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Abstract

Identifying the same places across different gazetteers is a key prerequisite for spatial data con-
flation and interlinkage. Conventional approaches mostly rely on combining spatial distance with
string matching and structural similarity measures, while ignoring relations among places and the
semantics of place types. In this work, we propose to use spatial statistics to mine semantic signatures
for place types and use these signatures for coreference resolution, i.e., to determine whether records
form different gazetteers refer to the same place. We implement 27 statistical features for computing
these signatures and apply them to the type and entity levels to determine the corresponding places
between two gazetteers, which are GeoNames and DBpedia. The city of Kobani, Syria, is used as a
running example to demonstrate the feasibility of our approach. The experimental results show that
the proposed signatures have the potential to improve the performance of coreference resolution.
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1 Introduction and Motivation

Coreference resolution across gazetteers is an important prerequisite for spatial data conflation and in-
terlinkage. Conventional approaches, such as coordinate matching, string matching, and feature type
matching, often focus on the footprints, names, and types of places, as well as the combination of these
three properties (Sehgal et al., 2006; Shvaiko and Euzenat, 2013). However, such approaches have their
limitations. Today, most gazetteers still rely on centroids for representing geographic features (even for
feature types such as counties, rivers, or oceans). These centroids differ significantly across datasets, often
by more than 100km. Furthermore, it is difficult to select a place type agnostic distance threshold as
initial search radius. Polygon and polyline based matching, e.g., using Hausdorff distance, comes with its
own limitations, scale and the resulting generalization being key problems. For string matching, such as
using Levenshtein distance, the same place may have substantially different toponyms (e.g., Ayn al-Arab
in TGN and Kobani in DBpedia) while different places may share common names. In addition, simply
relying on direct feature type matching is likely to fail since different gazetteers employ incompatible
typing schemata/ontologies. In conjunction, these problems often lead to either false negative or false
positive matches.

In previous work, we proposed using spatial signatures, which are derived from spatial statistics, to
understand the semantics of places types bottom-up (Zhu et al., 2016). In this work, we apply these
signatures to coreference resolution. The used spatial statistics are selected from three perspectives; a
detailed list is shown in Table 1:

• Spatial point pattern analysis. Point coordinates are used to quantitatively measure the spatial
point patterns of place types (such as populated place). Kernel density estimation, Ripley’s K, and
standard deviational ellipse analysis are conducted and corresponding statistics are obtained for
representing the signatures. Furthermore, we computed these statistics from both local and global
aspects.

• Spatial autocorrelation analysis. In order to capture the interaction between places, we con-
verted the point patterns into raster maps where each pixel represents the intensity of points. Spatial
correlation statistics, such as Moran’s I and semivariograms, are subsequently used to improve the
signatures.

• Spatial interactions with other geographic features. In contrast to the first two perspec-
tives, this group of statistical features is derived by integrating other geographic features. These



geographic features are further separated into internal features, in which the target feature’s neigh-
bors are considered, and external features, in which external data sources such as populations and
road networks are incorporated.

A feature type’s statistics (e.g., Mountain) are calculated considering all the points across the con-
tinuous US that belong to said feature type. To tackle the scalability issue of conducting spatial point
analysis, like the Ripley’s K, a spatial sampling technique was introduced (Zhu et al., 2016). Furthermore,
in order to analyze the spatial autocorrelation of one feature type’s intensity, the points are converted to
a raster map whose cell sizes are consistent across all feature types. These statistics together (see Table
1), work as the spatial signature (here feature vectors) for the target feature type. Note that these 27
statistics are regarded as equally weighted in our work but more sophisticated models can be investigated
in the future work.

Table 1: A summary of the 27 statistical features used to derive place type signatures.
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2 Method and Case Studies

We have computed a unique semantic signature for each place type defined in the used gazetteers based
on the statistical features outlined above. Next, these signatures are used within two case studies to show
how they can be applied to improve coreference resolution. In the first case, we will use the signatures
as an additional matching score to complement spatial distance as well string and type label similarity
used in the existing literature. In the second case we also consider the signatures of neighboring places.

To illustrate our method, Kobani, Syria, is used as an example. Kobani is a city near the border
between Syria and Turkey. It is a typical example for the complexities arising when multiple parties
such as the local population, news outlets around the world, government agencies from different states,
and so forth, refer to a place by different names such as Aarab Peunar, Kubani, Kobane and ‘Ayn al‘
Arab, to name but a few. Different and overlapping sets of toponyms are stored in gazetteers making
straightforwards string similarity matching challenging. To further complicate issues, different places
may have similar or even the same names while being in relative vicinity, such as a river’s centroid that
shares its name with a populated place. As we outlined above, the introduction of feature types into the
matching process is often of limited use as there is no commonly agreed geographic feature type ontology
and the individual ontologies and vocabularies used by gazetteers are under-specific to a degree where
one has to rely on the types labels (and therefore string matching).

Figure 1 illustrates search results for Kobani in two gazetteers, GeoNames and DBpedia Places.
Since the records of DBpedia are extracted from Wikipedia articles, only significant places are included.
Therefore, the result for Kobani in DBpedia leads users directly to the city Kobani in Syria. However,
since GeoNames is a more comprehensive gazetteer that attempts to collect all geographic features in
the world, the search result for Kobani includes multiple records. Intuitively, and compared to types
such as stream and ruins, the seat of second-order administrative division feature types in GeoNames
is more likely to correspond to the populated place feature type in DBpedia despite having a very low
string similarity between their labels. This make the matching task easy for humans but difficult for an
automated machine-based matching.

