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Abstract

Density-based clustering algorithms such as DBSCAN have been widely used

for spatial knowledge discovery as they offer several key advantages compared

to other clustering algorithms. They can discover clusters with arbitrary

shapes, are robust to noise and do not require prior knowledge (or estima-

tion) of the number of clusters. The idea of using a scan circle centered

at each point with a search radius Eps to find at least MinPts points as a

criterion for deriving local density is easily understandable and sufficient for

exploring isotropic spatial point patterns. However, there are many cases

that cannot be adequately captured this way, particularly if they involve lin-

ear features or shapes with a continuously changing density such as a spiral.

In such cases, DBSCAN tends to either create an increasing number of small

clusters or add noise points into large clusters. Therefore, in this paper, we

propose a novel anisotropic density-based clustering algorithm (ADCN). To

motivate our work, we introduce synthetic and real-world cases that cannot

be sufficiently handled by DBSCAN (and OPTICS). We then present our

clustering algorithm and test it with a wide range of cases. We demonstrate

that our algorithm can perform as equally well as DBSCAN in cases that do

not explicitly benefit from an anisotropic perspective and that it outperforms
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DBSCAN in cases that do. Finally, we show that our approach has the same

time complexity as DBSCAN and OPTICS, namely O(n log n) when using a

spatial index and O(n2) otherwise. We provide an implementation and test

the runtime over multiple cases.

Keywords: Anisotropic, clustering, noise, spatial point patterns

1. Introduction and Motivation1

Cluster analysis is a key component of modern knowledge discovery, be it2

as a technique for reducing dimensionality, identifying prototypes, cleansing3

noise, determining core regions, or segmentation. A wide range of cluster-4

ing algorithms, such as DBSCAN (Ester et al., 1996), OPTICS (Ankerst5

et al., 1999), K-means (MacQueen et al., 1967), and Mean Shift (Comani-6

ciu and Meer, 2002), have been proposed and implemented over the last7

decades. Many clustering algorithms depend on distance as their main cri-8

terion (Davies and Bouldin, 1979). They assume isotropic second-order ef-9

fects (i.e., spatial dependence) among spatial objects thereby implying that10

the magnitude of similarity and interaction between two objects mostly de-11

pends on their distance. However, the genesis of many geographic phenomena12

demonstrates clear anisotropic spatial processes. As for ecological and geo-13

logical features, such as the spatial distribution of rocks (Hoek, 1964), soil14

(Barden, 1963), and airborne pollution (Isaaks and Srivastava, 1989), their15

spatial patterns vary in direction (Fortin et al., 2002). Similarly, data about16

urban dynamics from social media, the census, transportation studies, and17

so forth, are highly restricted and defined by the layout of urban spaces, and18

thus show clear variance along directions. To give a concrete example, geo-19
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tagged images be it in the city or the great outdoors, show clear directional20

patterns due to roads, hiking trails, or simply for the fact that they originate21

from human, goal-directed trajectories. Isotropic clustering algorithms such22

as DBSCAN have difficulties dealing with the resulting point patterns and ei-23

ther fail to eliminate noise or do so at the expense of introducing many small24

clusters. One such example is depicted in Figure 1. Due to the changing25

density, algorithms such as DBSCAN will classify some noise, i.e., points be-26

tween the spiral arms, as being part of the cluster. To address this problem,27

we propose an anisotropic density-based clustering algorithm.28

[Figure 1 about here.]29

More specifically, the research contributions of this paper are30

as follows:31

• We introduce an anisotropic density-based clustering algorithm (ADCN32

1). While the algorithm differs in the underlying assumptions, it uses33

the same two parameters as DBSCAN, namely Eps and MinPts, thereby34

providing an intuitive explanation and integration into existing work-35

flows.36

• We motivate the need for such algorithm by showing 12 synthetic and 837

real-world use cases and each with 3 different noise definitions modeled38

as buffers that generate a total of 60 test cases.39

1This paper is a substantially extended version of the short paper Mai et al. (2016).

It also adds an open source implementation of ADCN, a test environment, as well as new

evaluation results on a larger sample.
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• We demonstrate that ADCN performs as well as DBSCAN (and OP-40

TICS) for isotropic cases but outperforms both algorithms in cases that41

benefit from an anisotropic perspective.42

• We argue that ADCN has the same time complexity as DBSCAN and43

OPTICS, namely O(n log n) when using a spatial index and O(n2)44

otherwise.45

• We provide an implementation for ADCN and apply it to the use cases46

to demonstrate the runtime behavior of our algorithm. As ADCN has47

to compute whether a point is within an ellipse instead of merely relying48

on the radius of the scan circle, its runtime is slower than DBSCAN49

while remaining comparable to OPTICS. We discuss how the runtime50

difference can be reduced by using a spatial index and by testing the51

radius case first.52

The remainder of the paper is structured as follows. First, in Section 2, we53

discuss related work such as variants of DBSCAN. Next, we introduce ADCN54

and discuss two potential realizations of measuring anisotropicity in Section55

3. Use cases, the development of a test environment, and a performance56

evaluation of ADCN are presented in Section 4. Finally, in Section 5, we57

conclude our work and point to directions for future work.58

2. Related Work59

Clustering algorithms can be classified into several categories, including60

but not limited to partitioning, hierarchical, density-based, graph-based, and61
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grid-based approaches (Han et al., 2011; Deng et al., 2011). Each of these cat-62

egories contains several well known clustering algorithms with their specific63

pros and cons. Here we focus on the density-based approaches.64

Density-based clustering algorithms are widely used in big geo-data min-65

ing and analysis tasks, like generating polygons from a set of points (Moreira66

and Santos, 2007; Duckham et al., 2008; Zhong and Duckham, 2016), dis-67

covering urban areas of interest (Hu et al., 2015), revealing vague cognitive68

regions (Gao et al., 2017), detecting human mobility patterns (Huang and69

Wong, 2015; Huang, 2017; Huang and Wong, 2016; Jurdak et al., 2015), and70

identifying animal mobility patterns (Damiani et al., 2016).71

Density-based clustering has many advantages over other approaches.72

These advantages include: 1) the ability to discover clusters with arbitrary73

shapes; 2) robustness to data noise; and 3) no requirement to pre-define the74

number of clusters. While DBSCAN remains the most popular density-based75

clustering method, many related algorithms have been proposed to compen-76

sate some of its limitations. Most of them, such as OPTICS (Ankerst et al.,77

1999) and VDBSCAN (Liu et al., 2007), address problems arising from den-78

sity variations within clusters. Others, such as ST-DBSCAN (Birant and79

Kut, 2007), add a temporal dimension. GDBSCAN (Sander et al., 1998)80

extends DBSCAN to include non-spatial attributes into clustering and en-81

ables the clustering of high dimensional data. NET-DBSCAN (Stefanakis,82

2007) revises DBSCAN for network data. To improve the computational effi-83

ciency, algorithms such as IDBSCAN (Borah and Bhattacharyya, 2004) and84

KIDBSCAN (Tsai and Liu, 2006) have been proposed.85

All of these algorithms use distance as the major clustering criterion.86
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They assume that the observed spatial patterns are isotropic, i.e., that in-87

