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Abstract

In recent years, online volunteers have played important roles in disaster response.
After a major disaster, hundreds of volunteers are often remotely convened by human-
itarian organizations to map the affected area based on remote sensing images. Typ-
ically, the affected area is divided using a grid-based tessellation, and each volunteer
can select one grid cell to start mapping. While this approach coordinates the efforts
of volunteers, it does not differentiate the priorities of different cells. As a result, vol-
unteers may map grid cells in a random order. Due to the spatial heterogeneity within
the disaster-affected area, different cells may contain geographic information that is of
higher or lower value to emergency responders. Ideally, cells that potentially contain
more valuable information should be assigned higher priority for mapping. This paper
presents an analytical framework for prioritizing the mapping of cells based on the
values of information contained in these cells. Our objective is to provide guidance
for online volunteers so that potentially more important cells are mapped first. We
present a novel method that is based on information value theory (IVT) and focus on
road networks. We apply this method to a number of simulated scenarios and to a real
disaster mapping case from the 2015 Nepal earthquake.

Keywords: disaster response, information value theory, crisis mapping, volunteered
geographic information.

1 Introduction

”Is that road up there passable?” – Wohltman (2010), after the Haiti earthquake.
When a major disaster strikes, there is an urgent need for geographic information about

the affected area. Emergency responders want to know who needs help, where they are,
and how to get there (Zook et al., 2010). While many government agencies maintain their
own geographic data, such data often provide only limited help, since existing roads may be
blocked, bridges may have collapsed, and other critical infrastructure may be out of order.
As a result, governments, organizations, and individuals often need to collect up-to-date
information that reflects the status of the environment after the disaster.

In recent years, online volunteers have been actively involved in disaster response. Thanks
to information and communication technologies (ICT), people throughout the world can
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contribute to relief efforts without having to be physically present in the affected area (Haklay
and Weber, 2008; Graham, 2010). Meanwhile, humanitarian communities, such as Standby
Task Force (Ziemke, 2012; Meier, 2012a) and Crisis Mapper (Shanley et al., 2013), play
important roles in organizing volunteers and coordinating their efforts. The support from
both technologies and social organizations has greatly facilitated the involvement of online
volunteers in disaster response.

One important way by which online volunteers contribute to relief efforts is by mapping
the disaster-affected areas based on remote sensing images. For example, after the 2010
Haiti earthquake, a Web crisis mapping platform was quickly established and geographic
information was collected with the help from thousands of online volunteers (Meier, 2011).
A similar collaborative mapping effort was organized by the Humanitarian OpenStreetMap
Team (HOT)1 after the 2015 Nepal earthquake (Poiani et al., 2016; Haworth, 2016; Hu and
Janowicz, 2015). During the mapping process, volunteers not only create new information
but also help verify the existing geographic data, such as the connectivity and physical condi-
tions of roads, which can be invaluable to emergency responders. As a result, the importance
of online volunteers and the collaborative mapping paradigm have been increasingly recog-
nized by the disaster relief community (Meier, 2015) and the general public (NPR, 2015).

As many online volunteers can be involved in collaborative mapping, one common ap-
proach to coordinating their efforts is to divide the affected area into a number of cells using
a grid-based tessellation. Each volunteer can then select one grid cell to perform the mapping
task. Figure 1 is a screenshot taken during the collaborative online mapping effort after the
Nepal earthquake.

Figure 1: Collaborative online mapping after the Nepal earthquake of April 25th, 2015.

The different colors of the cells represent different mapping status. The orange color
represents the cells that have been mapped, and green represents the cells that have been

1https://hotosm.org/
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not only mapped but also validated. While this approach can help avoid editing conflicts
and duplications, it does not differentiate the priorities of different grid cells. Consequently,
volunteers may map these cells in a random order, as seems to be the case in the figure.

In any geographical area, different grid cells are likely to contain geographic information
that is of differing value to emergency responders. For example, one cell may contain a
road segment that can be used as the major access to the disaster affected area, whereas
another cell may contain only a small road far away from populated areas. For an emergency
responder who needs to plan relief trips to the affected area, the road connectivity information
contained in the former cell will have higher value than that in the latter cell. Accordingly,
it would be helpful if online volunteers can be guided to first map those cells that potentially
contain more important information.

In this paper, we propose an analytical framework for prioritizing grid-based disaster
mapping tasks. Our objective is to provide online volunteers with guidance on the priorities
of cells, so that cells containing more important information can be mapped first. The first
72 hours after a disaster are widely considered to be the golden period for disaster response
(Fiedrich et al., 2000; Comfort et al., 2004; Ochoa and Santos, 2015). Helping emergency
responders obtain the most important geographic information as soon as possible can greatly
facilitate urgent rescue tasks. While a grid cell may contain many different types of valuable
geographic information, this research focuses on road network connectivity information in
combination with population distribution. These are among the most important criteria used
in disaster response for planning relief routes. The foundation of our analytical framework
is information value theory (IVT), which originated in economics and artificial intelligence
but, to the best of our knowledge, has not been applied to disaster response to date.

The research contributions of this work are as follows:

• We introduce a novel analytical framework for ranking the mapping priorities of grid
cells overlaid on a disaster-affected area based on the value of road connectivity infor-
mation contained in each cell.

