
ADCN: An Anisotropic Density-Based Clustering Algorithm

Gengchen Mai
STKO Lab, UC Santa Barbara

Krzysztof Janowicz
STKO Lab, UC Santa Barbara

Yingjie Hu
STKO Lab, UC Santa Barbara

Song Gao
STKO Lab, UC Santa Barbara

ABSTRACT
In this work we introduce an anisotropic density-based clus-
tering algorithm. It outperforms DBSCAN and OPTICS
for the detection of anisotropic spatial point patterns and
performs equally well in cases that do not explicitly benefit
from an anisotropic perspective. ADCN has the same time
complexity as DBSCAN and OPTICS, namely O(n log n)
when using a spatial index, O(n2) otherwise.

1. INTRODUCTION
A wide range of clustering algorithms, such as DBSCAN

[2], OPTICS [1], K-means, and Mean Shift, have been
published. Density-based clustering algorithms have been
widely used for spatial knowledge discovery. They can
discover clusters with arbitrary shapes, are robust to noise,
and do not require prior knowledge of the number of clus-
ters. Using a scan circle centered at each point with a radius
Eps to find at least MinPts points as a criterion for deriving
local density is sufficient for isotropic spatial point patterns.
However, there are many cases that cannot be adequately
captured this way, e.g., if they involve linear features or
shapes with a continuously changing density. In such cases,
DBSCAN either creates an increasing number of small clus-
ters or add noise points into large clusters. Here we propose
an novel anisotropic density-based clustering algorithm
(ADCN) and demonstrate that it performs equally well as
DBSCAN & OPTICS in cases that do not benefit from an
anisotropic perspective and that it outperforms them in
cases that do. We show that our approach has the same time
complexity as DBSCAN & OPTICS and a similar runtime.

2. ADCN
Anisotropic Perspective on Local Density
Without predefined direction information from spatial
datasets, one has to compute the local direction for each
point based on the spatial distribution of points around it.
The standard deviation ellipse (SDE) is a suitable method
to get the major direction of a point set. Except for the ma-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2996940

jor direction (long axis), the flattening of the SDE implies
how much the points are strictly distributed along the long
axis. The flattening of an ellipse is calculated from its long
axis a and short axis b as given by Eq. 1:

f “
a´ b

a
(1)

Given n points, the SDE constructs an ellipse to represent
the orientation and arrangement of the points. The center
C(X, Y) of the ellipse O(rxi, ryi) is the weighted mean areal
center of the n points which is calculated by Eq. 2:

X “

řn
i“1 xiwi

řn
i“1 wi

, Y “

řn
i“1 yiwi

řn
i“1 wi

; where @i, wi “ 1. (2)

The coordinates (xi, yi) of each point are normalized to
the deviation from C(X, Y) (Equation 3):

rxi “ xi ´X, ryi “ yi ´ Y , (3)

Equation 3 can be seen as a coordinates translation to C(X,

Y). If we rotate the coordinate system counterclockwise
about C by angle θ (0 ă θ ď 2π) and get new coordinate
system Xo-Yo, the standard deviations along Xo , Yo axis
(σx, σy) are calculated as given in Equation 4.

σx “

d

řn
i“1pĂyi sin θ ` Ăxi cos θq2

n
;σy “

d

řn
i“1pĂyi cos θ ´ Ăxi sin θq2

n
(4)

The long/short axis of SDE is along the direction that has
the max/min standard deviation. Let σmax and σmin be the
length of the semi-long axis and semi-short axis of SDE. The
angle of rotation θm of the long/short axis is given by Eq 5.

tan θm “ ´
A˘B

C
(5)

A “
n

ÿ

i“1

rxi
2
´

n
ÿ

i“1

ryi
2 ;C “ 2

n
ÿ

i“1

rxi ryi ;B “
?
A2 ` C2 (6)

The ˘ indicates two rotation angles θmax, θmin corre-
sponding to long and short axis.