2.1 Place Type Signatures as Additional Matching Characteristic

So far, we established the argument that toponym and centroid distance based matching on its own is not
always sufficient and that place types (present in any modern digital gazettes) should be used in addition.



Figure 1: Results of searching for ’Kobani’ in GeoNames (left) and DBpedia (right).

However, we also pointed out that given today’s gazetteer ontologies/vocabularies the comparison of place
types often boils down to string matching or simple structural measures as the used ontologies rely on a
lightweight axiomatization (if any) and thus are not readily alignable. Here we propose to use the mined
place type signatures as an additional matching characteristic that communicates the semantics of place
types beyond labels alone. To give an intuitive example, we will make use of the fact that the spatial
distribution of places of type populated place differs substantially from those computed for river but not
from those computed for seat of second-order administrative division irrespective of the fact that those
places are in different gazetteers and that the type labels show no similarity (Zhu et al., 2016).

As illustrated in Table 2, there are three place types associated with candidates for Kobani in GeoN-
ames and one place type (populated place) in DBpedia. Computing the Euclidean distance between these
three GeoNames place signatures (essentially feature vectors comprised of the 27 statistics listed in Table
1) and the populated place signature from DBpedia shows that geonames: seat of second-order admin-
istrative division and dbpedia: populated place should indeed be matched. This matching score would
then be combined with the other classical matchers such as toponyms, spatial (centroid) distance, and
so forth; thereby improving coreference resolution.

Table 2: Dissimilarities between the populated place signature for DBpedia and three example place
type signatures in GeoNames.

Dissimilarity (Euclidean distance) with DBpedia: Populated Place
GeoNames: seat of second-order administrative division 7.22

GeoNames: stream/intermittent stream 8.96
GeoNames: populated place 9.22

It should be noted that the place type populated place in GeoNames shares the same name with
the DBpedia type. However, there is a substantial dissimilarity between their signatures. Such an
observation indicates that despite a high string similarity, two place types might still have a different
underlying semantics and we were able to show exactly this in previous work (Zhu et al., 2016). This
further confirms that using string matching in isolation, either for the feature names or types, is not
necessarily sufficient for coreference resolution.

2.2 Place Type Signatures of Neighboring Places

One drawback of the approach outlined thus far is that if multiple candidates shared the same place type,
the signatures are incapable of providing any further distinctions. Therefore, we propose to include the
signatures of neighboring places as well. To the best of our knowledge, neighboring places have not been
proposed as part of any existing matching framework.

For our running example, we queried the 9 nearest neighbors for each candidate place and recorded
their place types. This can be done directly using the precomputed nearbyFeature RDF predicate in
GeoNames. Next, the averaged signatures (i.e., the averaged feature vector of the 27 statistics listed
in Table 1) of these 9 place types are calculated for characterizing the neighborhood of the specific
candidates. Lastly, candidates that have the smallest Euclidean distance in terms of their averaged



neighboring signatures are regarded as corresponding places. Since neighbors differ from candidate to
candidate, their averaged neighboring signatures also differ despite potentially having the same place
type. For instance, one populated place of a given name will have places of different types (e.g., a river
and an island) nearby while another place of the same type (and similar names) will have places of other
types (e.g., a mountain) nearby.

We tested this neighborhood based approach using our Kobani running example. Table 3 lists the
place types of nearest neighbors for three example candidates in GeoNames and the Kobani from DBpedia.
As can be seen, ‘Ayn al ‘Arab in GeoNames and Kobani in DBpedia both have relatively more diverse
neighbors compared to the other two candidates. Table 4 shows the dissimilarity values which lead to
the same conclusion (and correct matching) made in the direct matching case above and further supports
our proposed approach.

Table 3: List of place types of the nearest neighbors for example candidates in GeoNames and DBpedia.

’Ayn al’ Arab
(GeoNames: seat of a second-
order administrative division)

Kobani
(GeoNames:
stream)

Mkoani
(GeoNames:
populated place)

Kobani
(DBpedia:
populated place)

Feature types
of 9 nearest
neighbors

section of populated place populated place populated place settlement
office building stream populated place settlement
school stream populated place village

square stream
third-order administrative
division

settlement

prison stream
third-order administrative
division

tunnel

section of populated place stream
third-order administrative
division

settlement

section of populated place stream populated place village
market stream populated place dam
square populated place populated place populated place

Table 4: Dissimilarities between Kobani ’s neighboring signatures in DBpedia and the three example
places’ neighboring signatures in GeoNames.

Dissimilarity (Euclidean distance) with Kobani (DBpedia)
’Ayn al’ Arab (GeoNames) 4.23

Kobani (GeoNames) 10.57
Mkoani (GeoNames) 6.98

3 Conclusions and Future work

In this work, we presented an initial case study that demonstrates how semantic signatures mined from
spatial statistics can reveal additional information about the semantics of place types on top of relying
on type labels alone. Our work shows how spatial statistics and ontology engineering and alignment can
go hand in hand to provide additional characteristics for tasks such as coreference resolution which play
an increasingly important role as drivers of record linkage and conflation. In essence, we make use of the
fact that different types of places can be told apart by the results of various spatial statistics performed
over their instances, i.e., particular places. This, in turn, enables us to regard the resulting place type
specific signatures as feature vectors and compute their dissimilarity using Euclidean distance (or other
measures), thereby gaining an additional matcher on top of the string, spatial distance, and structural
matchers used in the literature. Finally, we also go beyond existing work by taking neighboring places
into account to improve the matching, instead of comparing 1:1 matches in isolation. In the future, we
will apply the presented work to more (Linked Data) gazetteers and all their geographic features.
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