• We present heuristics for implementing the proposed framework, which can significantly
reduce the computing time while still achieving satisfactory accuracy.

• We provide a comparison between the priority ranking generated by the proposed
framework and the actual order in which online volunteers mapped the affected area
in a real-world disaster.

The remainder of this paper is organized as follows. Section 2 briefly introduces informa-
tion value theory and reviews related work on relief efforts that involve the participation of
online volunteers. Section 3 presents the methodological details of our analytical framework.
Section 4 discusses heuristics for enhancing the computational efficiency of our framework.
Section 5 compares the priority ranking generated by the framework with a population-based
ranking and examines the ranking variations using four simulated disaster scenarios. The
framework is then applied to data from the actual disaster mapping case of the 2015 Nepal
earthquake. Section 6 summarizes our work and points out future research directions.

3



2 Related work

In this section, we provide some background on information value theory which serves as the
foundation of our analytical framework. In addition, we review past disaster relief efforts
that involve online volunteers.

2.1 Information value theory

Information value theory was originally proposed in 1966 (Howard, 1966). In contrast to
Shannon and Weaver’s information theory (1949) that measures the amount of information
using bits, IVT quantifies the value of information as a function of its potential to assist
decision making. The core idea of IVT can be summarized in equation (1):

V (I) = U(d′)− U(d) (1)

where I is an information item, and V (I) represents the value of this information. d is
the initial decision before I has been obtained, and d′ is the modified decision after I has
been obtained. U is a utility function, and U(d) represents the utility of decision d. Utility
function is a key component of decision theory, which quantifies the benefit of a decision
using a numeric value (Russell and Norvig, 2010). A decision will be assigned a high utility
value if it achieves the preferred outcome, and has a lower utility value if the outcome is less
preferred. As can be seen from equation (1), the value of an information item is calculated
as the utility difference before and after the information has been obtained. Depending on
the magnitude of the utility difference, information items can have different values.

IVT has been applied to a variety of studies, such as investment analysis (Chen et al.,
2001) and clinical trials (McFall and Treat, 1999). In these applications, monetary values
have been used to represent the value of information. Recently, Hu et al. (2015) proposed a
spatiotemporal approach for quantifying the value of information. Their method integrates
IVT with time geography (Hägerstrand, 1970) and employs space-time prisms to examine
the value of information with regard to the daily tasks of an individual. In this work, IVT
will be employed and extended for ranking the priorities of disaster mapping cells.

2.2 Disaster relief with the participation of online volunteers

The idea of involving online volunteers in disaster response is related to the concepts of crowd-
sourcing (Howe, 2006) and volunteered geographic information (VGI) (Goodchild, 2007).
While often lacking professional trainings, online volunteers fill a critical gap by providing
timely geographic information of satisfactory quality (Goodchild and Glennon, 2010).

One early example that involves many online volunteers is the 2010 Haiti earthquake
(Forrest, 2010). More than 4, 000 online volunteers from different countries around the world
have participated in this response (Heinzelman and Waters, 2010). Volunteers contributed
to the relief efforts in a variety of ways: they helped collect and integrate information
from different sources (Crooks and Wise, 2011), translate the text messages sent by the
local people (Meier and Munro, 2010; Hester et al., 2010), monitor social media platforms
to extract information (Rogstadius et al., 2013), and collaboratively map the affected area
based on remote sensing images (Liu and Ziemke, 2013). In addition to the Haiti earthquake,
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online volunteers were also involved in the response to the 2011 crisis in Libya (Burns, 2014),
the 2012 Hurricane Sandy in the U.S. (Meier, 2012b), and the 2013 Typhoon Haiyan in the
Philippines (Humanitarian OpenStreetMap Team, 2013).

During the 2015 Nepal earthquake, online volunteers played an active and important role
by mapping the affected area. According to a study conducted by Poiani et al. (2016), 4, 287
new users registered for OpenStreetMap (OSM) within one day of the earthquake, and the
average number of daily edits increased from around 20 to around 1, 030. While this number
decreased after two weeks, it increased again after the 7.3-magnitude aftershock on May
12th, 2015. Motivated by these online mapping examples, this research aims at providing
guidance for online volunteers by helping to prioritize the mapping cells.

3 Analytical framework

In this section, we present the methodological details of our analytical framework. We first
formalize the problem targeted by this research and then present the framework.

3.1 Problem statement

We address the problem of prioritizing online mapping tasks in the context of disaster re-
sponse. Specifically, the disaster-affected area has been divided into cells using a grid-based
tessellation. Online volunteers can choose a cell to start the mapping task based on remote
sensing images. While each cell can contain a variety of geographic information, this study
focuses on road network information, which is frequently required in disaster response, e.g.,
for evacuation.

Figure 2: Our running example illustrating some of the main types of data used.

Figure 2 illustrates a simple example that will be used in the analysis. We consider four
types of datasets for this problem.
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• Existing road network. This dataset contains the road network in the affected area
before the disaster (see the black lines and gray nodes in Figure 2). The information
provided by online volunteers can help verify the connectivity of the roads after the
disaster. We use a directed weighted graph G(V,E) to represent the road network,
with V representing the nodes and E representing the edges.