Anisotropic Density-Based Clusters
In order to introduce an anisotropic perspective to density-
based clustering algorithms such as DBSCAN, we have to re-
vise the definition of an Eps-neighborhood of a point. First,
the original Eps-neighborhood of a point in a dataset D is
defined by DBSCAN as given by Definition 1.

Definition 1. (Eps-neighborhood of a point) The Eps-
neighborhood NEpsppiq of Point pi is defined as all the points
within the scan circle centered at pi with radius Eps, which
can be expressed as:

NEpsppiq “ tpjpxj , yjq P D|distppi, pjq ď Epsu

Such scan circle results in an isotropic perspective on clus-
tering. However, an anisotropic assumption will be more
appropriate for some geographic phenomena. In order to in-
troduce anisotropicity to DBSCAN, one can employ a scan
ellipse instead of a circle to define the Eps-neighborhood of
each point. Before we give a definition of the Eps-ellipse-
neighborhood of a point, it is necessary to define a set
of points around a point (Search-neighborhood of a point)
which is used to derive the scan ellipse; See Definition 2.

Definition 2. (Search-neighborhood of a point) A set of
points Sppiq around Point pi is called search-neighborhood
of Point pi and can be defined in two ways:

1. The Eps-neighborhood NEpsppiq of Point pi.

2. The k-th nearest neighbor KNNppiq of Point pi. Here
k “MinPts and KNNppiq does not include pi itself.

After determining the search-neighborhood of a point, we
define the Eps-ellipse-neighborhood region (See Def. 3) and
Eps-ellipse-neighborhood (See Def. 4) of each point.

Definition 3. (Eps-ellipse-neighborhood region of a
point) An ellipse ERi is called Eps-ellipse-neighborhood
region of a point pi if:

1. Ellipse ERi is centered at Point pi.

2. Ellipse ERi is scaled from the standard deviation el-
lipse SDEi computed from the Search-neighborhood
Sppiq of Point pi.

3. σmax
1

σmin
1 “

σmax
σmin

;

where σmax
1,σmin

1 , σmax,σmin are the length of semi-
long , semi-short axis of ellipse ERi and SDEi.

4. AreapERiq “ πab “ πEps2

Definition 4. (Eps-ellipse-neighborhood of a point)
An Eps-ellipse-neighborhood ENEpsppiq of point
pi is defined as all the point inside the eillpse
ERi, which can be expressed as ENEpsppiq “

tpjpxj , yjq P D|
ppyj´yiq sin θmax`pxj´xiq cos θmaxq

2

a2
`

ppyj´yiq cos θmax´pxj´xiq sin θmaxq
2

b2
ď 1u.

There are two kinds of points in a DBSCAN cluster: core
point and border point. Core points have at least MinPts
points in their Eps-neighborhood, while border points have
less than MinPts points in their Eps-neighborhood but are
density reachable from at least one core point. ADCN has
a similar definition of core point and border point. These
notions are illustrated bellow; see Def. 5.

Definition 5. (Directly anisotropic-density-reachable) A
point pj is directly anisotropic density reachable from point
pi wrt. Eps and MinPts iff:

1. pj P ENEpsppiq.

2. |ENEpsppiq| ěMinPts. (Core point condition)

If point p is directly anisotropic reachable from point q,
then point q must be a core point which has no less than
MinPts points in its Eps-ellipse-neighborhood. Similar to
the notion of density-reachable in DBSCAN, the notion of
anisotropic-density-reachable is given in Definition 6.

Definition 6. (Anisotropic-density-reachable) A point p is
anisotropic density reachable from point q wrt. Eps and
MinPts if there exists a chain of points p1, p2, ..., pn, (p1 “

q, and pn “ p) such that point pi`1 is directly anisotropic
density reachable from pi.

