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Abstract

Digital gazetteers play a key role in modern information systems and infrastructures. They
facilitate (spatial) search, deliver contextual information to recommender systems, enrich tex-
tual information with geographical references, and provide stable identifiers to interlink actors,
events, and objects by the places they interact with. Hence, it is unsurprising that gazetteers,
such as GeoNames, are among the most densely interlinked hubs on the Web of Linked Data.
A wide variety of digital gazetteers have been developed over the years to serve different com-
munities and needs. These gazetteers differ in their overall coverage, underlying data sources,
provided functionality, and also their geographic feature type ontologies. Consequently, place
types that share a common name may differ substantially between gazetteers, whereas types
labeled differently may, in fact, specify the same or similar places. This makes data integration
and federated queries challenging, if not impossible. To further complicate the situation, most
popular and widely adopted geo-ontologies are lightweight and thus under-specific to a degree
where their alignment and matching become nothing more than educated guesses. The most
promising approach to addressing this problem and thereby enabling the meaningfully integra-
tion of gazetteer data across feature types, seems to be a combination of top-down knowledge
representation with bottom-up data-driven techniques such as feature engineering and machine
learning. In this work, we propose to derive indicative spatial signatures for geographic feature
types by using spatial statistics. We discuss how to create such signatures by feature engineer-
ing and demonstrate how the signatures can be applied to better understand the differences and
commonalities of three major gazetteers, namely DBpedia Places, GeoNames, and TGN.
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1 Introduction and Motivation
Digital gazetteers, i.e., structured dictionaries of geographical places, are a crucial backbone com-
ponent of modern information systems and cyber-infrastructures. They support geographic infor-
mation retrieval, deliver contextual cues to recommender systems, enrich textual information with
geographical references, disambiguate places with similar names, provide insights into historical
events, and offer stable and global identifiers to interlink data within and across data hubs (Alani
et al., 2001; Rice et al., 2012; Janowicz and Keßler, 2008; Schlieder et al., 2001; Twaroch et al.,
2008). This last aspect is of rapidly growing importance for global knowledge graphs such as
Linked Data (Bizer et al., 2009; Janowicz et al., 2012) where places act as Nexuses that weave
together statements, called (RDF) triples, about actors, events, and objects. To give a concrete
example, Figure 1 shows a fragment of an exploratory follow-your-nose search linking together
Horatio Nelson and Federico Carlos by the Battle of Trafalgar which took place at the Cape of
Trafalgar as well as the Assault on Cadiz (which took place at Cadiz). The Cape of Trafalgar
is also the place of death of Nelson who died on deck of the HMS Victory which is the oldest
naval ship still in commission and located in a dry dock at Portsmouth, England, thereby linking
Portsmouth and Trafalgar.

Figure 1: Exploratory follow-your-nose search for relations between Horatio Nelson and Federico
Carlos.

This role of places for the linkage and integration of entities is also reflected by the popular
Simple Event Model (Van Hage et al., 2011) and the fact that the GeoNames gazetteer is the second
most interlinked hub1 on the Web of Linked Data. Furthermore, the most popular hub, DBpedia,
contains nearly 1 million places and millions of entities directly linked to these places. Other
Linked Data gazetteers include the Pleiades gazetteer for ancient world studies, the Ordnance Sur-

1See http://lod-cloud.net/versions/2014-08-30/lod-cloud_colored.pdf for graphical
representation of popular datasets and their interlinkage.
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vey gazetteer of the UK, UCSB’s Alexandria Digital Library Gazetteer (ADL), as well as the Getty
Thesaurus for Geographic Names (TGN). Finally, as people frequently use place names (instead of
coordinates) to refer to places, gazetteers act as an important interface connecting informal human
discourse with formal geographic representations in information systems.

While the functionality offered by these gazetteers varies greatly, they all share three core
elements, namely toponyms, i.e., (alternative) place names (N), geographic feature types (T), and
spatial footprints (F) (Hill, 2000; Goodchild and Hill, 2008). Some gazetteers provide further
data, e.g., about temporal scopes, spatial (and platial) containment, related geographic features,
population counts, and so forth. A gazetteer’s key capabilities can be specified by three common
operations: lookup (N→ F), type-lookup (N→T), and reverse-lookup (F(×T)→N). The first case,
for instance, corresponds to a query for the spatial footprint of Cape Trafalgar, the second to the
type of Cape Trafalgar, and the third one to the names of places at the Strait of Gibraltar that are of
type Cape (Janowicz and Keßler, 2008).

However, there is no common geographic feature type ontology and thus each gazetteer uses
its own typing schema (Keßler et al., 2009). For example, the type Mountain may be used by one
gazetteer to represent mountain peaks, whereas another gazetteer may use it to refer to mountain
ranges. Some gazetteers also group mountain ranges to mountain systems, while others do not.
One gazetteer may distinguish between hills and mountains, while another does not support this
distinction. Yet another gazetteer may also introduce types such as Seamount for mountains that
rise from the seafloor without reaching the surface. The most critical cases, however, are those
where the type labels used by two or more gazetteers are very similar but the underlying concep-
tualizations differ dramatically or cases where the labels differ but the types are the same. A well
known example are the types Nation and Country in TGN and ADL. A query for countries yields
165 features in ADL while TGN returns merely 11 results as TGN uses the type Nation instead and
has reserved Country for specific cases such as the divisions of the United Kingdom into Scotland,
Britain, and so forth (Janowicz and Keßler, 2008).