tensity dose not vary by direction. For example, DBSCAN uses a scan circle88

with an Eps radius centered at each point to evaluate the local density around89

the corresponding point. A cluster is created and expanded as long as the90

number of points inside this circle (Eps-neigborhood) is larger than MinPts.91

Consequently, DBSCAN does not consider the spatial distribution of the92

Eps-neigborhood which poses problems for linear patterns.93

Some clustering algorithms do consider local directions. However, most94

of these so-call direction-based clustering techniques use spatial data which95

have a pre-defined local direction, e.g., trajectory data. The local direction96

of one point is pre-defined as the direction of the vector which is part of the97

trajectories with the corresponding point as its origination or destination.98

DEN (Zhou et al., 2010) is one direction-based clustering method which uses99

a grid data structure to group trajectories by moving directions. PDC+100

(Wang and Wang, 2012) is another trajectory specific DBSCAN variant that101

includes the direction per point. DB-SMoT (Rocha et al., 2010) includes102

both the direction and temporal information of GPS trajectories from fishing103

vessel into the clustering process. Although all of these three direction-104

based clustering algorithms incorporate local direction as one of the clustering105

criteria, they can be applied to only trajectories data.106

Anisotropicity (Fortin et al., 2002) describes the variation of directions107

in spatial point processes in contrast to isotropicity. It is another way to108

describe intensity variation in spatial point process other than first- and109

second-order effects. Anisotropicity has been studied in the context of inter-110

polation where a spatially continuous phenomenon is measured, such as di-111
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rectional variogram (Isaaks and Srivastava, 1989) and different modifications112

of Kriging methods based on local anisotropicity (Stroet and Snepvangers,113

2005; Machuca-Mory and Deutsch, 2013; Boisvert et al., 2009). In this pa-114

per we focus on anisotropicity of spatial point processes. Researchers stud-115

ied anisotropicity of spatial point processes from a theoretical perspective116

by analyzing their realizations such as detecting anisotropy in spatial point117

patterns (DErcole and Mateu, 2013) and estimating geometric anisotropic118

spatial point patterns (Rajala et al., 2016; Møller and Toftaker, 2014). Here,119

we study anisotropicity in the context of density-based clustering algorithms.120

A few clustering algorithms take anisotropic processes into account. For121

instance, in order to obtain good results for crack detection, an anisotropic122

clustering algorithm (Zhao et al., 2015) has been proposed to revise DB-123

SCAN by changing the distance metric to geodesic distance. QUAC (Hanwell124

and Mirmehdi, 2014) demonstrates another anisotropic clustering algorithm125

which does not make an isotropic assumption. It takes the advantages of126

anisotropic Gaussian kernels to adapt to local data shapes and scales and127

prevents singularities from occurring by fitting the Gaussian mixture model128

(GMM). QUAC emphasizes the limitation of an isotropic assumption and129

highlights the power of anisotropic clustering. However, due to the use of130

anisotropic Gaussian kernels, QUAC can only detect clusters which have131

ellipsoid shapes. Each cluster derived from QUAC will have a major direc-132

tion. In real-world cases, spatial pattern will show arbitrary shapes. Even133

more, the local direction is not necessary the same between and even within134

clusters. Instead, it is reasonable to assume that local direction can change135

continuously in different parts of the same cluster.136

7



3. Introducing ADCN137

In this section we introduce the proposed Anisotropic Density-based138

Clustering with Noise (ADCN).139

3.1. Anisotropic Perspective on Local Density140

Without predefined direction information from spatial datasets, one has141

to compute the local direction for each point based on the spatial distribution142

of points around it. The standard deviation ellipse (SDE) (Yuill, 1971) is a143

suitable method to get the major direction of a point set. In addition to the144

major direction (long axis), the flattening of the SDE implies how much the145

points are strictly distributed along the long axis. The flattening of an ellipse146

is calculated from its long axis a and short axis b as given by Equation 1:147

f “
a´ b

a
(1)

Given n points, the standard deviation ellipse constructs an ellipse to148

represent the orientation and arrangement of these points. The center of this149

ellipse O(X, Y ) is defined as the geometric center of these n points and is150

calculated by Equation 2:151

X “

řn
i“1 xi
n

, Y “

řn
i“1 yi
n

(2)

The coordinates (xi, yi) of each point are normalized to the deviation from152

the mean areal center point (Equation 3):153

rxi “ xi ´X, ryi “ yi ´ Y , (3)
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Equation 3 can be seen as a coordinates translation to the new origin (X,154

Y ). If we rotate the new coordinate system counterclockwise about O by155

angle θ (0 ă θ ď 2π) and get the new coordinate system Xo-Yo, the standard156

deviation along Xo axis σx and Yo axis σy is calculated as given in Equation157

4 and 5.158

σx “

c

řn
i“1pryi sin θ ` rxi cos θq2

n
(4)

σy “

c

řn
i“1pryi cos θ ´ rxi sin θq2

n
(5)

The long/short axis of SDE is along the direction who has the maxi-159

mum/minimum standard deviation. Let σmax and σmin be the length the of160

semi-long axis and semi-short axis of SDE. The angle of rotation θm of the161

long/short axis is given by Equation 6 (Yuill, 1971).162

tan θm “ ´
A˘B

C
(6)

A “
n

ÿ

i“1

rxi
2
´

n
ÿ

i“1

ryi
2 (7)

C “ 2
n

ÿ

i“1

rxiryi (8)

B “
?
A2 ` C2 (9)