While anisotropic density reachablity is not symmetric,
if a directly anisotropic density reachable chain exits, then
except for point pn, the other n´1 points are all core points.
If Point pn is also a core point, then symmetrically point p1

is also density reachable from pn. That means that if points
p, q are anisotropic density reachable from each other, then
both of them are core points and belong to the same cluster.

Next we are able to define our anisotropic density-based
notion of clustering. DBSCAN includes both core points and
border points into its clusters. In our clustering algorithm,
only core points will be treated as cluster points. Border
points will be excluded from clusters and treated as noise
points. In short, a cluster (See Def. 7) is defined as a subset
of points from the whole points dataset in which each two
points are anisotropic density reachable from another. Noise
points (See Def. 8) are defined as the subset of points from
the entire points dataset for which each point has less than
MinPts points in its Eps-ellipse-neighborhood.

Definition 7. (Cluster) Let D be a points dataset. A clus-
ter C is a no-empty subset of D wrt. Eps and MinPts, iff:

1. @p P C, ENEpsppq ěMinPts.

2. @p, q P C, p, q are anisotropic density reachable from
each other wrt. Eps and MinPts.

A cluster C has two attribute:
@p P C and @q P D, if p is anisotropic density reachable

from q wrt. Eps and MinPts, then

1. q P C.

2. There must be a directly anisotropic density reach-
able points chain Cpq, pq: p1, p2, ..., pn, (p1 “ q, and
pn “ p), such that pi`1 is directly anisotropic density
reachable from pi. Then @pi P Cpq, pq, pi P C.

Definition 8. (Noise) Let D be a points dataset. A point
p is a noise point wrt. Eps and MinPts, if p P D and
ENEpsppq ăMinPts.

Let C1, C2, ..., Ck be the clusters of the points dataset
D wrt. Eps and MinPts. From Definition 8, if p P D, and
ENEpsppq ăMinPts, then @Ci P tC1, C2, ..., Cku, p R Ci.

According to Def. 2, and in contrast to a simple scan cir-
cle, there are at least two ways to define a search neighbor-
hood of the center point pi. Thus, ADCN can be divided into
ADCN-Eps variant that uses Eps-neighborhood NEpsppiq
as the search neighborhood and ADCN-KNN that uses k-
th nearest neighbors KNNppiq as the search neighborhood.
Note that for ADCN-Eps, the center point is also part of its
search neighborhood which is not true for ADCN-KNN. We
will demonstrate that ADCN-KNN performs better.

ADCN Algorithms
From the definition provided above it follows that our al-
gorithm takes the same parameters (MinPts and Eps) as
DBSCAN and that they have to be decided before cluster-
ing. This is for good reasons, as the proper selection of DB-
SCAN parameters has been well studied and ADCN can eas-
ily replace DBSCAN without changes to existing workflows.
As shown in Algorithm 1, ADCN starts with an arbitrary
point pi in a points dataset D and discovers all the core
points which are anisotropic density reachable from point
pi. According to Defination 2, there are two ways to
get the search neighborhood of point pi which will result
in different Eps-ellipse-neighborhood ENEpsppjq. Here we
just show the one of ADCN-KNN due to lacking of space
(searchNeighborhoodKNN(pi, D, MinPts)). ADCN-KNN
(Algorithm 3) uses a k-th nearest neighborhood of point pi
as the search neighborhood. Here point pi will not be in-
cluded in its k-th nearest neighborhood.