Understanding the semantic heterogeneity among gazetteers is a prerequisite for query
federation, data integration, conflation, and many other key tasks underlying modern cyber-
infrastructures for GIS research and applications. On the one side, global or large-scale geographic
studies often require the integration of gazetteers from different countries and authorities, which
may have different definitions for the same terms. On the other side, understanding the semantics
of places can also help in selecting a suitable gazetteer that fits the particular requirements of an
application. The same argument can be made for recommender systems. For example, a historical
gazetteer may contain hotels that were involved in significant historical events. However, such a
gazetteer may not be suitable (or can be incomplete) for a hotel search engine whose objective is
to find hotels in which tourists may stay.

The huge variety of geographic feature type definitions introduced by spatial, platial, temporal,
cultural, and legal factors is an ideal case for techniques such as ontology alignment and matching
(Euzenat et al., 2010). Unfortunately, most geo-ontologies are lightweight and thus under-specific
to a degree where their alignment becomes nothing more than educated guesses as existing tools
and methods are forced to default back to simple string similarity measures, such as Levenshtein
distance, or network similarity measures such as structural equivalence.

In this work, we take a radically different, bottom-up approach and propose using spatial se-
mantic signatures to understand the semantics of geographic feature types. Semantic signatures
are an analogy to spectral signatures in remote sensing (Janowicz, 2012). The underlying idea is
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that geographic feature types can be characterized by spatial, temporal, and thematic bands mined
from heterogeneous data sources. In previous work, we have studied temporal and thematic bands
and how they jointly form signatures for micro and meso-scale features such as Points Of Interest
(McKenzie et al., 2015). Here, we focus on feature engineering2 by means of spatial statistics.
Compared with the traditional methods from ontology engineering our approach reveals differ-
ences and similarities that cannot be uncovered otherwise.
The contributions of this paper are twofold:

• From a methodological viewpoint, this paper presents a statistical framework for understand-
ing the semantics of geographic feature types in gazetteers from a data-driven perspective.

• From an application-centric viewpoint, we engineer a variety of statistical features and show-
case their application to type similarity by analyzing and comparing three leading gazetteers:
DBpedia Places, GeoNames, and Getty Thesaurus of Geographic Names (TGN).

The remainder of this paper is organized as follows. Section 2 highlights existing work related
to the semantics of gazetteers, focusing on the topic of semantic interoperability. Section 3 provides
a brief introduction and necessary background on the gazetteers used in this research. Section 4
presents the methodological details, i.e., the engineered features and used statistics. Section 5
applies the proposed approach to the three gazetteers and presents our findings on their semantic
differences and similarities. Finally, section 6 summarizes our work and outlines future directions.

2 Related Work
One strong motivation for studying the semantics of geographic feature types in digital gazetteers
is to facilitate the interoperability between multiple gazetteers. Once the meaning of place types
is understood, one can align and integrate multiple gazetteers to support more advanced, federated
queries and conflate data from different sources. Gazetteer interoperability is not a new research
topic. In fact, it was extensively discussed during a National Center for Geographic Information
and Analysis (NCGIA) specialists meeting at Santa Barbara in December 2006 (Goodchild and
Hill, 2008).

A simple approach to understanding the meaning of place types is to consider their textual la-
bels. Most gazetteers provide a rich list, taxonomy, or even ontology of feature types which are la-
beled with natural language terms. For example, the Alexandria Digital Library gazetteer contains
place types ranging from administrative areas and wetlands, to hills and reefs (Hill et al., 2000).
As argued before, however, relying on individual labels alone is dangerous and often misleading.
One can try to expand the labels by employing one or multiple external resources. For example,
Hess et al. (2006) designed an algorithm, called G-Match, which employs WordNet (Miller, 1995)
as an external lexical resource to enhance string similarity matching between geographic terms.
Note, however, that such an approach still relies on labels alone and their canonical interpretations.

Semantic interoperability between gazetteers is closely related to topics from knowledge rep-
resentation and reasoning and more specifically to ontology engineering, ontology alignment, and

2Features in machine learning are defined as measurable properties of the phenomenon under consideration. We
will use the term statistical feature to distinguish them from geographic features, e.g., places.
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semantic similarity measurement. One methodology that has been frequently utilized in the on-
tology alignment literature is a combination of string similarity and structural similarity (Shvaiko
and Euzenat, 2013). Besides considering the (potentially expanded sets of) labels, such approach
considers ontologies as graphs and assumes that semantically-similar terms will share similar struc-
tures (e.g., with respect to the number of subtypes). Examples for ontology alignment tools that
combine these two types of similarity measures include SAMBO (Lambrix and Tan, 2006), Ri-
MOM (Li et al., 2009), and Falcon-AO (Jian et al., 2005). To incorporate expert knowledge in
the alignment process, researchers also proposed semi-automatic approaches which, in addition
to automatic matching algorithms, allow experts to manually examine and align terms between
ontologies. Their methods then consolidate the alignment results from both the experts and the
algorithms, and resolve the potential conflicts. This semi-automatic approach has been used in
COMA++ (Aumueller et al., 2005) and AgreementMaker (Cruz et al., 2007). A popular alignment
API has been developed by Euzenat (2004), while a Linked Data-centric, bootstrapping matcher
called BLOOMS has been implemented by Jain et al. (2010).

The studies discussed above mostly focus on types without considering the instances that be-
long to these types. Brauner et al. (2007) proposed an instance-based approach for gazetteer in-
tegration. Their method is based on place instances that are confirmed to be the same in different
gazetteers. For example, if one can confirm that place instance p in gazetteer A is the same as the
place instance p′ in gazetteer B, then the feature type t of p should be semantically similar to the
type t′ of p′, even though t and t′ may be labeled with different terms. Such approaches, however,
do not scale, require manual interaction, are sensitive to various sampling effects and subsumption
relations between the considered features.