The ˘ indicates two rotation angles θmax, θmin corresponding to long and163

short axis.164

3.2. Anisotropic Density-Based Clusters165

In order to introduce an anisotropic perspective to density-based clus-166

tering algorithms such as DBSCAN, we have to revise the definition of an167
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Eps-neighborhood of a point. First, the original Eps-neighborhood of a point168

in a dataset D is defined by DBSCAN as given by Definition 1.169

Definition 1. (Eps-neighborhood of a point) The Eps-neighborhood NEpsppiq

of Point pi is defined as all the points within the scan circle centered at pi

with a radius Eps, which can be expressed as:

NEpsppiq “ tpjpxj, yjq P D|distppi, pjq ď Epsu

Such scan circle results in an isotropic perspective on clustering. However,170

as we discuss above, an anisotropic assumption will be more appropriate for171

some geographic phenomena. Intuitively, in order to introduce anisotropicity172

to DBSCAN, one can employ a scan ellipse instead of a circle to define the173

Eps-neighborhood of each point. Before we give a definition of the Eps-174

ellipse-neighborhood of a point, it is necessary to define a set of points around175

a point (Search-neighborhood of a point) which is used to derive the scan176

ellipse; See Definition 2.177

Definition 2. (Search-neighborhood of a point) A set of points Sppiq around178

Point pi is called search-neighborhood of Point pi and can be defined in two179

ways:180

1. The Eps-neighborhood NEpsppiq of Point pi.181

2. The k-th nearest neighbor KNNppiq of Point pi. Here k “ MinPts182

and KNNppiq does not include pi itself.183

After determining the search-neighborhood of a point, it is possible to de-184

fine the Eps-ellipse-neighborhood region (See Definition 3) and Eps-ellipse-185

neighborhood (See Definition 4) of each point.186
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Definition 3. (Eps-ellipse-neighborhood region of a point) An ellipse ERi187

is called Eps-ellipse-neighborhood region of a point pi iff:188

1. Ellipse ERi is centered at Point pi.189

2. Ellipse ERi is scaled from the standard deviation ellipse SDEi com-190

puted from the Search-neighborhood Sppiq of Point pi.191

3. σmax
1

σmin
1 “

σmax

σmin
;192

where σmax
1,σmin

1 and σmax,σmin are the length of semi-long and semi-193

short axis of Ellipse ERi and Ellipse SDEi.194

4. AreapERiq “ πab “ πEps2195

According to Definition 3, the Eps-ellipse-neighborhood region of a point196

is computed based on the search-neighborhood of a point. Since there are197

two definitions of the search-neighborhood of a point (See Definition 2), each198

point should have a unique Eps-ellipse-neighborhood region given Eps (using199

the first definition in Definition 2) or MinPts (using the second definition in200

Definition 2) as long as the search-neighborhood of the current point has at201

least two points for the computation of the standard deviation ellipse.202

Definition 4. (Eps-ellipse-neighborhood of a point) An Eps-ellipse-neighborhood203

ENEpsppiq of point pi is defined as all the point inside the eillpse ERi, which204

can be expressed as ENEpsppiq “ tpjpxj, yjq P D|
ppyj´yiq sin θmax`pxj´xiq cos θmaxq

2

a2 `205

ppyj´yiq cos θmax´pxj´xiq sin θmaxq
2

b2
ď 1u.206

There are two kinds of points in a cluster obtained from DBSCAN: core207

point and border point. Core points have at least MinPts points in their208

Eps-neighborhood, while border points have less than MinPts points in209
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their Eps-neighborhood but are density reachable from at least one core210

point. Our anisotropic clustering algorithm has a similar definition of core211

point and border point. The notions of directly anisotropic-density-reachable212

and core point are illustrated bellow; see Definition 5.213

Definition 5. (Directly anisotropic-density-reachable) A point pj is directly214

anisotropic density reachable from point pi wrt. Eps and MinPts iff:215

1. pj P ENEpsppiq.216

2. |ENEpsppiq| ěMinPts. (Core point condition)217

If point p is directly anisotropic reachable from point q, then point q must218

be a core point which has no less than MinPts points in its Eps-ellipse-219

neighborhood. Similar to the notion of density-reachable in DBSCAN, the220

notion of anisotropic-density-reachable is given in Definition 6.221

Definition 6. (Anisotropic-density-reachable) A point p is anisotropic den-222

sity reachable from point q wrt. Eps and MinPts if there exists a chain of223

points p1, p2, ..., pn, (p1 “ q, and pn “ p) such that point pi`1 is directly224

anisotropic density reachable from pi.225

Although anisotropic density reachability is not a symmetric relation, if226

such a directly anisotropic density reachable chain exits, then except for point227

pn, the other n´ 1 points are all core points. If Point pn is also a core point,228

then symmetrically point p1 is also density reachable from pn. That means229

that if two points p, q are anisotropic density reachable from each other, then230

both of them are core points and belong to the same cluster.231
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Equipped with the above definitions, we are able to define our anisotropic232

density-based notion of clustering. DBSCAN includes both core points and233

border points into its clusters. In our clustering algorithm, only core points234

will be treated as cluster points. Border points will be excluded from clusters235

and treated as noise points, because otherwise many noise points will be236

included into clusters according to experimental results. In short, a cluster237

(See definition 7) is defined as a subset of points from the whole points dataset238

in which each two points are anisotropic density reachable from another.239

Noise points (See Definition 8) are defined as the subset of points from the240

entire points dataset for which each point has less than MinPts points in its241

Eps-ellipse-neighborhood.242

Definition 7. (Cluster) Let D be a points dataset. A cluster C is a no-243

empty subset of D wrt. Eps and MinPts, iff:244

1. @p P C, ENEpsppq ěMinPts.245

2. @p, q P C, p, q are anisotropic density reachable from each other wrt.246

Eps and MinPts.247

A cluster C has two attribute:248

@p P C and @q P D, if p is anisotropic density reachable from q wrt. Eps249

and MinPts, then250

1. q P C.251

2. There must be a directly anisotropic density reachable points chain252

Cpq, pq: p1, p2, ..., pn, (p1 “ q, and pn “ p), such that pi`1 is directly253

anisotropic density reachable from pi. Then @pi P Cpq, pq, pi P C.254
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Definition 8. (Noise) Let D be a points dataset. A point p is a noise point255

