Let 1. So S basics: from proof system to optimization.
I) Setting:
•
$$f: \{0, |\xi^n| \rightarrow |R|$$

- Fact: f can be written as a polynomial with deg $\leq n$
eg $f(x) = \sum \hat{f}(s) \prod x_i$
• Upolyn $p(x), x \in \{0, |\xi^n|, p(x) = \langle V_p, (1, x)^{\otimes d} \rangle, V_p \in |R|^{n}$ Old
• $(1, x)^{\otimes d}$: e.g. $x = (x_1, x_2, x_3)$. $(1, x)^{\otimes 2} = (1, x) \otimes (1, x)$
• dim = n^{Old} , contain all deg $\leq d$ monomial in x_i .
 $p(x) = (+ x_1 x_2 + 2x_1^2 + 2x_2^2) = \langle --- \rangle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \end{pmatrix}$

Thun 1: If
$$f-c \ge 0$$
 has deg-d SoS cert. then it
(an be found in $n^{O(d)}$ time.
Pf sketch: $f-c = g_1^2 + \dots + g_m^2$. s.t. deg $(g_2) \le d \forall 2$.
 $g_1^2 = \langle v_1, u, x \rangle^{O(d)} \stackrel{?}{=} = ((1, x)^{O(d)} v_1 v_1^T (1, x)^{O(d)}$
 $\Longrightarrow f-c = ((1, x)^{O(d)} \stackrel{?}{=} \frac{v_1 v_1^T}{v_1 v_1} (1, x)^{O(d)}$
 $\exists p \le d \ s.t. f-c=\langle x, x x \rangle$
 $SDP: \begin{cases} K \ge 0 \\ match welf of f-c : linear constraint \end{cases}$

Exmp: $f = \chi_1^2 + \chi_2^2 - 2\chi_1\chi_2$ $\begin{cases} x_{1}^{2} + x_{2}^{2} - 2x_{1}x_{2} = \langle (1, x_{1}, x_{2}), K (1, x_{1}, x_{2}) \rangle \\ R + S \\ K \geq 0 \\ L + S = \chi_{1}^{2} + \chi_{2}^{2} - 2x_{1}x_{2} \end{cases} \quad K = \begin{pmatrix} K_{00} & K_{01} & K_{02} \\ K_{01} & K_{02} \\ K_{01} & K_{02} \\ K_{02} \end{pmatrix}$ $12HS = K_{00} + 2K_{01}X_{1} + 2K_{02}X_{2} + K_{11}X_{1}X_{2}$

 $\begin{cases} K_{00} = 0 \\ K_{\parallel} = -2 \\ K_{\parallel} = -2 \end{cases}$

(I) Back to optimization - opt - c min $f(x) \implies \max_{\substack{X \in \mathbb{R} \text{ opt}}} C \text{ s.t. } f(x) - C \text{ has } SoS_d \text{ cert}$ (=> min C s.t. for)-c has no SoS, cert CEP opt2 · What is "no SoSa cert"? f Sosa cone · View f as a vector $\cdot \langle f, g \rangle = \frac{1}{2^n} \sum_{x} f(x) g(x)$ If g c come (SoSd) · f & come (SoSd) => I pe separate f $g = \sum_{i} N_i P_i(x)$ $N_i \ge 0$ is now $P_i = S_0 S_d Polyn$ { < <pre> <p

$$\begin{aligned} |\langle \mu, 1 \rangle = 1 \\ \text{Def}: \mu \text{ is called deg-d pseudo-distribution.} \\ & \quad \\$$

=> min C μ , c S.t. $(\mu, f-c) \leq 0$, μ is pseudo-distr = $i \in \mu i f \leq c$

min fix
$$SoSd$$
 relexation min $\widetilde{E}_{\mu} \widetilde{E}_{f} \widetilde{f}$
 $xcgo.15^{n}$ \longrightarrow $min \widetilde{E}_{\mu} \widetilde{E}_{f} \widetilde{f}$
 $s.t. \mu is deg-d pseudo-distr$
 $n \overset{OCd}{time}$ solvable. (in most interesting cases)
 $Rounding : \overset{extract}{\longrightarrow} \chi cgo.15^{n}$
 $\mu: go.13^{n} \mapsto IR$
 $what about constrained optimization?
 $\min f(x) s.t. p.(x) \ge 0, \cdots, p.(x) \ge 0$
 $g.(x) = 0, \cdots, g_{\mu}(x) = 0$$

"
$$\{f \geqslant c\}\$$
 is SoS-deduced from axiom $\{P_i \geqslant o: i \in TmJ\}$ "
 $Q:$ what if the feasible region is β , e.g. $P_i(x) = \chi_i^2 - 4$?
Ans: Sometimes SoS is unable to tell: The 3XOR SoS LB.