Our approach can be differentiated from the existing work. First, instead of looking at the
textual labels or definitions of place types, we examine the instances belonging to each place type
and extract a wide variety of spatial statistical features from them. Second, our approach does not
require an agreement on the same place instances across gazetteers. In sum, we propose a statisti-
cal and bottom-up driven approach to quantifying the spatial patterns representative of geographic
feature type. The derived spatial signatures can help understand similarities and differences un-
derlying those types that cannot be revealed by (lightweight) ontologies alone. The signatures can
also be applied to support the alignments of geo-ontologies.

3 Gazetteer Datasets
In this work, we focus on three major Linked Data gazetteers, namely DBpedia Places, GeoNames,
and Getty Thesaurus of Geographic Names. In the following, we briefly introduce each of them.

DBpedia Places. DBpedia is the Semantic Web version of Wikipedia (Lehmann et al., 2015).
It was generated by semantically annotating the data extracted and mined from Wikipedia articles.
As a result, DBpedia inherits many of the key strengths and also weaknesses of Wikipedia and
its geographic data, e.g., a rich amount of user-contributed content. DBpedia Places is a subset
of DBpedia focusing specifically on geographic places. It contains feature types such as Adminis-
trativeRegion, Restaurant, Stream, WineRegion, and so forth. In total, the DBpedia Places dataset
contains 92 feature types and more than 924, 000 place instances. It is worth noting that DBpedia
also contains various other feature types whose instances may have a spatial footprint without be-
ing categorized as places themselves. Finally, it also contains places on celestial bodies other than
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the Earth.
GeoNames. GeoNames is a gazetteer that contains over 10, 000, 000 places throughout the

world. Due to its high coverage, GeoNames has often been used to support geographic informa-
tion retrieval and enrichment (Passant, 2007; Hu et al., 2015; Pasley et al., 2008). Each place in
GeoNames is categorized into one of 9 major feature types and then further subdivided into one
of 645 minor feature types. The resulting flat hierarchy of so-called feature codes has been of-
ten criticized for its arbitrarity and unintuitive choices. Similarly to DBpedia Places, GeoNames
contains user-contributed data and therefore has the potential biases and pitfalls that arise from
user-generated content.

TGN. Getty Thesaurus of Geographic Names is a structured vocabulary that contains approx-
imately 1, 106, 000 named places. These places include political entities, such as counties and
cities, as well as physical features, such as mountains and caves. TGN also contains both current
and historical places. Constructed based on national and international standards, TGN follows the
terminologies that are warranted for use by authoritative literary sources. TGN focuses primarily
on places that are culturally or historically significant and therefore typical Point Of Interest (POI)
types (e.g., restaurants) are largely missing.

While all of the three gazetteers contain data outside the boundaries of the United States, the
data coverage varies from country to country. Therefore, this study focuses on the contiguous
United States which has been well covered by these gazetteers. In addition, we removed feature
types that contain fewer than 2 instances, since they cannot be used to produce meaningful sta-
tistical results. Table 1 summarizes the number of feature types in each gazetteer used in this
study.

Table 1: The number of geographic feature types used in this study.

DBpedia Places GeoNames TGN
Num of feature types 73 198 285

4 Methods
We investigate three kinds of spatial statistics to understand the similarities and differences in ge-
ographic feature type: spatial point patterns, spatial autocorrelations, and spatial interactions with
other geographic features. We selected several representative statistics for each kind. We have
extracted statistical features for all geographic feature types (556 in total) and all gazetteers. For
illustration and comparison, we will use the feature types Dam and Stream as running examples
throughout the paper, and will introduce further types such as Island, County, Administrative Re-
gion, and Mountain, to highlight specific aspects detailing how our signatures help us to make
interesting observations about the similarities and differences between the gazetteers. The spatial
distribution of Dam and Stream instances is depicted in Fig. 2

4.1 Spatial Point Patterns
Most gazetteers rely exclusively on point coordinates (typically centroids) to represent the spatial
footprints of places. In a few cases, however, polygon and polyline representations are available.
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Figure 2: Spatial distributions of Dam and Stream in contiguous United States.

Thus, we employ spatial point pattern analysis to understand the spatial structure of place instances
(of given types). More specifically, we group our analysis into local and global point patterns.

4.1.1 Local Point Patterns

Both intensity analysis (i.e. local intensity and kernel density estimation of the sample area) and
distance-based analysis (i.e. nearest neighbor analysis, Ripley’s K, and standard deviational el-
lipse) have been performed to examine the local point patterns. Among these analysis, local inten-
sity of the point patterns and nearest neighbor analysis are quantitative measures, but Ripley’s K,
kernel density estimation, and standard deviational ellipse are curves, maps, or geometries respec-
tively. Therefore, extracting quantitative characteristics from those visually exploratory plots are
discussed in this section as well.

Since many geographic feature types have a high number of instances (e.g., GeoNames contains
218, 701 churches and DBpedia Places contains 55, 969 settlements), calculating some statistics for
overall point patterns requires substantial computing resource. For example, calculating Ripley’s
K for the feature type Populated Place in GeoNames requires more than 104 GB memory, which
is beyond the computing capability of a typical workstation. Therefore, we employ a sampling
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strategy to explore local point patterns in addition to the overall statistics (see Fig. 3).