• Disaster affected area. This dataset contains the emergency planning zone (EPZ),
which delineates the general region affected by the disaster (the pink region in Figure
2). Such an area is often provided by disaster experts based on the specific type of
disaster, and we use A to represent this area.

• Population distribution. This dataset is used to estimate the number of people who
may need help after the disaster. Block-level population data can often be obtained
from local authorities. LandScan (Dobson et al., 2000) is a global-scale high-resolution
population distribution dataset, which can also be used in many situations. A typical
approach to integrating population data with road network is to aggregate population
to the nodes of the road network (Cova and Church, 1997; Zhang et al., 2015). We use
Popi to represent the population aggregated to node vi.

• Task grid cells. These are the cells overlaid on the affected area to coordinate the
mapping tasks (see the light blue squares in Figure 2). The sizes of the cells are
defined by aid agencies. For example, in the Nepal earthquake, the sizes of cells were
defined by the Humanitarian OpenStreetMap Team. We use C to represent the set of
grid cells, and use ck to represent one particular cell. Each cell is associated with a
normalized disaster severity sk in [0, 1], with 0 indicating that the cell is not affected by
the disaster, and 1 indicating that the cell is maximally affected. sk can be estimated
based on the intensity of the disaster within the cell. The disaster intensity data can
be acquired from government agencies, such as the U.S. Geological Survey (USGS).

With these input data and their mathematical notations defined, we state the problem as
follows: given a road network G(V,E), the disaster-affected area A, the affected population
estimate at each node Popi, and a grid-based tessellation C, rank the mapping priorities of
the cells c1, c2, ..., cn in C based on the values of the road connectivity information in these
cells.

3.2 Method

3.2.1 Potential target decision

To measure the value of information, we need a target decision, the decision for which the
information will be used. However, most disaster mapping platforms are established for
the general purpose of collecting information rather than for supporting a specific decision.
Here, we propose the concept of potential target decision, that is, the implicit decision that
is likely to be assisted by the information.

After a major disaster, road information is essential for emergency responders in order to
plan trips for sending rescue teams and relief resources to the affected area. Each trip can be
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considered as starting from the outside of the affected area, moving on the road network, and
eventually arriving at one of the affected nodes. Selecting suitable routes is important for
ensuring the timely success of these potential relief trips. Thus, we consider choosing good
routes for these relief trips as the potential target decisions for road connectivity information.
It is worth noting that relief trips do not always have to start from outside and go into the
affected area, since there can also be relief efforts from responders within that area. In this
study, however, we focus on potential relief trips performed by non-local (e.g., international)
humanitarian organizations, as these are often the ones that establish the online mapping
platforms.

To find the potential relief trip routings, we divide the nodes of the road network into
two groups based on the affected area A: those within A and those that are immediately
outside (a buffer of 100 meters have been used in this study to identify these nodes outside).
We define the former as affected nodes (represented as a set Va), and the latter as entrance
nodes (represented as a set Ve). A potential relief trip from an entrance node to an affected
node is represented as th. An emergency responder may need to plan many of these trips by
deciding the suitable routes to take (e.g., those with shortest travel time). Thus, a potential
target decision d can be formalized as deciding the routes for the potential relief trips to all
the affected nodes:

d : deciding the routes for relief trips {t1, t2, ..., t|Va|} (2)

3.2.2 Utility function

With the potential target decision d formalized, we continue to develop a utility function
for quantifying the benefit of d. Since d is an aggregation (or mathematically a set) of the
potential relief trips, we define the utility of d as the sum of the utilities of individual trips:

U(d) =
∑
h

U(th) (3)

where th is a potential relief trip to node vh, U(th) is the utility of th, and U(d) is the utility
of the potential target decision.

Each trip th connects an affected node vh to an entrance node with the lowest travel cost.
Let Poph be the corresponding population at vh, ck be the cell that vh is located in, and sk
be the normalized disaster severity assigned to ck. The utility of th can be estimated as:

U(th) ∝ Poph · sk (4)

This simple utility function models the utility of a potential trip as proportional to the
estimated number of people who are affected by the disaster and who may need help. If an
affected node has a large population and has been severely affected, then the corresponding
relief trip has a high utility value to the emergency responders.

After a disaster, there exists uncertainty as to the connectivity of the roads. Consequently,
some planned trips could fail due to the unknown connectivity. We use ph to represent the
probability that a trip th can succeed. The expected utility of th is:

EU(th) = ph · U(th) ph ∈ [0, 1] (5)
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For each trip th, we use Ch to represent the set of cells that contain or partially contain
this trip. Let ck represent one cell in Ch, and let lhk represent the length of the part of trip
th contained in cell ck. Each trip has an origin, a destination, and a number of middle nodes
(the road intersections passed by the trip). Figure 3 shows a simple trip spanning two grid
cells.

Figure 3: A simple trip spanning two grid cells.

Within the cell ck, we assume a value pu is available, which indicates the probability that
a road with a unit length lu (e.g., 1, 000 meters) is still passable after the disaster. pu can be
estimated based on the normalized disaster severity sk in the cell. For a trip segment with
length lhk in the cell ck, its probability of remaining passable phk can be calculated as:

phk = p
lhk
lu
u pu ∈ [0, 1] (6)

If lhk is equivalent to the unit length lu, then phk = pu; if lhk > lu, then phk < pu; and if
lhk < lu, then phk > pu. This modeling strategy captures the fact that longer roads are more
likely to be affected by the disaster, such as being blocked by collapsed buildings.