wrt. Eps and MinPts, if p P D and ENEpsppq ăMinPts.256

Let C1, C2, ..., Ck be the clusters of the points dataset D wrt. Eps257

and MinPts. From Definition 8, if p P D, and ENEpsppq ă MinPts, then258

@Ci P tC1, C2, ..., Cku, p R Ci.259

[Figure 2 about here.]260

[Figure 3 about here.]261

According to Definition 2, and in contrast to a simple scan circle, there262

are at least two ways to define a search neighborhood of the center point263

pi. Thus, ADCN can be divided into a ADCN-Eps variant that uses Eps-264

neighborhood NEpsppiq as the search neighborhood and ADCN-KNN that265

uses k-th nearest neighbors KNNppiq as the search neighborhood. Figures 2266

and 3 illustrates the related definitions for ADCN-Eps and ADCN-KNN. The267

red points in both figures represent current center points. The blue points268

indicate the two different search neighborhoods of the corresponding center269

points according to Definition 2. Note that for ADCN-Eps, the center point270

is also part of its search neighborhood which is not true for ADCN-KNN.271

The green ellipses and green crosses stand for the standard deviation ellipses272

constructed from the corresponding search neighborhood and their center273

points. The red ellipses are Eps-ellipse-neighborhood regions while the dash274

line circles indicate a DBSCAN-like scan circle. As can be seen, ADCN-KNN275

will exclude the point to the left of the linear bridge-pattern while DBSCAN276

would include it.277
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3.3. ADCN Algorithms278

From the definitions provided above it follows that our anisotropic density-279

based clustering with noise algorithm takes the same parameters (MinPts280

and Eps) as DBSCAN and that they have to be decided before clustering.281

This is for good reasons, as the proper selection of DBSCAN parameters282

has been well studied and ADCN can easily replace DBSCAN without any283

changes to established workflows.284

As shown in Algorithm 1, ADCN starts with an arbitrary point pi in285

a points dataset D and discovers all the core points which are anisotropic286

density reachable from point pi. According to Definition 2, there are two287

ways to get the search neighborhood of point pi which will result in differ-288

ent Eps-ellipse-neighborhood ENEpsppjq based on the derived Eps-ellipse-289

neighborhood-region in Algorithm 2. Hence, ADCN can be implemented by290

two algorithms (ADCN-Eps, ADCN-KNN). Algorithm 2 needs to take care291

of situations when all points of the Search-neighborhood Sppiq of Point pi292

are strictly on the same line. In this case, the short axis of Eps-ellipse-293

neighborhood region ERi becomes zero and its long axis become Infinity.294

This means ENEpsppiq is diminished to a straight line. The process of con-295

structing Eps-ellipse-neighborhood ENEpsppiq of Point pi becomes a point-296

on-line query.297

According to Algorithm 3, ADCN-Eps uses the Eps-neighborhoodNEpsppiq298

of point pi as the search neighborhood which will be used later to construct299

the standard deviation ellipse. In contrast, ADCN-KNN (Algorithm 4) uses300

a k-th nearest neighborhood of point pi as the search neighborhood. Here301

point pi will not be included in its k-th nearest neighborhood. As can be302
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seen, the run times of ADCN-Eps and ADCN-KNN are heavily dominated303

by the search-neighborhood query which is executed on each point. Hence,304

the time complexities of ADCN, DBSCAN, and OPTICS are O(n2) without305

a spatial index and O(n log n) otherwise.306

4. Experiments and Performance Evaluation307

In this section, we will evaluate the performance of ADCN from two per-308

spectives: clustering quality and clustering efficiency. In contrast to the scan309

circle of DBSCAN, there are at least two ways to determine an anisotropic310

neighborhood. This leads to two realizations of ADCN, namely ADCN-KNN311

and ADCN-Eps. We will evaluate their performance using DBSCAN and312

OPTICS as baselines. We selected OPTICS as an additional baseline as it313

is commonly used to address some of DBSCAN’s shortcomings with respect314

to varying densities.315

According to the research contributions outlined in Section 1, we intend316

to establish (1) that at least one of the ADCN variants performs as good317

as DBSCAN (and OPTICS) for cases that do not explicitly benefit from an318

anisotropic perspective; (2) that the aforementioned variant performs better319

than the baselines for cases that do benefit from an anisotropic perspective;320

and finally (3) that the test cases include point patterns typically used to test321

density-based clustering algorithms as well as real-world cases that highlight322

the need for developing ADCN in the first place. In addition, we will show323

runtime results for all four algorithms.324
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4.1. Experiment Designs325

We have designed several spatial point patterns as test cases for our ex-326

periments. More specifically, we generated 20 test cases with 3 different noise327

settings for each of them. These consist of 12 synthetic and 8 real-world use328

cases which results in a total of 60 case studies. Note that our test cases329

do not only contain linear features such as road networks but also cases that330

are typically used to evaluate algorithms such as DBSCAN, e.g., clusters of331

ellipsoid and rectangular shapes.332

In order to simulate a “ground truth” for the synthetic cases, we created333

polygons to indicate different clusters and randomly generated points within334

these polygons and outside of them. We took a similar approach for the335

eight real-world cases. The only difference is that the polygons for real world336

cases have been generated from buffer zones with a 3-meter radius of the337

real-world features, e.g., existing road networks. This allows us to simulate338

patterns that typically occur in geo-tagged social media data.339

Although we use this approach to simulate the corresponding spatial point340

process, the distinction between clustered points and noise points in the341

resulting spatial point patterns may not be so obvious even from a human’s342

perspective. To avoid cases in which it is unreasonable to expect algorithms343

and humans to differentiate between noise and pattern, we introduced a344

clipping buffer of 0m, 5m, and 10m. For comparison, the typical position345

accuracy of GPS sensors on smartphones and GPS collars for wildlife tracking346

is about 3-15 meters (Wing et al., 2005)(and can decline rapidly in urban347

canyons).348

The generated spatial point patterns of 12 synthetic and 8 real-world use349
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cases with 0m buffer distance are shown in the first column of Figure 5 and350