Figure 3: Sampling strategy for exploring local point patterns. Left: the work flow of sampling
strategy; Right: corresponding examples

As shown in Fig. 3, we first generated about 100 random sampling points within the boundary
of the contiguous U.S. using a Complete Spatial Randomness (CSR) process. For each random
sampling point, we selected its 100 nearest neighbors, and performed statistical analysis on these
100 nearest neighbors. The derived statistics will be assigned to this random point, and this process
will iterate for each of the 100 random points (i.e., the sampling areas) in the contiguous U.S.
Finally, we averaged the derived statistics from the 100 random points, and used the averaged
value to characterize the spatial structure of the place type under consideration, e.g., Stream. In the
following text, we will describe each of the point pattern statistics. Note that each feature type will
use the exactly same set of randomly selected points. Since the 100 nearest points are selected for
each of the 100 random point and these random points are independent of geographic locations,
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we assume that at the end most instances of any feature type are taken into account for calculating
the statistics. By using this proposed sampling technique, some instances may be considered more
than once, but since the average statistic is finally taken on all randomly selected groups, this effect
can be neglected.

Intensity of the point patterns & distance to nearest neighbor analysis. Local intensity and
the distance to nearest neighbor are selected to reflect the spatial point distribution patterns. Since
both are quantitative measurements, they are directly used as statistical features in this work. For
distance to nearest neighbor analysis, both mean and variance are extracted. Examples are showed
in Table 2

Table 2: Local intensity and distance to nearest neighbor (in meters).

Dam Stream
Statistics DBpedia

Places
GeoNames TGN DBpedia

Places
GeoNames TGN

Local
intensity

4.5× 10−11 9.4× 10−9 5.0× 10−13 2.4× 10−10 2.6× 10−8 5.2× 10−9

Mean dis-
tance to
nearest
neighbor

5.8× 104 5.8× 103 1.2× 105 3.5× 104 3.2× 103 1.7× 104

Variance
distance
to nearest
neighbor

4.0× 109 5.1× 107 9.0× 1010 1.5× 109 1.4× 107 1.1× 109

Kernel density estimation. In addition to local intensity, kernel density estimations (KDE)
has also been used to analyze point patterns. Figure 4 shows the KDE maps for Dam and Stream
based on one common random sampling point and its 100 nearest neighbors. To understand the
kernel density map quantitatively, two characteristics have been extracted to measure the spatial
structures of the spatial point patterns. Below are the two quantitative measures:

• Bandwidth (in meters) of the kernel density map. For different spatial point patterns, the
selections of bandwidth for creating kernel density maps are different. In our work, Berman
and Diggle (1989)’s algorithm is used to calculate the optimized bandwidths for various
spatial point patterns. This algorithm selects the optimized bandwidth that minimizes the
mean-square error defined by Diggle (1985). Based on this algorithm, the bandwidth is likely
to be large if the intensity of points varies dramatically in space, and be small otherwise.
Subsequently, these bandwidths are selected as characteristics for representing kernel density
maps.

• Range of the kernel density estimation. The range of KDE is calculated as the difference be-
tween the minimum and the maximum density values on the kernel density map. Since each
sample area contains a fixed number of points, the range of KDE will be large if the points
are clustered. In contrast, if these points are dispersed, the range will be small. Therefore,
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the range of KDE can also reflect the structure of spatial points. Table 3 shows two examples
of these two statistics.

Figure 4: Kernel density estimation for Dam and Stream in DBpedia Places, GeoNames and TGN.
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Table 3: Bandwidth (in meters) and range of the kernel density estimation.

Dam Stream
Statistics DBpedia

Places
GeoNames TGN DBpedia

Places
GeoNames TGN

Local
bandwidth

4.3× 104 4.6× 103 7.2× 103 2.7× 104 3.6× 103 1.0× 1.04

Local range 1.2× 10−10 2.3× 10−8 2.0× 10−12 1.0× 10−9 4.9× 10−8 1.2× 10−8

Ripley’s K. Ripley’s K characterizes spatial point patterns at multiple distance scales. This
property distinguishes Ripley’s K from many other spatial point pattern measures, such as the dis-
tance to nearest neighbor, which are based on a single distance scale. Accordingly, Ripley’s K
provides a different perspective on quantifying spatial point patterns. However, since multiple dis-
tances are used, the computation is intensive, especially for feature types that have many instances.
Examples of Ripley’s K are depicted in Fig. 5. Two quantitative characteristics are extracted from
the Ripley’s K graph, which are the range of K and the mean deviation from the theoretical values.
Examples are illustrated in Table 4.

• Range of Ripley’s K. Similar to kernel density maps, the range of K is indicative of the spatial
spread of points. When points are dispersed in a large scale, the range will be larger. In our
work, the range is calculated from the minimum of Ripley’s K rule of thumb, which is one
quarter of the smallest side of the bounding rectangle of the studied point pattern.

• Mean deviation from the theoretical values. The theoretical K measures are calculated from
random spatial points generated by a CSR process. Comparing the K measures from the
observed points with the theoretical values can help reveal the pattern of the spatial points.
For example, if the observed K measure is larger than the theoretical one, then the place
instances of a feature type are more clustered; in contrast, if the observed K measure is
smaller, then the points are more dispersed. In this paper, we use the mean of the deviation
as the statistical feature.

Table 4: Range and mean deviation from the theoretical Ripley’s K.