With phk , the probability that trip th can be successful (i.e., ph) is modeled as the joint
probability of phk:

ph =
∏
k

phk (7)

where phk represents the probability that the segment of trip th in the cell ck remains passable.
By combining equations (5) and (7), we can derive equation (8) for calculating the ex-

pected utility of trip th.

EU(th) =
∏
k

phk · U(th) (8)

Subsequently, the expected utility of the potential target decision d can be calculated as
the sum of EU(th):

EU(d) =
∑
h

EU(th) (9)
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3.2.3 Information value

Let d be the potential target decision made before the road connectivity information in
the cell ck has been obtained, and d′ be the decision after. Using IVT, the value of road
connectivity information in ck can be calculated by:

V (ck) = EU(d′)− EU(d) (10)

where V (ck) represents the value of road connectivity information in ck. By combining
equation (9) and (10), we can get:

V (ck) =
∑
h

EU(t′h)−
∑
h

EU(th) (11)

where t′h represents the modified trip after the road connectivity information in ck has been
obtained, and th represents the trip before. If th is not (partially) contained by ck, obtaining
information in ck does not influence the planning of th. As a result, we have t′h = th and
EU(t′h) = EU(th). If th is (partially) contained by ck, t′h can be different from th depending
on the obtained road connectivity information, thereby EU(t′h) can be different from EU(th).

When the road connectivity information in ck has been obtained, there can be many
different situations. Let n be the number of road segments in ck, and let pk1, pk2, ..., pkn be
the probabilities that these road segments are passable. There can be situations, such as:
all road segments are passable (with a probability of q1 =

∏n
i=1 pki); all road segments are

passable except the first one (with a probability of q2 =
∏n

i=2 pki · (1− pk1)); and many other
possible situations (we use qi to represent the probability of a situation). In total, given
n road segments in ck, there can be 2n situations (equation (12)). Figure 4 shows the 8
different situations when a cell contains three road segments.

C0
n + C1

n + ...+ Cn
n = 2n (12)

Given one particular cell, we can find all possible situations and calculate their corre-
sponding probabilities. For each relief trip (partially) contained by this cell, we can re-plan
its route in any of these situations, and re-calculate the expected utility. Consider the situa-
tion shown in Figure 4(a). If a potential relief trip uses segments e1, e2, then there is no need
to change its original route since both segments are passable in this situation. The expected
utility of the relief trip th becomes: EU(t′h i) = (ph1· ...ph(k−1)· 1· 1 · ph(k+1) · ...) ·U(th), where
phn (n 6= k) represents the probabilities that the road segments in other cells are passable,
and the two 1s are the probabilities that the two road segments used by the trip within the
cell are passable. Since e1, e2 are passable in this situation, their probabilities are 1.

In some other situations, such as in Figure 4 (d), a different route should be planned
based on the updated road network. The expected utility of trip th in this situation then
becomes: EU(t′h i) =

∏
k′ phk′ · U(th), where k′ represents the indexes of a new set of cells

that (partially) contain the new route.
By summing up the expected utilities t′h i in all possible situations, we can calculate the

expected utility of t′h after the road connectivity information in ck has been received:

EU(t′h) =
∑
i

qi · EU(t′h i) (13)
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Figure 4: Eight possible situations when a cell contains three road segments.

where qi is the probability of the situation, and EU(t′h i) is the expected utility of the relief
trip in this situation. We further define Ihk as an indicator variable that indicates whether
the trip th is (partially) contained by the cell ck.

Ihk =

{
1 if th is (partially) contained by ck

0 if th is not (partially) contained by ck

With Ihk , we can reduce the computational complexity of our method by calculating the
expected utility changes only for the trips that are (partially) contained by ck. Thus, the
value of information in ck can be calculated as:

V (ck) =
∑
h

[EU(t′h)Ihk ]−
∑
h

[EU(th)Ihk ] (14)

We can further transform the above equation into:

V (ck) =
∑
h

[(EU(t′h)− EU(th))Ihk ] (15)

Thus, the road network information in the cell ck has value when it can improve the expected
utilities of the potential relief trips that are (partially) contained by ck.

3.3 Summary

Figure 5 summarizes the workflow for ranking the priorities of grid cells.
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Figure 5: The workflow for ranking the priorities of disaster mapping cells.

In step (1), we plan routes for potential relief trips based on the existing road network and
the disaster-affected area. Shortest path algorithms, such as Dijkstra’s algorithm or A∗, can
be used to find the routes with the lowest costs to the affected nodes. Step (2) overlays the
potential relief trips (from step (1)), pre-defined grid cells, and the node-based population
distribution, and builds associations among the three. Each relief trip will be associated
with the grid cells it will pass by, as well as the affected population at the destination node.
Meanwhile, each grid cell will be associated with the potential relief trips which are (partially)
contained by this cell. In step (3), we select the first grid cell, and identify the potential
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relief trips that are associated with this cell. Step (4) calculates the expected utilities of the
associated trips before and after the information in the cell has been obtained, and then step
(5) calculates the value of the information in the cell based on the utility difference. Step
(6) repeats step (3) to (5) on all grid cells, and calculates the information value for each
grid cell. Step (7) assigns priorities to grid cells based on their information values. These
priorities can then help guide online volunteers for mapping.