Figure 6. Note that in all test cases, points generated from different polygons351

are pre-labeled with different cluster IDs which are indicated by different352

colors in the first column of Figure 5 and Figure 6. Points generated outside353

polygons are pre-labeled as noise which are shown in black. These generated354

spatial point patterns serve as ground truth which are used in our clustering355

quality evaluation experiments.356

In order to demonstrate the strengthen of ADCN, we need to compare357

the performance of ADCN with that of DBSCAN and OPTICS from two358

perspectives: clustering quality and clustering efficiency. The experiment359

designs are as follow:360

• As for clustering quality evaluation, we use several clustering quality361

indices to quantify how good the clustering results are. In this work,362

we use Normalized Mutual Information (NMI) and the Rand Index.363

We will explain these two indices in detail in Section 4.3. We stepwise364

tested every possible parameter combinations of Eps, MinPts compu-365

tationally on each test case. For each clustering algorithm, we select the366

parameter combination which has the highest NMI or Rand index. By367

comparing the maximum of NMI and Rand index across different clus-368

tering algorithms in each test case, we can find out the best clustering369

technique.370

• As for clustering efficiency evaluation, we generate spatial point pat-371

terns with different numbers of points by using the polygons of each372

test case mentioned earlier. For each clustering algorithm and each373
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number of points setting, we computed the average runtime. By con-374

structing a runtime curve of each clustering algorithm, we are able to375

compare their runtime efficiency.376

4.2. Test Environment377

In order to compare the performance of ADCN with that of DBSCAN and378

OPTICS, we developed a JavaScript test environment to generate patterns379

and compare the results. It allows us to generate use cases in a Web browser,380

such as Firefox or Chrome, or load them from a GIS, change noise settings,381

determine DBSCAN’s Eps via a KNN distance plot, perform different eval-382

uations, compute runtimes, index the data via an R-tree, and save and load383

the data. Consequently, what matters is the runtime behavior, not the ex-384

act performance (for which JavaScript would not be a suitable choice). All385

cases have been performed on a cold setting, i.e., without any caching using386

an Intel i5-5300U CPU with 8 GB RAM on an Ubuntu 16.04 system. This387

Javascript test environment as well as all the test cases can be downloaded388

from here2.389

Figure 4 shows a snapshot of this test environment. The system has two390

main panels. The map panel on the left side is an interactive canvas in which391

the user can click and create data points. The tool bar on the right side is392

composed of input boxes, selection boxes, and buttons which are divided393

into different groups. Each group is used for a specific purpose, which will394

be discussed as below.395

[Figure 4 about here.]396

2http://stko.geog.ucsb.edu/adcn/
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The “File Operation” tool group is used for point dataset manipulation.397

For simplicity, our environment defines a simple format for point datasets.398

Conceptually, a point dataset is a table containing the coordinates of points,399

their ground truth memberships, and the memberships produced during the400

experiments. The ground truth and experimental memberships are then401

compared to evaluate the cluster algorithms. The “Open Pts File” box is402

used for loading point datasets produced by other GIS. The data points can403

also be abstract points which represent objects, such as documents (Fabrikant404

and Montello, 2008), in a feature space. The prototype takes the coordinates405

of points and maps out these points after rescaling their coordinates based406

on the size of the map panel. During the clustering process it uses Euclidean407

distance as the distance measure.408

The “Clustering Operation” tool group is used to operate clustering tasks.409

The “Eps” and “MinPts” input boxes let users enter the clustering param-410

eters for all clustering algorithms. The “DBSCAN”, “OPTICS”, “ADCN-411

Eps”, “ADCN-KNN” buttons are for running the algorithms. As for the412

implementation of DBSCAN and OPTICS, we used a JavaScript clustering413

library from GitHub 3. This library has basic implementations of DBSCAN,414

OPTICS, K-MEANS, and some other clustering algorithms without any spa-415

tial indexes. Our ADCN-KNN and ADCN-Eps algorithms were implemented416

using the same data structures as used in the library. Such an implemen-417

tation ensures that the evaluation result will reflect the differences of the418

algorithms rather than be affected by the specific data structures used in the419

3https://github.com/uhho/density-clustering
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implementations. Finally, we implemented an R-tree spatial index to accel-420

erate the neighborhood search. We have used the R-tree JavaScript library421

from GitHub 4.422

The “Clustering Evaluation” tool group is composed of “Quality Evalu-423

ation” and “Efficiency Evaluation” subgroups. As for the clustering quality424

evaluation, we implemented two metrics, Normalized mutual Information425

(NMI) and Rand Index, to quantify the goodness of the clustering results.426

The first four buttons in this subgroup will run the corresponding clustering427

algorithm on the current dataset based on all possible parameter combina-428

tions. They will compute two clustering evaluation indexes for each clustering429

result. The “SAVE Index As...” button will save these results to a text file.430

Efficiency evaluation is another important part for comparing clustering431

algorithms. The “Efficiency Evaluation” button will run these four clustering432

algorithms on datasets with different sizes. The “SAVE Efficiency Test As...”433

button can be further used to save the result into a text file.434

Finally, the “KNN” tool group is used to draw the kth nearest neighbor435

plot (KNN plot) of the current dataset based on the MinPts parameter spec-436

ified by the user. For each point, the KNN plot obtains the distance between437

the current point and its kth nearest point (here K is MinPts). Then it438

ranks these kth nearest distance of each point in an ascending order. The439

KNN plot can be used for estimating the appropriate Eps for the current440

point dataset given MinPts. More details this estimation can be found in the441

original DBSCAN paper (Ester et al., 1996).442

4https://github.com/imbcmdth/RTree
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Note that we provide the test environment to make our results repro-443

ducible and to offer a reusable implementation of ADCN, without implying444

that JavaScript would be the language of choice for future, large-scale appli-445

cations of ADCN.446

4.3. Evaluation of Clustering Quality447

We use two clustering quality indices - the normalized mutual information448

(NMI) and the Rand Index - to measure the quality of clustering results of449

all algorithms. NMI originates from information theory and has been revised450

as an objective function for clustering ensembles (Strehl and Ghosh, 2002).451

NMI evaluates the accumulated mutual information shared by the clusters452

from different clustering algorithms. Let n be the number of points in a point453

datasets D. X “ pX1, X2, ..., Xrq and Y “ pY1, Y2, ..., Ysq are two clustering454

results from the same or different clustering algorithms. Note that noise455

points will be treated as their own cluster. Let n
pxq
h be the number of points456

in cluster Xh and n
pyq
l the number of points in cluster Yl. Let n

px,yq
h,l be the457

number of points in the intersect of cluster Xh and Yl. Then the normalized458

mutual information ΦpNMIqpX, Y q is defined in Equation 10 as the similarity459

between two clustering results X and Y :460

ΦpNMIq
pX, Y q “

řr
h“1

řs
l“1 n

px,yq
h,l log

n¨n
px,yq

h,l

n
pxq

h ¨n
pyq

l
b

p
řr
h“1 n

pxq
h log

n
pxq

h

n
qp

řs
l“1 n

pyq
l log

n
pyq

l

n
q

(10)