Algorithm 1: ADCN(D, MinPts, Eps)

Input : A set of n points DpX, Y q ; MinPts; Eps;
Output: Clusters with different labels Cirs; Set of noise points Noirs

1 foreach point pipxi, yiq in the set of points DpX, Y q do
2 Mark pi as Visited;
3 //Get Eps-ellipse-neighborhood ENEpsppiq of pi
4 ellipseRegionQuery(pi, D, MinPts, Eps);
5 if |ENEpsppiq| ă MinPts then
6 Add pi to the noise set Noirs;
7 else
8 Create a new Cluster Cirs;
9 Add pi to Cirs;

10 foreach point pjpxj , yjq in ENEpsppiq do
11 if pj is not visited then
12 Mark pj as visited;

13 //Get Eps-ellipse-neighborhood ENEpsppjq of
Point pj

14 ellipseRegionQuery(pj , D, MinPts, Eps);

15 if |ENEpsppjq| ě MinPts then
16 Let ENEpsppiq as the merged set of

ENEpsppiq and ENEpsppjq;

17 if pj hasn’t been assigned a label then
18 Add pj to current cluster Cirs;

19 end

20 else
21 Add pj to the noise set Noirs;

22 end

23 end

24 end

25 end

26 end

Algorithm 2: ellipseRegionQuery(pi, D, MinPts, Eps)

Input : pi, D, MinPts, Eps
Output: Eps-ellipse-neighborhood ENEpsppiq of Point pi

1 //Get the Search-neighborhood Sppiq of Point pi. ADCN-Eps and
ADCN-KNN use different functions.

2 ADCN-Eps: searchNeighborhoodEps(pi, D, Eps); ADCN-KNN:
searchNeighborhoodKNN(pi, D, MinPts);

3 Compute the standard deviation ellipse SDEi base on the
Search-neighborhood Sppiq of Point pi;

4 Scale Ellipse SDEi to get the Eps-ellipse-neighborhood region ERi

of Point pi to make sure AreapERiq “ PI ˆ Eps2;
5 if The length of short axis of ERi ““ 0 then
6 // the Eps-ellipse-neighborhood region ERi of Point pi is

diminished to a straight line Get Eps-ellipse-neighborhood
ENEpsppiq of Point pi by finding all points on this straight line
ERi;

7 else
8 // the Eps-ellipse-neighborhood region ERi of Point pi is an

ellipse Get Eps-ellipse-neighborhood ENEpsppiq of Point pi by
finding all the points inside Ellipse ERi;

9 end
10 return ENEpsppiq;

3. PERFORMANCE EVALUATION
Compared to the simple scan circle of DBSCAN, there are

two ways to determine an anisotropic neighborhood. This

Algorithm 3: searchNeighborhoodKNN(pi,D,MinPts)

Input : pi; D; MinPts
Output: the Search-neighborhood Sppiq of Point pi

1 kNNArray = new Array(MinPts);
2 distanceArray = new Array(|D|);
3 kNNLabelArray = new Array(|D|);
4 foreach point pjpxj , yjq in the set of points DpX, Y q do
5 kNNLabelArray[j] = 0;

6 distanceArray[j] =
b

pxi ´ xjq2 ` pyi ´ yjq2;

7 if j ““ i then
8 kNNLabelArray[j] = 1;

9 end
10 foreach k in 0:pMinPts ´ 1q do
11 minDist = Infinity;
12 minDistID = 0;
13 foreach j in 0:|D| do
14 if kNNLabelArray[j] != 1 then
15 if minDist > distanceArray[j] then
16 minDist = distanceArray[j];
17 minDistID = j;

18 end
19 kNNLabelArray[minDistID] = 1;
20 kNNArray[k] = minDistID;
21 Add the point with minDistID as ID to Sppiq;

22 end
23 return Sppiq;

leads to two realizations of ADCN: ADCN-kNN and ADCN-
Eps. We will evaluate their performance using DBSCAN
and OPTICS as baselines. We selected OPTICS as an ad-
ditional baseline as it is commonly used to address some of
DBSCAN’s shortcomings with respect to varying densities.

According to the research contributions outlined in the In-
troduction section, we have to establish the following facts:
(1) We have to demonstrate that at least one of the ADCN
variants performs as good as DBSCAN (and OPTICS) for
cases that do not explicitly benefit from an anisotropic per-
spective; (2) that the aforementioned variant performs bet-
ter than the baselines for cases that do benefit from an
anisotropic perspective; and finally (3) that the test cases
include point patterns typically used to test density-based
clustering algorithms as well as real-world cases that high-
light the need for developing ADCN in the first place. In ad-
dition, we will show runtime results for all four algorithms.