Dam Stream
Statistics DBpedia

Places
GeoNames TGN DBpedia

Places
GeoNames TGN

Range 4.4× 105 4.1× 104 3.7× 106 2.3× 105 2.3× 104 1.7× 105

Mean devi-
ation from
the theoret-
ical K mea-
sures

1.2× 1011 1.6× 109 1.7× 1013 5.8× 1010 3.0× 108 4.5× 1010

Standard deviational ellipse. Standard deviational ellipse is used to check the directionality
and shape of the spatial point distribution. Two spatial point patterns that are both clustered can
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Figure 5: Ripley’s K for Dam and Stream in DBpedia Places, GeoNames and TGN.

have different directionalities: one is more clustered along the x-axis, while the other may be
clustered along the y-axis. Similarly, two clusters can demonstrate distinct geometric shapes as
well. The standard deviational ellipse is employed to characterize the directionality and the shape
of the spatial points. Figure 6 shows examples of standard deviational ellipse for two types.

We used the rotation of the ellipse, standard deviation along x-axis, as well as standard devi-
ation along y-axis, to capture the shape and directionality of the spatial points. Table 5 provides
examples on these statistics.
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Table 5: Rotation, standard deviation along x- and y-axis of the standard deviational ellipse.

Dam Stream
Statistics DBpedia

Places
GeoNames TGN DBpedia

Places
GeoNames TGN

Rotation −0.23 0.02 0.12 −0.17 0.34 −0.04
Standard
deviation
along
x-axis

3.8× 105 3.6× 104 3.0× 106 1.9× 105 2.1× 104 1.5× 105

Standard
deviation
along
y-axis

4.5× 105 5.0× 104 6.0× 106 2.6× 105 2.8× 104 1.9× 105

4.1.2 Global Point Patterns

In addition to local patterns, we perform global spatial analysis as well. Specifically, we analyze
the overall intensity and the global KDE based on the place instances belonging to a feature type.
Figure 7 illustrates the global KDE for two feature types in different gazetteers. Similar to local
point patterns, bandwidth and the range of global KDE are extracted from the density map, which
are showed in Table 6.

Table 6: Global intensity, bandwidth and range of global KDE.

Dam Stream
Statistics DBpedia

Places
GeoNames TGN DBpedia

Places
GeoNames TGN

Global
intensity

5.4× 10−11 7.2× 10−9 2.5× 10−12 1.8× 10−10 2.73× 10−8 3.7× 10−9

Global
bandwidth

2.8× 104 3.5× 103 1.0× 105 1.5× 104 2.6× 103 4.9× 103

Global
range

1.5× 10−10 1.6× 10−8 1.3× 10−11 0.1× 10−9 6.5× 10−8 2.0× 10−8

4.2 Spatial Autocorrelations
Spatial autocorrelations capture the interactions between geographic places. Unlike spatial data
that have both geographical coordinates and attributes (e.g., precipitations or temperatures), digital
gazetteers typically provide only coordinates with place names and types. To understand the spatial
autocorrelation patterns of place instances of a feature type, we transfered the point data of each
type into a raster map. In order to make the extracted statistics comparable, the resolution of the
raster map are set to be same for all feature types, which is about 36.0 kilometers× 22.2 kilometers.
The value of each cell in the raster map represents the number of instances falling into that cell.
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With this data conversion, Moran’s I and semivariograms can then be computed to quantify the
spatial autocorrelations. Examples of the raster for Dam and Stream are illustrated in Fig. 8.

Global Moran’s I. Global Moran’s I is calculated on each feature type based on the converted
raster maps to check how the intensities of cells differ from their neighbors. In this study, we
use Queen’s case to define neighborhoods, and therefore all 8 cells surrounding the target cell are
considered as neighbors. Values that are close to 1 indicate a strong positive autocorrelation, while
negative values approaching −1 show strong negative autocorrelations. Finally, values around 0
indicate randomness in the locations of the observed place instances of a given type. Examples are
listed in Table 7.

Table 7: Global Moran’s I for Dam and Stream in DBpedia Places, GeoNames and TGN.

Dam Stream
Statistics DBpedia

Places
GeoNames TGN DBpedia

Places
GeoNames TGN

Global
Moran’s I

0.21 0.65 0.12 0.35 0.83 0.83

Semivariogram. We employ semivariograms to explore the intensity of points over a larger
spatial scale. To make semivariograms comparable, a fixed distance range, roughly 1130 miles, and
a fixed number of distance lags (51) were applied to all types. In addition, due to the complexity
of the required computation, 100 random points were selected for calculating the experimental
semivariogram. Using semivariograms, we can check the dissimilarity of cell intensities across
multiple distance lags. Observations of Dam and Stream from the three studied gazetteers are
shown in Fig. 9.

Semivariances at the first, the median, as well as the last distance lag, are subsequently extracted
as statistical features for understanding the geographic feature types.

4.3 Spatial Interactions with Other Geographic Features
The third category of statistics extracted to form spatial signatures examines the interactions be-
tween the target place type and other geographic features. These other geographic features could
be summarized into two groups: (1) the internal group: the ones that are observed from the same
gazetteer but with different feature types, and (2) the external group: the ones that are obtained
outside of the gazetteer. This section will discuss these two groups respectively.

Group 1: Internal. The interactions of place types from the same gazetteer are studied in
this group. Here, two statistics are quantitatively proposed to reflect the spatial interactions of each
feature type with its neighbors: the count of distinct nearest feature types and the entropy of nearest
feature types.

• Count of distinct nearest feature types: instances of one feature type may have different types
of neighbors compared with other instances of a different feature type. Take restaurants and
mountains as examples, the nearest neighbors of restaurants may belong to a relatively more
diverse type set including bars, cinemas, hotels, and so forth, while the set of neighbor
types for mountains is more restricted. Therefore, the count of distinct nearest feature types
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plays a role for determining the semantics of one feature type. In this work, we use the
CountNearesti =

mi

N
to quantitatively measure the normalized count of distinct nearest

feature types of the ith feature type, where mi is the number of distinct nearest feature type
for feature type i and N is the total number of feature types in one gazetteer.