Rand Index (Rand, 1971) is another objective function for clustering en-461

sembles from a different perspective. It evaluates to which degree two clus-462

tering algorithms share the same relationships between points. Let a be the463
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number of pairs of points in D that are in the same clusters in X and in464

the same cluster in Y . b is the number of pairs of points in D that are in465

different clusters in X and Y . c is the number of pairs of points in D that466

are in the same clusters in X and in different cluster in Y . Finally, d is the467

number of pairs of points in D that are in different clusters in X and in the468

same cluster in Y . The Rand Index ΦpRandqpX, Y q is then defined as given469

by Equation 11:470

ΦpRandqpX, Y q “
a` b

a` b` c` d
(11)

For both NMI and Rand index, larger values indicate higher similarity471

between two clustering results. If a ground truth is available, both NMI472

and Rand can be used to compute the similarity between the result of an473

algorithms and the corresponding ground truth. This is called the extrinsic474

method (Han et al., 2011).475

We use the aforementioned 20 test cases to evaluate the clustering qual-476

ity of DBSCAN, ADCN-Eps, ADCN-KNN, and OPTICS. All of these four477

algorithms take the same parameters (Eps, MinPts). As there are no estab-478

lished methods to determine the best overall parameter combination (we use479

KNN distance plots to estimate Eps) with respect to NMI and Rand Index,480

we stepwise tested every possible parameter combinations of Eps, MinPts481

computationally. An interactive 3D visualization of the NMI and Rand index482

results with changing Eps and MinPts for the spiral case with 0m buffer483

distance can be accessed online 5. Table 1 shows the maximum NMI and484

5http://stko.geog.ucsb.edu/adcn/
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Rand Index results for the four algorithms over all test cases. Note that for485

each case, the best parameter combination with the maximum NMI does not486

necessarily yields the maximum Rand Index. However, among all of these 60487

cases, there are 39, 35, 27, 39 cases for DBSCAN, ADCN-Eps, ADCN-KNN,488

OPTICS in which the best parameter combination for the maximum NMI is489

also the maximum Rand Index. For those cases where parameter combina-490

tions of maximum NMI and maximum Rand do not match, their parameters491

tend to be close to each other because NMI and Rand values are changing492

continuously while Eps and MinPts increase. This indicates that NMI and493

Rand Index have a medium to high similarity in terms of measuring the494

clustering quality.495

As for the 60 test cases, ADCN-KNN has a higher maximum NMI/Rand496

Index than DBSCAN in 55 cases and has a higher maximum NMI/Rand497

Index than OPTICS in 55 cases; see also Figures 7 and 8. Even more,498

ADCN-KNN has a higher maximum NMI/Rand Index than ADCN-Eps in 31499

cases; see Table 2. This indicates that ADCN-KNN gives the best clustering500

results among the tested algorithms. Our test cases do not only contain linear501

features but also cases that are typically used to evaluate algorithms such as502

DBSCAN, e.g., clusters of ellipsoid and rectangular shapes. In fact, these are503

the only cases were DBSCAN slightly out-competes ADCN-KNN, i.e., the504

maximum NMI/Rand Index of ADCN-KNN and DBSCAN are comparable.505

Summing up, ADCN-KNN performs better than all other algorithms when506

dealing with anisotropic cases and equally well as DBSCAN for isotropic507

cases. In the following paragraphs, we will use ADCN-KNN and ADCN508

interchangeably.509
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Figure 5 and 6 show the point patterns as well as the best clustering510

results of all algorithms for the twelve synthesis cases and eight real-world511

cases without buffering, i.e., with the 0m buffer distance. By comparing512

best clustering results of these four algorithms, we can find some interesting513

patterns: 1) Connecting clusters along local directions : ADCN has a better514

ability to detect the local direction of spatial point patterns and connect the515

clusters along this direction; 2) Noise filtering : ADCN does better in filtering516

out noise points. A good example of connecting clusters along local directions517

is the ellipseWidth case in Figure 5. As for the thinnest cluster in the bottom,518

the other 3 algorithms except ADCN-KNN extract multiple clusters from519

these points while ADCN-KNN is able to “connect” these clusters to a single520

one. Many cases show the noise filtering advantage of ADCN. For example,521

thebridge case, the multiBridge case in Figure 5, and theBrooklyn Bridge522

case in Figure 6, reveal that ADCN is better at detecting and filtering out523

noise points along bridge-like features.524

[Figure 5 about here.]525

[Figure 6 about here.]526

[Figure 7 about here.]527

[Figure 8 about here.]528

4.4. Evaluation of Clustering Efficiency529

Finally, this subsection discusses runtime differences of the four tested530

algorithms. Without a spatial index, the time complexity of all algorithms531
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is O(n2). Eps-neighborhood queries consume the major part of the run time532

of density-based clustering algorithms (Ankerst et al., 1999), and, therefore,533

also of ADCN-KNN and ADCN-Eps in terms of Eps-ellipse-neighborhood534

queries. Hence, we implemented an R-tree to accelerate the neighborhood535

queries for all algorithms. This changes their time complexity to O(n log n).536

[Figure 9 about here.]537

In order to enable a comprehensible comparison of the run times of all538

algorithms on different sizes of point datasets, we performed a batch of per-539

formance tests. The polygons from the 20 cases shown above have been used540

to generated point datasets of different sizes ranging from 500 to 10000 in541

500 step intervals. The ratio of noise points to cluster points is set to 0.25.542