4 Implementation and heuristics

As can be seen from equation (12), the proposed framework results in a computational
complexity that is exponential to the total number of road segments in a cell. Such a high
complexity can largely limit the use of the framework, especially in disaster response when
time is of critical importance. In this section, we propose heuristics that can significantly
reduce the computational complexity while still achieving satisfactory results.

4.1 A relief-trajectory-based heuristic

4.1.1 Method

This heuristic is based on the trajectories of the potential relief trips. We illustrate it using
an example shown in Figure 6.

Figure 6: An example for illustrating the trajectory-based heuristic.

In this example, there are 4 road segments, and there is one relief trip that passes through
e1, e2. In total, there are 24 = 16 possible situations with different road connectivity condi-
tions, and 4 of these situations are shown in the figure. Our original method will calculate
the expected utilities of the potential relief trip in all these situations, which leads to an
exponential complexity.

By re-examining the 4 situations, we can see that in sub figure (a) and (b), the obtained
information can help emergency responders re-plan the relief trip which originally needs to
go through e1, e2, thereby helping avoid the potential failure and improving the expected
utility. In contrast, in sub figure (c) and (d), the emergency responders do not need to
change the original route, since the disconnection of e3 or e4 do not directly affect the relief
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trip. Since information value is calculated based on the utility improvement, we can focus
on the segments whose disconnection can lead to re-routing. For the other road segments,
we can use their existing probabilities to approximate their connectivity. In this example,
we can reduce the number of situations from 24 to 22. More generally, we can reduce the
number of situations from 2n to 2k, where n is the number of road segments in a cell, and
k is the number of segments that may be used by the relief trip. While this heuristic still
has an exponential time complexity, we can largely reduce the total amount of time, since
2k can be much smaller than 2n.

However, this heuristic also brings the possibilities of underestimating or overestimating
the information value. Consider the example in Figure 7, and let us assume that the original
relief trip will go through e1, e2, and the second best route is e1, e3, if e2 become impassable.
The heuristic can underestimate the information value in the situation in sub figure (a). This
is because we have used the probability of e3 (represented as p3) to estimate its connectivity,
but e3 is actually connected and therefore has a probability of 1 of being passable. Since in
most situations p3 < 1, the heuristic will underestimate the information value. In contrast,
the heuristic can overestimate the information value in situation shown in Figure 7(b). Our
heuristic will use e1, e3 as the alternative route, but e3 is, in fact, disconnected and therefore
a different route has to be selected. Since e1, e3 is the second best route, our heuristic will
overestimate the utility improvement, thereby leading to an overestimation of the information
value.

Figure 7: An example illustrating the underestimation and overestimation by the heuristic.

The pseudocode of our implementation is shown in algorithm 1. We start by a for loop
that iterates through all the grid cells C (line 1). For each grid cell ck, we identify the relief
trips (partially) contained by this cell, calculate the expected utility for each trip before the
information has been obtained (line 5), and also calculate the expected utility after (line
6-13). We then sum up the utility improvement from each of these trips as the value for ck
(line 14). The algorithm will finish when the values of all the cells have been calculated.

4.1.2 Evaluation

We evaluate our heuristic from two aspects: computational efficiency and result accuracy. We
implemented our original method which has high computational complexity but can generate
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Algorithm 1 Calculating the information values for grid cells

Input: road network with weighted nodes (affected population), grid cells with normalized
disaster severities, potential relief trips

Output: information value for each cell
1: for each ck in C do
2: information value vk = 0
3: identify the set of relief trips Tk (partially) contained by ck
4: for each th in Tk do
5: EU(th) = the expected utility of the trip without information
6: Eh = the set of road segments used by th within ck
7: Zh = all possible situations based on Eh

8: EU ′(th) = 0
9: for each zi in Zh do

10: qi = the probability of situation zi
11: t′h i = the new best route in this situation
12: EU ′(th) = EU ′(th) + qiEU(t′h i)
13: end for
14: vk = vk + (EU ′(th)− EU(th))
15: end for
16: output vk as the value of ck
17: end for

the most accurate result. By comparing the performance of the heuristic-based implementa-
tion with the original method, we can quantitatively evaluate the reduced computing time
as well as the accuracy change.

The evaluation experiment has been conducted using four road networks with different
degrees of complexity (Figure 8). From sub figure (a) to (d) the complexity of the road
network (in terms of the number of nodes and edges) increases.

We run both the original method and the heuristic-based method on the same computer
which has 4 virtual CPUs based on Intel Xeon CPUs E5-2695 v2 with 2.40 GHz and 16 GB
virtual RAM. Each experiment has been run 100 times, and the average computing time has
been calculated. We measure the amount of time saved by the heuristic as:

TimeSaved =
To − Th
To

(16)

where To is the computing time used by the original method, and Th is the computing
time used by the heuristic-based method. We also evaluate the quality of the result from
the heuristic-based method using the normalized root-mean-square deviation (NRMSD). It
measures how much the result from the heuristic-based method deviates from the most
accurate result from the original method. NRMSD is calculated as follows:

NRMSD =
RMSD

ymax − ymin

=

√∑n
i=1

(ŷi−yi)2
n

ymax − ymin

(17)
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Figure 8: Four road networks with different degrees of complexity.

where n is the number of cells, ŷi is the information value calculated by the heuristic-based
approach, and yi is the value calculated by the original method. The result of our experiments
has been summarized in Table 1. We also plot out the computing times in Figure 9.

