperability, reuse, and

reproducibility of spatial data and methods. The lack

of replicability in current spatial software motivated

this work. We take the generation of spatial

weights—a fundamental element that represents the

spatial neighbor relationships used to model spatial

autocorrelation within spatial data and processes—as

an example. Although a simple task, the generation

of spatial weights can leverage different software, dif-

ferent ways for calculating neighborhood, and differ-

ent parameter settings (i.e., row standardization or

not). Given a spatial weights file, however, there are

very limited metadata to interpret how the file was

generated, making the replicability and validation of

the spatial relationship data extremely difficult.

Resolving this issue, Anselin, Rey, and Li (2014)

defined a lightweight provenance structure describ-

ing the input, parameters, and output of a spatial

operation. The data derived from a spatial method

are paired with a metadata file describing the work-

flow for generating them. The data are associated

with a digital object identifier (see also Gallagher

et al. 2015) so that they can be easily located and

reused, and the spatial methods in a desktop-based

spatial library are shared as standard Web services or

application programming interfaces so that they can

be remotely invoked through their uniform resource
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locator. This way, given a machine-understandable

provenance file detailing the data processing

flow, both the methods and results can be eas-

ily reproduced.

Automated Workflow Generation and Execution in
a Cyberinfrastructure for Replicable Research

As a backbone framework for e-science, cyberin-

frastructure relies on high-performance computing,

high-speed Internet, and advanced middleware to

address data- and computationally intensive prob-

lems (Atkins et al. 2003). One key design principle

of a cyberinfrastructure is the provision of an online

platform that can support physically distributed

researchers to perform spatial analysis in an open,

collaborative, and reproducible manner. In the geo-

spatial domain, researchers have been investigating

new ways to capture, cache, and execute data proc-

essing workflows to improve reproducibility (Wang

2010; Li et al. 2019). For example, Li, Song, and

Tian (2019) developed a cyberinfrastructure portal

powered by spatial ontologies to realize automatic

workflow generation, chaining, and execution to

achieve reproducibility in an online spatial–analyti-

cal environment. Spatial ontologies have three parts.

The first is an ontology defining thematic classifica-

tion of various types of spatial data that are suitable

for use in different applications. The second is an

ontology defining the input, output, and function of

a spatial operation shared openly with the public as

OGC-compliant Web services. The third is a chain-

ing rule ontology describing how to embed data and

processes in a cascading workflow. A service chain-

ing engine is proposed using the three aforemen-

tioned elements to create an executable workflow

metadata file as a spatial data set that is being

processed in the Web portal by an end user. The

advantage of this solution is the enablement of a ser-

vice-oriented computing paradigm, which includes

not only the spatial data but also the processes

shared as OGC services. These services provide stan-

dardized interfaces for invoking data and processes

that could be located on the Web instead of being

hosted locally. This service-oriented approach signif-

icantly improves data reuse, reduces the efforts in

duplicating already-implemented spatial methods,

and accelerates the speed for knowledge discovery.

More important, the cascading workflow is indepen-

dent of any specific software and instead, it can be

translated easily into different process execution lan-

guages to be run using different tools, to re-create the

analysis results for cross-validation and reproduction.

Conclusions

The probability of successfully reproducing a prior

study increases from one to five stars. Researchers do

need to spend extra time and effort to share code

and data at a higher level, however. This practice

often goes unrewarded in current academic evalua-

tions and, as such, this five-star guide aims to

encourage the start of a culture of data and code

sharing to help facilitate replicability and reproduc-

ibility in geospatial research.
Modern geospatial research is increasingly compu-

tationally intensive, required to integrate many dis-

parate data sources, under increased pressure to be

more interdisciplinary, challenged to analyze increas-

ing volumes of data, and, in some instances, regu-

lated to share data, methods, and results with the

public. Management of all of these ancillary pres-

sures can potentially divert focus from primary

research activities and are impediments to replicabil-

ity and reproducibility. Leveraging technology at

each step of the research process and encapsulating

it in a scientific workflow system should promote the

acquisition and sharing of the information required

to make geospatial research more reproducible

and replicable.
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