Eps, MinPts are set to 15, 5 for all of these experiments. The average run543

times for the same size of point datasets is depicted in Figure 9.544

Unsurprisingly, the runtime of all algorithms increases as the number of545

points increases. The runtime of ADCN-KNN is larger than that of DBSCAN546

and similar that of OPTICS. As the size of the point dataset increases, the547

ratio of the runtimes of ADCN-KNN to DBSCAN decrease from 2.80 to548

1.29. The original OPTICS paper states a 1.6 runtime factor compared549

to DBSCAN. The used OPTICS library failed on datasets exceeding 5500550

points. We also fit the runtime data to the xlogpxq function. Figure 9 shows551

the fitted curves and functions of each clustering algorithm. We can see that552

all R2 of these functions are larger than 0.95 which means that the xlogpxq553

function well captures the trends of the real runtime data of these clustering554

algorithms. For ADCN, our implementation tests for point-in-circle for the555
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radius of the major axis before computing point-in-ellipse to significantly556

reduce the runtime. Further implementation optimizations are possible but557

out of scope of this paper.558

5. Summary and Outlook559

In this work, we proposed an anisotropic density-based clustering algo-560

rithm (ADCN). Both synthetic and real-world cases have been used to verify561

the clustering quality and efficiency of our algorithm compared to DBSCAN562

and OPTICS. We demonstrate that ADCN-KNN outperforms DBSCAN and563

OPTICS for the detection of anisotropic spatial point patterns and performs564

equally well in cases that do not explicitly benefit from an anisotropic per-565

spective. ADCN has the same time complexity as DBSCAN and OPTICS,566

namely O(n log n) when using a spatial index and O(n2) otherwise. With567

respect to the average runtime, the performance of ADCN is comparable568

to OPTICS. Our algorithm is particularly suited for linear features such as569

typically encountered in urban structures. Application areas include but are570

not limited to cleaning and clustering geotagged social media data, e.g., from571

Twitter, Flickr or Strava, analyzing trajectories collected from car sensors,572

wildlife tracking, and so forth. Future work will focus on improving the im-573

plementation of ADCN as well as on studying cognitive aspects of clustering574

and noise detection of linear features.575
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Algorithm 1: ADCN(D, MinPts, Eps)

Input : A set of n points DpX, Y q ; MinPts ; Eps ;

Output: Clusters with different labels Cirs; A set of noise points Noirs

1 foreach point pipxi, yiq in the set of points DpX, Y q do

2 Mark pi as Visited ;

3 //Get Eps-ellipse-neighborhood ENEpsppiq of pi

4 ellipseRegionQuery(pi, D, MinPts, Eps);

5 if |ENEpsppiq| ăMinPts then

6 Add pi to the noise set Noirs;

7 else

8 Create a new Cluster Cirs;

9 Add pi to Cirs;

10 foreach point pjpxj, yjq in ENEpsppiq do

11 if pj is not visited then

12 Mark pj as visited;

13 //Get Eps-ellipse-neighborhood ENEpsppjq of Point pj

14 ellipseRegionQuery(pj, D, MinPts, Eps);

15 if |ENEpsppjq| ěMinPts then

16 Let ENEpsppiq as the merged set of ENEpsppiq and

ENEpsppjq;

17 Add pj to current cluster Cirs;

18 else

19 Add pj to the noise set Noirs;

20 end

21 end

22 end

23 end

24 end

34



Algorithm 2: ellipseRegionQuery(pi, D, MinPts, Eps)

Input : pi, D, MinPts, Eps

Output: Eps-ellipse-neighborhood ENEpsppiq of Point pi

1 //Get the Search-neighborhood Sppiq of Point pi. ADCN-Eps and

ADCN-KNN use different functions.

2 ADCN-Eps: searchNeighborhoodEps(pi, D, Eps); ADCN-KNN:

searchNeighborhoodKNN(pi, D, MinPts);

3 Compute the standard deviation ellipse SDEi base on the

Search-neighborhood Sppiq of Point pi;

4 Scale Ellipse SDEi to get the Eps-ellipse-neighborhood region ERi of

Point pi to make sure AreapERiq “ π ˆ Eps2;

5 if The length of short axis of ERi ““ 0 then

6 // the Eps-ellipse-neighborhood region ERi of Point pi is

diminished to a straight line. Get Eps-ellipse-neighborhood

ENEpsppiq of Point pi by finding all points on this straight line

ERi;

7 else

8 // the Eps-ellipse-neighborhood region ERi of Point pi is an

ellipse. Get Eps-ellipse-neighborhood ENEpsppiq of Point pi by

finding all the points inside Ellipse ERi;

9 end

10 return ENEpsppiq;
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Algorithm 3: searchNeighborhoodEps(pi, D, Eps)

Input : pi, D, Eps

Output: the Search-neighborhood Sppiq of Point pi

1 // This function is used in ADCN-Eps // Get all the points whose

distance from Point pi is less than Eps

2 foreach point pjpxj, xjq in the set of points DpX, Y q do

3 if
a

pxi ´ xjq2 ` pyi ´ yjq2 ď Eps then

4 Add Point pj to Sppiq;

5 end

6 return Sppiq;
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Algorithm 4: searchNeighborhoodKNN(pi,D,MinPts)

Input : pi; D; MinPts

Output: the Search-neighborhood Sppiq of Point pi

1 // This function is used in ADCN-KNN // Get the Kth nearest

neighbor of Point pi excluding pi itself

2 KNNArray = new Array(MinPts);

3 distanceArray = new Array(|D|);

4 KNNLabelArray = new Array(|D|);

5 foreach point pjpxj, yjq in the set of points DpX, Y q do

6 KNNLabelArray[j] = 0;

7 distanceArray[j] =
a

pxi ´ xjq2 ` pyi ´ yjq2;

8 if j ““ i then

9 KNNLabelArray[j] = 1;

10 end

11 foreach k in 0:pMinPts´ 1q do

12 minDist = Infinity;

13 minDistID = 0;

14 foreach j in 0:|D| do

15 if KNNLabelArray[j] != 1 then

16 if minDist ą distanceArray[j] then

17 minDist = distanceArray[j];

18 minDistID = j;

19 end

20 KNNLabelArray[minDistID] = 1;

21 KNNArray[k] = minDistID;

22 Add the point with minDistID as ID to Sppiq;

23 end

24 return Sppiq;
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Table 1: Clustering quality comparisons