Table 1: Summary of the experiment result.

Dataset (a) Dataset (b) Dataset (c) Dataset (d)
Nodes 17 33 44 56
Edges 21 43 57 74

NRMSD 1.57% 1.22% 1.43% 1.42%
TimeSaved 44.44% 97.97% 99.37% 99.94%

15



Figure 9: Comparison of the computational times between the original method and the
heuristic-based approach: (a) computing time for entire datasets; (b) computing time for
individual cells based on dataset (d).

It can be seen that the heuristic-based approach can significantly reduce the amount of
computing time while slightly reducing the accuracy of the result. Figure 9(a) shows the
computing times of the two methods based on the four entire datasets, and a large difference
can be observed with the increase of the total number of road segments. Figure 9(b) shows
the computing time for individual cells based on dataset (d). As discussed previously, our
heuristic can reduce the computational complexity of one cell from 2n to 2k (k 6 n). To
examine the effects of different values of k on reducing the computing time, we compare our
experimental results with four standard mathematical models in the form of T = C × 2k,
where T is the computing time, C is a constant, and k = N, 0.9N, 0.6N and 0.2N respectively
(N represents the total number of road segments in a cell). It can be observed that with a
slight decrease of k (e.g., from N to 0.9N), the computing time T decreases dramatically. In
fact, when k = 0.6N , the curve is almost flat in the current extent of N . In our experiment,
k = 0.21N , and therefore we can observe a large decrease of the computing time.

4.2 A road-hierarchy-based heuristic

We also propose another heuristic for improving the computational efficiency based on the
road network hierarchy. Consider the example shown in Figure 10 in which (a) represents
the original road network while (b) includes only the major road segments. A large difference
in the numbers of road segments can be observed in the example cell shown in sub figures
(a) and (b). From a perspective of disaster response, reaching the major road intersections
and segments may be considered as reaching the general neighborhood affected by disaster.
From a computational perspective, removing the minor road segments can exponentially
reduce the computing time. Therefore, if the input road network data contain road hierarchy
information, we can run the proposed framework on only the major road segments to increase
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the computational efficiency while still achieving a reasonable result.

Figure 10: An example for illustrating the road-hierarchy-based heuristic.

5 Experiments

In this section, we conduct experiments based on simulated disaster scenarios as well as a
real disaster mapping case from the 2015 Nepal earthquake.

5.1 Simulations

We perform two groups of simulations based on the dataset from the running example (the
road data is a fragment taken from the road network of the county of Santa Barbara, Califor-
nia, USA). In the first group, we compare the results from our proposed framework with an
approach based on the affected population. In the second group, we examine the variations
of the information values when population and disaster severity are distributed differently.

5.1.1 Comparison with a population-based ranking

An intuitive approach for ranking the priorities of the disaster mapping cells is based on the
estimated number of people affected in each cell. Therefore, we compare the priority ranking
from our framework with that from the population-based approach.

In this simulation, we assign 100 units of population to each node of the road network,
and the normalized disaster severity is set to 0.1 for each cell. We first apply our framework
to the data, and the result is shown as in Figure 11. The colors of the roads indicate the
number of the potential trips on each road segment. It can be seen that the two major access
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Figure 11: The value of road connectivity information in each cell.

roads starting from the lower left corner have been heavily used by the potential relief trips.
The number on each grid cell represents the value of the road information contained in this
cell. We can further classify the cells into high priority, medium priority, and low priority
based on their information values, and Figure 12 (a) shows the ranked results. It is worth
noting that the ranking result does not always have to be classified into 3 categories. Since
the proposed framework has provided numeric value for each cell, emergency responders can
classify the cells into other suitable numbers of categories depending on the specific needs.
For the population-based approach, we aggregate the affected population of each node to the
grid cell that contains this node. We then classify the grid cells into the same 3 categories
(Fig. 12 (b)).

By comparing the sub figures (a) and (b), we can see an interesting difference which will
be elaborated in the following text. To enhance the clarity of our discussion, we will refer
to a grid cell using the coordinates based on its row and column numbers in the format of
(row, column). The grid cell at the upper left corner will be (1, 1), and the cell at the lower
right corner will be referred to as (3, 5).

Cell (3, 1) has been considered as high priority by our approach but low priority by the
population-based approach. This result is understandable since this cell does not contain
any affected node, and therefore has low affected population. However, this cell contains
one important road segment that can be used as a major access point to the affected nodes.
Knowing the connectivity of this road segment can greatly facilitate the planning of about
half of the potential relief trips. Therefore, this cell has been assigned high priority by our
framework. On the contrary, cell (1, 5) has been considered as low priority by our approach
but high priority by the population-based approach. This cell contains 8 affected nodes,
and therefore has been ranked as important by the population-based approach. However,
for the relief trips reaching to the 8 affected nodes, 5 trips have only small segments in this
cell (3 have relatively longer segments). This means knowing the road connectivity in this
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Figure 12: Comparison of the ranking results between the proposed framework and the
population-based approach.

cell will not largely improve the routes of these trips, since the major parts of these trips
are in other cells. Thus, this cell has been assigned lower priority by our framework. It
can be seen that the population-based approach ranks the cells more from a perspective of
risk assessment, i.e., understanding which areas may need help. Our approach is from a
perspective of relief trip planning, i.e., how to reach the affected areas. Both rankings have
their values in disaster response.