• Entropy of nearest feature types: in addition to the count of nearest feature types, we also
use information entropy as an indicator for the diversity of the nearest feature types. The
formula of calculating the entropy of ith feature type is given as: EntropyNearesti =
−
∑N

j=1
nj

N
log(

nj

N
) where N is the total number of feature types in one gazetteer and nj is

the number of nearest instances from the jth feature type. Larger entropy values indicate
that this target feature type most likely locates in a neighborhood whose feature types vary
greatly. Table 8 shows the example of the two proposed signatures.

Table 8: Count and entropy of nearest feature types.

Dam Stream
Statistics DBpedia

Places
GeoNames TGN DBpedia

Places
GeoNames TGN

Count 0.41 0.45 0.04 0.54 0.07 0.43
Entropy 2.86 2.86 0.37 3.90 0.45 3.69

Group 2: External. A feature type also interacts with other geographic features that are
out of scope of the studied gazetteers. While many kinds of external data could be used, we
employ population distribution data and street network data, since these two kinds of data can
interact with most feature types in a typical gazetteer, are not part of the gazetteers themselves, and
are available from up-to-date, high-resolution, and authoritative datasets. Other examples could
include temperature and precipitation data.

• Population distribution. The rationale of using population distribution data is that different
geographic feature types may have significantly different demographic characteristics. For
example, cities and hotels will most likely only occur in high average population cells, while
streams may or may not be near human settlements. Finally, mountains are unlikely to
occur in high population cells (as long as the resolution of the dataset is sufficiently high).
We utilize LandScan which is a global-scale population dataset with a spatial resolution
of 1 kilometer (Bhaduri et al., 2002, 2007). The newest LandScan data (for 2014), have
been retrieved from http://wms.cartographic.com/LandScan2014/. Figure
10 shows a map visualization of the used LandScan dataset.
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Figure 10: The 2014 LandScan dataset of the US mainland

Based on the LandScan population dataset, we calculated the minimum, maximum, mean,
and standard deviation. Table 9 illustrates the statistical features derived from the population
distribution data.

Table 9: Spatial signatures based on LandScan 2014 population data (unit: number of persons).

Dam Stream
Statistics DBpedia Places GeoNames TGN DBpedia Places GeoNames TGN

Min 0 0 0 0 0 0
Max 11806 11271 405 26102 25399 10901
Mean 105.107 58.860 72.083 175.744 35.484 44.411

Std dev 617.088 239.100 128.256 891.529 194.246 184.360

• Road network. Road networks are another type of geographic features used to study the
interactions between the target feature type and external datasets. The rationale is simi-
lar to including population distribution data: different feature types may show significant
differences in terms of their distances to the nearest road segments. We use the road net-
work data from the Digital Chart of the World (DCW) project which provides compre-
hensive digital map data of the world (Danko, 1992). The data have been retrieved from
http://www.diva-gis.org/gdata, and are visualized in Fig. 11.
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Figure 11: The DCW road network dataset of the US mainland.

For each feature type in the three gazetteers, we also calculate the minimum, maximum,
mean, and standard deviations of the shortest distances to transportation infrastructure based
on their place instances. Table 10 uses the examples of Dam and Stream to illustrate these
statistical features.

Table 10: Spatial signatures based on DCW road network data (unit: meters).

Dam Stream
Statistics DBpedia Places GeoNames TGN DBpedia Places GeoNames TGN

Min 3.69 0.13 164.56 1.01 0.02 0.01
Max 22386.02 35342.17 15252.04 27079.98 77201.22 36127.38
Mean 3013.24 3504.90 3007.38 3653.39 4525.16 4919.15

Std dev 3158.05 3224.77 3728.41 4039.65 4373.17 4173.89

4.4 Summary of the Statistical Features
The three categories of spatial analysis reflect spatial point patterns, autocorrelations, and spatial
interactions of geographic feature types. In total, we have generated 27 statistical features to
characterize the different aspects of geographic feature types in the gazetteers. All these statistical
features are calculated in R using packages such as spatstat, gstat and sp. Table 11 shows a
summary of these statistics.
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Table 11: A summary of the 27 different kinds of statistical features.

Spatial Point Patterns Spatial Autocorrelations
Spatial Interaction with Other

Geographic Features

Local

Intensity

Global Moran’ I Internal

Count of distinct
nearest feature typesMean distance to

nearest neighbor
Variance distance to

nearest neighbor Entropy of nearest
feature typesKernel density

(bandwidth)
Kernel density

(range) Semivariogram value
(at first distance lag)

External

Population value
(min)Ripley’s K

(range)
Ripley’s K

(mean deviation)
Population value

(max)
Standard deviational ellipse

(rotation) Semivariogram value
(at median distance lag)

Population value
(mean)

Standard deviational ellipse
(std dev along x-axis)

Population value
(std dev)

Standard deviational ellipse
(std dev along y-axis)

Shortest distance to road
(min)

Global
Intensity

Semivariogram value
(at last distance lag)

Shortest distance to road
(max)

Kernel density
(bandwidth)

Shortest distance to road
(mean)

Kernel density
(range)

Shortest distance to road
(std dev)
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5 Experiments and Discussion
Having extracted these 27 potential statistical features, the next step is to analyze their correlations.
If two statistical features have a significantly high correlation, we only keep one of them to reduce
the dimensionality of our feature space. Figure 12 depicts the resulting correlation matrix. From
the first row of the matrix, we can clearly identify several features that are highly correlated (i.e.,
dark blue and dark red cells). For instance, one can see a correlations among the semivarigram
values at the first, median and last distance lags, as well as the global intensity value. Therefore,
only the semivariogram value at median distance lag, among the four, is kept in the reduced ver-
sion. Overall, we removed 9 highly correlated statistical features. The final list of these statistical
features is shown in Table 12. The second row of Figure 12, shows that there is no commonly
significant correlation among all three gazetteers.