NMI Rand

Case Buffer DBSCAN ADCN-Eps ADCN-KNN OPTICS DBSCAN ADCN-Eps ADCN-KNN OPTICS

bridge 0m 0.937 0.957 0.957 0.937 0.985 0.991 0.992 0.985

5m 0.948 0.966 0.967 0.949 0.989 0.993 0.994 0.989

10m 0.938 0.973 0.968 0.944 0.988 0.995 0.995 0.989

circle 0m 0.864 0.865 0.912 0.864 0.955 0.964 0.978 0.955

5m 0.859 0.897 0.916 0.859 0.955 0.974 0.978 0.955

10m 0.864 0.911 0.923 0.864 0.960 0.979 0.982 0.960

circleNarrow 0m 0.914 0.951 0.958 0.914 0.974 0.988 0.991 0.974

5m 0.939 0.946 0.965 0.939 0.983 0.987 0.993 0.983

10m 0.923 0.962 0.962 0.923 0.976 0.991 0.992 0.976

circleRoad 0m 0.689 0.704 0.725 0.689 0.934 0.945 0.952 0.934

5m 0.737 0.758 0.779 0.737 0.950 0.963 0.962 0.951

10m 0.730 0.778 0.821 0.730 0.946 0.963 0.971 0.946

curve 0m 0.918 0.946 0.955 0.918 0.978 0.989 0.991 0.978

5m 0.924 0.947 0.956 0.924 0.980 0.990 0.992 0.980

10m 0.916 0.943 0.947 0.916 0.978 0.988 0.989 0.978

ellipse 0m 0.978 0.982 0.976 0.978 0.996 0.997 0.995 0.996

5m 0.979 0.982 0.980 0.979 0.996 0.997 0.996 0.996

10m 0.975 0.980 0.978 0.974 0.996 0.997 0.996 0.996

ellipseWidth 0m 0.917 0.935 0.935 0.917 0.985 0.989 0.988 0.985

5m 0.919 0.933 0.939 0.919 0.988 0.989 0.989 0.988

10m 0.931 0.938 0.941 0.931 0.990 0.991 0.991 0.989

multiBridge 0m 0.935 0.790 0.957 0.938 0.983 0.935 0.992 0.984

5m 0.958 0.883 0.977 0.958 0.992 0.968 0.996 0.992

10m 0.964 0.830 0.985 0.964 0.994 0.947 0.998 0.994

rectCurve 0m 0.886 0.893 0.907 0.886 0.963 0.969 0.973 0.963

5m 0.909 0.910 0.908 0.915 0.974 0.977 0.974 0.974

10m 0.921 0.923 0.911 0.922 0.975 0.977 0.977 0.975

spiral 0m 0.740 0.756 0.774 0.740 0.913 0.930 0.938 0.913

5m 0.776 0.812 0.809 0.776 0.927 0.946 0.948 0.927

10m 0.745 0.788 0.795 0.745 0.918 0.950 0.952 0.918

square 0m 0.745 0.751 0.794 0.745 0.934 0.920 0.944 0.934

5m 0.751 0.778 0.830 0.752 0.932 0.928 0.959 0.932

10m 0.744 0.716 0.801 0.743 0.935 0.893 0.944 0.935

star 0m 0.887 0.901 0.914 0.887 0.968 0.977 0.980 0.968

5m 0.903 0.899 0.916 0.900 0.974 0.977 0.982 0.974

10m 0.902 0.778 0.909 0.902 0.974 0.924 0.981 0.974

Brooklyn Bridge 0m 0.378 0.542 0.490 0.378 0.888 0.930 0.925 0.888

5m 0.442 0.604 0.579 0.440 0.900 0.943 0.941 0.900

10m 0.504 0.639 0.581 0.507 0.915 0.950 0.944 0.915

Brooktrail 0m 0.441 0.431 0.421 0.440 0.742 0.765 0.756 0.742

5m 0.476 0.512 0.489 0.475 0.750 0.825 0.800 0.750

10m 0.387 0.555 0.498 0.387 0.712 0.852 0.799 0.711

Eiffel Tower 0m 0.397 0.481 0.492 0.397 0.851 0.882 0.898 0.851

5m 0.459 0.566 0.571 0.459 0.868 0.906 0.921 0.868

10m 0.411 0.553 0.553 0.411 0.861 0.907 0.923 0.861

LAX 0m 0.557 0.607 0.593 0.557 0.867 0.898 0.905 0.867

5m 0.591 0.667 0.584 0.591 0.883 0.921 0.903 0.883

10m 0.485 0.590 0.637 0.479 0.857 0.903 0.925 0.857

Laicheng 0m 0.768 0.807 0.804 0.768 0.857 0.874 0.874 0.857

5m 0.761 0.815 0.808 0.761 0.856 0.878 0.905 0.856

10m 0.773 0.823 0.809 0.773 0.861 0.880 0.911 0.861

Skylawn 0m 0.618 0.822 0.733 0.618 0.871 0.956 0.927 0.871

5m 0.642 0.690 0.807 0.642 0.877 0.899 0.955 0.877

10m 0.729 0.703 0.822 0.729 0.927 0.905 0.957 0.927

Stelvio Pass 0m 0.640 0.715 0.717 0.656 0.945 0.962 0.963 0.946

5m 0.739 0.791 0.768 0.739 0.962 0.974 0.975 0.962

10m 0.686 0.798 0.766 0.686 0.953 0.975 0.978 0.953

Zhangjiajie 0m 0.760 0.832 0.799 0.760 0.964 0.978 0.976 0.964

5m 0.772 0.868 0.839 0.772 0.967 0.987 0.982 0.967

10m 0.835 0.911 0.873 0.835 0.978 0.991 0.990 0.978
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Table 2: The number of cases with maximum NMI/Rand for each clustering algorithm

# of cases Max NMI Max Rand

DBSCAN 1 0

ADCN-Eps 25 19

ADCN-KNN 33 41

OPTICS 1 0
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Figure 1: A spiral pattern clustered using DBSCAN. Some noise points are indicated by
red arrows.
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Figure 2: Illustration for ADCN-Eps
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Figure 3: Illustration for ADCN-KNN
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Figure 4: The Density-Based Clustering Test Environment
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Figure 5: Ground truth and best clustering result comparison for 12 synthesis cases.
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Figure 6: Ground truth and best clustering result comparison for eight real-world cases.
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Figure 7: Clustering quality comparisons: NMI Difference between 3 clustering methods
and DBSCAN for each case. Synthetic cases are on the left, real-world cases on the right.

47



Figure 8: Clustering quality comparisons: Rand Difference between 3 clustering methods
and DBSCAN for each case. Synthetic cases are on the left, real-world cases on the right.
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Figure 9: Comparison of clustering efficiency with different dataset sizes; runtimes are
given in millisecond (The used OPTICS library failed on datasets exceeding 5500 points)
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