To do so, we have implemented a JavaScript test envi-
ronment that allows us to generate use cases in a browser
or load them from a GIS, change noise settings, determine
DBSCAN’s Eps via a kNN distance plot, perform different
evaluations, compute runtimes, index the data via an R-tree,
and save and load the data. Consequently, what matters is
the runtime behavior, not the exact performance (for which
JavaScript would not be a suitable choice). All cases have
been performed on a cold setting, i.e., without any caching.

Evaluation of Clustering Quality
We use two clustering indices - normalized mutual informa-
tion (NMI), Rand Index - to measure the quality of cluster-
ing results. NMI evaluates the accumulated mutual infor-
mation shared by the clusters from different clustering algo-
rithms. Let n be the number of points in a point datasets
D. X “ pX1, X2, ..., Xrq and Y “ pY1, Y2, ..., Ysq are two
clustering results from the same or different clustering al-
gorithms. Noise points will be treated as their own cluster.

Let n
pxq
h be the number of points in cluster Xh and n

pyq
l the

number of points in cluster Yl. Let n
px,yq
h,l be the number of

points in the intersect of cluster Xh and Yl. Then the nor-
malized mutual information ΦpNMIq

pX,Y q is defined in Eq.

7 as the similarity between two clustering results X and Y :

ΦpNMIq
pX,Y q “

řr
h“1

řs
l“1 n

px,yq
h,l log

n¨n
px,yq
h,l

n
pxq
h
¨n
pyq
l

c

p
řr
h“1 n

pxq
h log

n
pxq
h
n
qp

řs
l“1 n

pyq
l log

n
pyq
l
n
q

(7)

Rand Index is another objective function for clustering en-
sembles from a different perspective. It evaluates to which
degree two cluster algorithms share the same relationships
between points. Let a be the number of pairs of points in D
that are in the same clusters in X and in the same cluster in
Y . b is the number of pairs of points in D that are in differ-
ent clusters in X and Y . c is the number of pairs of points in
D that are in the same clusters in X and in different cluster
in Y . Finally, d is the number of pairs of points in D that
are in different clusters in X and in the same cluster in Y .
ΦpRandqpX,Y q is then defined as given by Eq. 8:

ΦpRandqpX,Y q “
a` b

a` b` c` d
(8)

For both NMI and Rand larger values indicate higher sim-
ilarity between two clustering results. If a ground truth
is available, both NMI and Rand can be used to compute
the similarity between the result of an algorithms and said
ground truth. This is called the extrinsic method.

Table 1: Clustering Efficiency comparisons
NumOfPts DBSCAN ADCN-Eps ADCN-KNN OPTICS
1000 2.626 10.964 5.837 4.894

2000 10.892 32.939 21.215 19.101
4000 70.054 140.101 101.234 107.544

6000 230.559 418.369 306.726 282.7

Table 2: Clustering quality comparisons.
Location Buffer DBSCAN ADCN-Eps ADCN-KNN OPTICS

C1 NMI 0 0.1943825 0.2810088 0.3020152 0.1943825
5 0.2010174 0.2868701 0.3275452 0.2018711
10 0.2386191 0.3397847 0.3512622 0.239174

C1 Rand 0 0.8437326 0.8599161 0.8590211 0.8445825
5 0.839049 0.8543332 0.9126375 0.839049
10 0.8482562 0.862789 0.9212886 0.8482562

We generated 21 test cases with 3 different noise settings
for each of them. Out of these, we will discuss 6 synthetic
and 4 real-world use cases here which results in a total of
30 study cases. In order to simulate a ”ground truth” for
the synthetic cases, we created polygons to indicate different
clusters and randomly generated points within these poly-
gons and outside of them. We took a similar approach for the
four real-world cases. The only difference is that the poly-
gons for real world cases have been generated from buffer
zones with a 3m radius of the real-world features. To avoid
cases in which it is unreasonable to expect algorithms and
humans to differentiate between noise and pattern, we in-
troduced a clipping buffer of 0m, 5m, and 10m. All of these
four algorithms take the same parameters (Eps, MinPts).
As there are no established methods to determine the best
overall parameter combination1 with respect to NMI and
Rand Index, we stepwise tested parameter combinations.