5.1.2 Ranking variations in different disaster scenarios

Affected population and disaster severity are two important factors on the basis of which
we calculate the values of information. Accordingly, different information values may be
generated based on different spatial distributions of population and disaster severity, which
may lead to different priority rankings. In the following, we examine this ranking variation
by simulating four different scenarios as summarized in Table 2. By applying our framework
to the four scenarios, we obtain the results as shown in Figure 13.

Table 2: A summary of the four simulated scenarios.

Population distribution
Homogeneous Heterogeneous

Disaster
severity

Homogeneous Scenario 1 Scenario 2
Heterogeneous Scenario 3 Scenario 4

In scenario 1, each node has been assigned 100 units of population, and the disaster
severity for each cell is set as 0.1. The obtained information values are the same as Figure
11 discussed in Section 5.1.1. In scenario 2, three nodes (enlarged in the figure) are assigned
1, 000 units of population, while the other conditions remain the same as in scenario 1. It
can be seen that the cells that (partially) contain the relief trips to these three nodes, such as
cell (1, 2), (2, 1), (2, 2) and (3, 1), have an increase in their information value compared with
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Figure 13: Different priority rankings in the four simulated scenarios.

scenario 1. This is because knowing the road connectivity information in these cells can help
increase the probabilities of success for these important trips that serve large numbers of
people.

In scenario 3, a higher normalized disaster severity value, 0.3, has been assigned to four
cells (highlighted in the figure), and other conditions remain the same as in scenario 1. The
increased disaster severity has two effects: first, it increases the uncertainty of the road
connectivity within the severely affected cells; second, it increases the number of affected
people at the nodes within these cells (e.g., in cells (1, 2) and (1, 4), each node has 30
(100×0.3) units of affected people). It can be seen that the cells (e.g., (2, 3)) that (partially)
contain the trips passing (or going to) the severely affected areas have an increase in their
information value compared to scenario 1. This is because knowing the road connectivity
information in these cells can reduce the uncertainty and therefore improve the expected
utility to a larger degree. In scenario 4, we combine the conditions from scenario 2 and 3.
It can be observed that cell (1, 2) has a large increase in its information value, due to the
overlapping effects of large population and high disaster severity.
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5.2 A case study based on a real mapping project from the 2015
Nepal earthquake

We conduct an experiment based on a real online mapping case which took place in the after-
math of the 2015 Nepal earthquake and was organized by the Humanitarian OpenStreetMap
Team. This mapping project focused on the capital city of Nepal, Kathmandu, which was
heavily affected by the earthquake. Figure 14 (a) is a screenshot of this real example, and
we reproduced the same grid tessellation as shown in Figure 14 (b).

Figure 14: The real online mapping case for Kathmandu and the reproduced grid tessellation.

5.2.1 Dataset

Existing road network. The road network data for Kathmandu was downloaded from
Planet.osm2, which maintains a full history of the OpenStreetMap (OSM) data. As OSM
data in Nepal has been greatly enhanced after the earthquake (Poiani et al., 2016), we
retrieved the OSM data dump on April 20, 2015 (the latest data before the earthquake) to
reproduce the initial situation before the mapping started. The retrieved OSM data covers
the entire planet, and its size, after unzipping, is about 1.2 Tb. We used a bounding rectangle
to clip out the data in the study area, and extracted the road network from the clipped OSM
data. The extracted road data contain 21, 232 line features (Figure 15 (a)).

Disaster affected area. The disaster affected area in this case is larger than the target
region to be mapped. Thus, we consider the entire target region as the affected area.

Population distribution. We downloaded 2014 LandScan data in the study area, which
is the most recent LandScan data available. Compared with district-level population data,

2http://planet.openstreetmap.org/planet/full-history/2015/
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LandScan has higher spatial resolution (about 1 km). We used a Voronoi-based method to
aggregate the LandScan data to the nodes of the road network (Figure 15 (b)).

Task grid cells. We manually recreated the grid tessellation based on the real scenario.
We also downloaded the earthquake intensity data from USGS3, which has been visualized
as the background map in Figure 15 (a). It can be seen that the west part of Kathmandu
was affected more severely than the east part. We aggregated the intensity values to grid
cells, and normalized the data into the range of [0, 1].

Figure 15: Road network, earthquake intensity, LandScan data, and voronoi polygons gen-
erated based on road nodes.

In addition to the above datasets, we also retrieved the dates and times when online
volunteers finished mapping each grid cell. In this way, we can compare the priority ranking
generated by our framework with the actual order in which online volunteers mapped these
cells.