Figure 12: Visualization of the correlation matrix. First row: correlation matrix with all statistical
features (27); Second row: correlation matrix with reduced statistical features (18)

Table 12: List of spatial signatures after reduction (18 in total)

Spatial Signatures
Mean distance to nearest neighbor Global kernel density (bandwidth)
Variance distance to nearest neighbor Population value (min)
Local intensity Population value (max)
Ripley’s K (range) Population value (mean)
Ripley’s K (mean deviation) Population value (std dev)
Local kernel density (bandwidth) Short distance to road (min)
Standard deviational ellipse (rotation) Short distance to road (max)
Standard deviational ellipse (std dev along y-axis Short distance to road (std dev)
Semivariogram (median distance lag) Entropy of nearest feature type

After reducing the highly correlated statistical features, the remaining ones are used to derive
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spatial signatures of geographic feature types for the three gazetteers (i.e. DBpedia Places, GeoN-
ames and TGN). We applied multidimensional scaling, more specifically metric-MDS, to visualize
similarities and differences among place types. From Fig. 13, it is clear that place types for the
three tested gazetteers have a significant overlap in general. However, how a specific place type in
one gazetteer relates to other place types in another gazetteer is not immediately clear. Therefore,
we selected three cases to explain the potential of using spatial statistics for understanding dif-
ferences and similarities in geographic features type specification that are not captured by today’s
lightweight ontologies. Before diving into details, it is important to remember that we propose
the use of spatial signatures in addition to existing alignment methods that use string similarity,
structural measures, and so forth. Consequently, considering the signatures alone results in a lower
discriminatory power. We discuss them here in isolation nonetheless to ensure that our results are
not influenced by a specific alignment technique but merely by the extracted statistical features.

Table 13: Number of instances for selected geographic feature types.

Number of instances DBpedia Place GeoNames TGN
Island 102 9187 2895

Mountain 2253 64316 123
AdministrativeRegion/ADM2/County 3289 3098 1142

Hotel 184 52692 NA

5.1 Same Name and Similar Spatial Patterns
The type Island is present in the three gazetteers with exactly the same names. Thus, these features
would be matched with a high likelihood if structural comparison would not reveal dramatic differ-
ences between them. These three types are highlighted in Fig. 13, in which their high dimensional
spatial signatures are mapped to 2-dimension space. Island signatures in TGN and GeoNames
turn out to be very close, and they are actually each other’s nearest neighbor in the 2D represen-
tation. This observation indicates a high similarity in the (otherwise hidden) conceptualizations of
the type Island in GeoNames and TGN. However, the distance from DBpedia Places to TGN and
DBpedia Places to GeoNames are substantially large. This observation may be surprising at first
but can be well explained by revisiting what we know about the datasets. As mentioned in Section
3, DBpedia Places contains places that have been mentioned in Wikipedia articles. Thus only sig-
nificant islands will be included in the Island type of DBpedia Places; see Table 13 for the counts
of selected feature types in the US. In contrast, both GeoNames and TGN have a larger coverage.
One consequence of this, for instance, is that the average nearest neighbor distance for islands in
Dbpedia Places is larger than 50 kilometers (and there are only 102 islands) while it is 9 kilometers
and 12 kilometers for GeoNames and TGN, respectively. The core argument underlying our work
is that this substantial difference in the extension of the type Island is not merely an issue of overall
coverage but caused by a different intension. Thus, islands in GeoNames and TGN are more alike
in terms of their size, accessibility, administration, and so forth. This is not the case for all feature
types, e.g., all three gazetteers have similar signatures for administrative divisions; see below.
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5.2 Same Name but Different Spatial Patterns
Even though two types have exactly the same name, their semantics may vary greatly depending
on the source and focus of the gazetteers. This can be demonstrated using the Mountain feature
type. As depicted in Fig. 14 the MDS distances among DBpedia Places, GeoNames, and TGN are
relatively large. Therefore, and with respect to the used statistical features, we can assume that the
conceptualization of this class differs substantially among the three datasets. We discussed possible
reasons for such differences in the Introduction section. Among other factors, these differences can
be caused by a unclear distinction between mountains and hills, mountains and mountain peaks, the
fact that mountains have different definitions per country and these differences are often included
in Wikipedia and thus DBpedia but not in Geonames, and so forth. A similar observation can be
made for the Monument type in DBpedia and GeoNames. The type as such is only vaguely defined
and contains natural and man made features, ancient and modern features, ranges from small to
large scale structures, and so on.

5.3 Different Names but Similar Spatial Patterns
The spatial signatures can also be applied to detect similarities among geographic feature types
that have very different names/labels. The geographic feature type County has different names in
the three gazetteers (i.e., it is called AdministrativeRegion in DBpedia Places, ADM2 or second-
order administrative division in GeoNames, and County in TGN). Therefore if only names were
used for comparison, those features would hardly be considered as potential matches. However,
since counties in United States are administrative regions, their boundaries are officially defined
independently from the specific focus area of a gazetteer or its ontology. Thus a county’s spatial
structures is expected to be similar across gazetteers. Figure 15 justifies such argument by showing
a relatively small distance among the three gazetteers and thereby confirms that these types can be
aligned despite the different type labels. It is this information, that we see as the key contribution
of the signatures (and spatial statistics more broadly) to modern alignment tools.