Due to limited space, Table 2 shows the maximum NMI
and Rand Index results for one cases.. The best parameter
combination with the maximum NMI does not necessarily
yields the maximum Rand Index. However, among all of
these 30 cases, there are 22, 17, 21, 23 cases for DBSCAN,

1We use kNN distance plots to estimate Eps.

ADCN-Eps, ADCN-kNN, OPTICS in which the best pa-
rameter combination for the maximum NMI is also the max-
imum Rand Index.

As for the 30 test cases, ADCN-kNN has a higher maxi-
mum NMI/Rand Index than DBSCAN in 27 cases and has
a higher maximum NMI/Rand Index than OPTICS in 26
cases. ADCN-kNN has a higher maximum NMI/Rand Index
than ADCN-Eps in 21 cases. This indicates that ADCN-
kNN gives the best clustering results among the tested algo-
rithms. Note that our test cases do not only contain linear
features such as road networks but also cases that are typ-
ically used to evaluate algorithms such as DBSCAN, e.g.,
clusters of ellipsoid and rectangular shapes. In fact, these are
the only cases were DBSCAN slightly out-competes ADCN-
kNN, i.e., the maximum NMI/Rand Index of ADCN-kNN
and DBSCAN are comparable. Summing up, ADCN-kNN
performs better than all other algorithms when dealing with
anisotropic cases and equally well for isotropic cases.

Evaluation of Clustering Efficiency
Here runtime differences of the four algorithms are tested
using differently sized datasets. Without a spatial in-
dex, the time complexity of all algorithms is O(n2). Eps-
neighborhood queries consume the major part of this run
time. Hence, we implemented an R-tree to accelerate all
algorithms. This changes their time complexity to O(n log
n). 10 test cases have been used to generated point datasets
of different sizes ranging from 500 to 6000 in 500 step inter-
vals. The ratio of noise points to cluster points is set to 0.25.
Eps, MinPts are set to 15, 5 for all of these experiments.
Average run times are depicted in Table 1. The runtime
of ADCN-kNN is larger than that of DBSCAN and similar
that of OPTICS. As the size of the point dataset increases,
the ratio of the runtimes of ADCN-kNN to DBSCAN de-
crease from 2.80 to 1.29. The original OPTICS paper states
a 1.6 runtime factor compared to DBSCAN.For ADCN, we
test point-in-circle for the radius of the major axis before
computing point-in-ellipse to reduce the runtime.

4. CONCLUSION
We proposed an anisotropic density-based clustering algo-

rithm (ADCN). Synthetic & real-world cases have been used
to verify its quality and efficiency compared to DBSCAN &
OPTICS. ADCN outperforms DBSCAN & OPTICS for the
detection of anisotropic spatial point patterns and performs
equally well in cases that do not show anisotropicity. ADCN
has the same time complexity as DBSCAN & OPTICS,
namely O(n log n) using a spatial index, O(n2) otherwise. Its
average runtime is comparable to OPTICS. ADCN is partic-
ularly suited for linear features such as encountered in urban
structures. Application areas include social media data, tra-
jectories from car sensors, wildlife tracking, and so forth.

References
[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.

OPTICS: ordering points to identify the clustering struc-
ture. In ACM Sigmod Record, volume 28, pages 49–60.
ACM, 1999.

[2] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In KDD, volume 96, pages 226–
231, 1996.