5.2.2 Results and discussion

In total, there are 208 grid cells that need to be ranked. We ran our heuristic-based im-
plementation on the prepared datasets. We also conducted a small-scale parallel computing
using 4 separate program threads, each of which calculated the information value for 50 cells
(the 4th thread handled 58 cells). The experiment took 141 minutes and the total time used
by the 4 threads was 273 minutes. It is worth noting that the grid-based tessellation pro-
vides a natural basis for parallel computing, and in an urgent scenario, we can in principle
distribute this work to as many as 208 computers, so that each computer only needs to work
on one cell.

3http://earthquake.usgs.gov/earthquakes/eventpage/us20002926#impact_shakemap
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Based on the derived information values, we classified the cells into 5 ranks based on
quantiles. We also classified the actual order in which online volunteers mapped these cells
into 5 ranks. The result is visualized in Figure 16. The red and orange colors indicate that
these cells should have been (or were) mapped first, whereas yellow and the two green colors
represent cells that should have been (or were) mapped later. For reference, we also show
the road network in Figure 16 (a).

Figure 16: Rankings generated by the proposed framework and the actual mapping order by
online volunteers.

Two different orders can be observed. Our framework produces a ranking whose spatial
configuration is closely related to the road network structure, population distribution, and
disaster severity (e.g., the west part is more severely affected). The actual mapping order
from online volunteers shows some relations to the population distribution (e.g., a number of
cells at the center of the grid tessellation were mapped at the early stage). Strong differences
can be observed in Area 1 and Area 2. In Area 1, three cells, which were ranked as low priority
by our framework, were mapped first by online volunteers. The result from our framework
is understandable, since this area has only a few roads and low population based on the
LandScan data. In Area 2, three out of four cells that were ranked as high priority by our
methods have been mapped in a relatively later stage by online volunteers. We can observe
a dense road network in these three cells, and roads in these three cells are also important
for accessing the severely affected area based on the USGS data. The reasons that online
volunteers mapped cells in this particular order need further investigation. Our framework
provides one possible way to rank the priorities of the grid cells.

To quantify the difference between the two rankings, we use Spearman’s correlation
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coefficient. A ρ of 0.333 (p < 0.001) has been observed, which indicates a weak similarity
between these two rankings. This weak similarity could be explained by the cells, such as
those in the central area of the grid tessellation, whose priorities have been ranked as high
by our framework and which have also been mapped early by the online volunteers.

In addition, we perform Global Moran’s I to examine the spatial autocorrelations of these
two rankings. Queen’s case has been used to define the neighborhood for Moran’s I. A value
of 0.358 (p < 0.001) has been observed for the ranking from online volunteers, while a value of
0.445 (p < 0.001) has been observed for the ranking generated by our framework. This result
is interesting, as it shows our priority ranking has a higher degree of spatial autocorrelation
than the actual mapping order of volunteers. Although a higher spatial autocorrelation does
not necessarily mean a better ranking, our ranking might better reflect the effect of the
earthquake, which is a spatially continuous phenomenon. This result also indicates that the
order in which online volunteers map the affected area is not entirely random, but does have
a small degree of spatial autocorrelation.

6 Conclusion and future work

In recent years, online volunteers have been actively involved in disaster response. One
important contribution has been to map the disaster-affected areas based on remote sensing
images. Typically, the affected area is divided into a number of cells using a grid-based
tessellation. Online volunteers can select a cell to start the mapping process. However, this
approach does not differentiate the priorities of the grid cells and thus volunteers may map
these cells in a more or less random order.

In this research, we proposed an analytical framework based on information value theory
for quantifying the value of information contained in these grid cells to emergency responders.
Our objective is to provide guidance for online volunteers so that the cells that contain
more important information can be mapped first. Specifically, we focused on road network
connectivity information which has been frequently used in disaster response for planning
relief trips. We described the details of our framework, and designed and implemented
heuristics to enhance its computational efficiency. We also performed simulations to examine
the ranking variations under different scenarios, and applied our method to an experiment
based on a real mapping case from the 2015 Nepal earthquake. While in this paper the
priority ranking has been proposed for online volunteers, the approach could also be used
by agency professionals when ground-based surveying and mapping are necessary after a
disaster.

This research, however, has its limitations that can be addressed in future work. First, so
far we have adopted simple methods to estimate the uncertainty of road connectivity (based
on the length of the road). Many other factors, such as the texture and width of the roads,
and the structural characteristics of buildings, can also influence the uncertainties. There-
fore, more accurate modeling strategies could be developed to include these factors into the
current framework. However, strategies seeking higher accuracy may come at the cost of
higher computational complexity. If all we need is a priority ranking, simpler methods may
already produce a ranking that is as good as that of the more complicated models. Second,
the current framework ranks the priorities of grid cells based on only the road network infor-
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mation. Since a cell can contain many other types of geographic information (e.g., locations
of shelters), we can extend this framework to accommodate these additional information
types by identifying the corresponding potential target decisions. Third, the capability of
the framework to re-prioritize grid cells on the fly may need further examination. In online
disaster mapping, volunteers may respond quickly and fresh geographic information may be
collected that could change the priority ranking generated previously. Such a situation re-
quires our framework to re-prioritize the grid cells based on the newly available information.
While our framework allows parallel computing and thereby should be able to complete the
reprioritization in a short time period, further experiments are necessary to examine and
quantify the performance. Despite these and other potential shortcomings, we hope that
this research will make a modest contribution towards improving the efficiency of disaster
response.
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