5.4 Different Names and Different Spatial Patterns
Last but not least, one could argue that we have not shown that the spatial signatures have sufficient
discriminatory power to differentiate types within a gazetteer that are indeed dissimilar. In other
words, types such as Island and Hotel that should be far apart in statistical feature space could still
have ended up close to each other. To demonstrate that this is not the case, consider the example
provided in Fig.16. Both DBpedia Places types are far apart indicating that they do not share
similar values with respect to their studied statistical features. This is important as we do not want
to accidentally match geographic feature types that are neither similar with respect to their names
nor their underlying semantics.

Finally, and to show the limitations of our current work, this leads to the question whether all
types that are assumed to be dissimilar can be confirmed using the spatial signatures alone. This
is not the case and future work will require more feature engineering to find more measurable
characteristics that successfully tell apart as many types as possible. To give a concrete example,
place types that frequently co-occur such as Restaurant and Bar cannot be clearly distinguished.
In fact, we have defined temporal and thematic signatures that help us differentiate them based
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on when they are visited and how people communicate about them McKenzie et al. (2015). Put
differently, some semantic signatures need to be formed by spatial and temporal bands. Other
cases include the various kinds of populated places such as City, Town, Village, and so forth.

6 Conclusions and Future Work
In this work, we proposed to derive and utilize spatial semantic signatures to understand the con-
ceptualization of geographic feature types. Such bottom-up approaches become necessary as ex-
isting gazetteer ontologies and vocabularies are lightweight and underspecified to a degree where
most of the underlying semantics is communicated by labels and simple (and often unbalanced)
type hierarchies alone. This presents a major challenge for ontology alignment techniques and
therefore hampers query federation and data integration within cyber-infrastrucutures and knowl-
edge graphs such as the Web of Linked Data. It is believed that a combination of top-down on-
tology engineering and bottom-up data-driven analysis is required to successfully approach these
challenges. For example, one can combine the similarity measures derived from both the top-down
textual labels and bottom-up spatial signatures to achieve a higher accuracy in ontology alignment.
In fact, we demonstrated this in previous article in which we enrich a top-down ontology using the
bottom-up knowledge mined from Linked Data (Hu and Janowicz, 2016).

Semantic signatures are an analogy to spectral signatures in remote sensing where a certain
combination of bands (wavelengths) uniquely identifies a type, e.g., a land cover class. In previous
work, we have used temporal and thematic bands to form signatures for Points of Interest in urban
environments. Here, we introduce a variety of spatial bands, i.e., statistical features extracted from
spatial statistics and aggregated to the level of geographic feature types, to arrive at spatial signa-
tures that enable us to better understand differences and similarities between the typing schemta
and ontologies of three major gazetteers.

We have introduced 27 statistical features collected from three groups, those extracted from
spatial point patterns, those extracted from measures of spatial autocorrelation, and those extracted
from the spatial interaction across feature types. Nine statistical features are later subtracted from
the 27 due to their high correlations with others. Next, we have discussed four experiments to
show how the resulting spatial signatures can reveal information about the conceptualization of
geographic feature types used by the three gazetteers. More specifically, we have discussed (1)
cases where the labels and signatures match, i.e., cases in which a common name is indeed indica-
tive of a similar conceptualization, (2) cases where labels match despite substantial differences
in the signatures, (3) cases where the labels do not indicate a clear similarity despite the feature
types being closely related, and finally (4) cases where both names and signatures differ. Our work
is intended to complement modern alignment techniques that mostly rely on string matching and
structural measures.

Future work will focus on deriving additional statistical features, especially those that can deal
with co-occurring place types as well as types whose instances stand in characteristic topological
relations to each other such as malls containing grocery stores and restaurants. In addition, we
will combine the spatial signatures presented in this work with our previously described temporal
and thematic signatures to increase their discriminative power. Finally, while we focused on the
bottom-up part in this work, we will integrate the results with classical top-down knowledge en-
gineering using our ODOE methodology (Janowicz, 2012). Thereby we aim to introduce spatial

21



statistics into the field of geo-ontology engineering.
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Schlieder, C., Vögele, T., Visser, U., 2001. Qualitative spatial representation for information re-
trieval by gazetteers. In: Spatial Information Theory. Springer, pp. 336–351.

Shvaiko, P., Euzenat, J., 2013. Ontology matching: state of the art and future challenges. Knowl-
edge and Data Engineering, IEEE Transactions on 25 (1), 158–176.

Twaroch, F. A., Jones, C. B., Abdelmoty, A. I., 2008. Acquisition of a vernacular gazetteer from
web sources. In: Proceedings of the first international workshop on Location and the web. ACM,
pp. 61–64.
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Figure 6: Standard deviational ellipse for Dam and Stream in DBpedia Places, GeoNames and
TGN.
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Figure 7: Global kernel density estimation for Dam and Stream in DBpedia Places, GeoNames and
TGN.
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Figure 8: Raster maps for Dam and Stream in DBpedia Places, GeoNames and TGN.
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Figure 9: Experimental semivariograms for Dam and Stream in DBpedia Places, GeoNames and
TGN.
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Figure 13: Multidimensional scaling for Island in DBpedia Places, GeoNames and TGN.
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Figure 14: Multidimensional scaling for Mountain in DBpedia Places, GeoNames and TGN.
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Figure 15: Multidimensional scaling for County in DBpedia Places, GeoNames and TGN.
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Figure 16: Multidimensional scaling for Hotel and Island in DBpedia Places
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