Def (3XOR):
$$\chi_{2} \oplus \chi_{3} \oplus \chi_{k} = A_{ijk}$$
 $\chi_{\epsilon} \{0, 1\}^{n}$, $A_{ijk} \in \{0, 1\}$

$$\max_{\substack{\lambda \in \{\pm, 1\}^{n} \\ \lambda \in \{\pm, 1\}^{n}}} \sum_{ijk} \chi_{i}\chi_{j}\chi_{k} \cdot A_{ijk}$$

$$(1 \pm \{1, 1-5\}) - apx \quad is \text{ NPhood}$$
Thus (SoS LB) $\exists 3xoR \quad inst \ \varphi, opt(\varphi) \neq \pm t \leq .5oS_{opt}(\varphi) \geq 1-\epsilon , \quad i.e.$

$$\max_{\mu} \quad \underset{\mu}{\leftarrow} \quad \prod \in [\sum \chi_{i}\chi_{j}\chi_{k}A_{ijk}] \geq 1-\epsilon$$

$$(II) So S as proof system
(II) So S as proof system
(eventification: proposition: $f(x) \ge 0$
 $n^{O(L)}$ time { proof: $f = g_1^2 + \dots + g_n^2$
 $n^{O(L)}$ time { refutation: $C(f + g_1^2 + \dots + g_n^2 = -1, C \ge 0$
 $(f \ge 0.3 + \frac{1}{2}(g \ge h.3) \ge g_{-h} = f \ge g_1^2$ (deg $(g_1^2) + deg (f) \le d$)
 $f, g, h : polyn$
 $(I, g, h : polyn)$
 $f: so. 13^h = f \ge g(x) - h(x) \ge 0$
 $f: so. 13^h = f \ge 0$
 $f: so. 13^h = f \ge 0$
 $f: so. 13^h = f \ge 0$$$

Pounding
Pounding
Try to round/Sample
$$\mu$$
 to a integral $X \in \{0, 13^n\}$
randomized rounding \Longrightarrow feasible $X \cup P$. $P(X)$
 $X = P(X) \ge \frac{1}{2}$.
If further : $\{f(x) \ge 0, 3\} \leftarrow \{P(X) \ge \frac{1}{2}\}$.
Then pseudo-distr suffice.
Exmp: max $\sum_{X \in \{0, 13^n\}} e_{X \in \{0, 13^n\}} = P(X)$
 $\Longrightarrow \max 1.$
 $Sold = \sum_{i=1}^{N} \frac{1}{\{0, 13^n\}} = P(X)$
 $x \le 1.$
 $\sum_{i=1}^{N} \frac{1}{(X_i - X_j)^2} > C$
 $\xrightarrow{Y} = \sum_{i=1}^{N} \frac{1}{\{0, 13^n\}} = P(X)$

Rounding: $E[X_i] = S_2$, $E_\mu [X_i X_j] = D_{ij}$ $\cdot \mathcal{Z}_{j} \sim \mathcal{N}\left(\begin{pmatrix} s_{1} \\ s_{j} \end{pmatrix}, \begin{pmatrix} \theta_{1} & \theta_{2} \\ \theta_{1} & \theta_{2} \end{pmatrix}, \begin{array}{c} \mathcal{Z}_{j} \in \mathbb{P}^{2}, (2, j) \in \mathbb{P} \\ \vdots \\ \vdots \\ \end{array}\right)$ · random depⁿ

Lec I:
$$SoS_{2}$$
 for Max Cut.
Indo: Griven $G = (V = In], E)$, max $IE[\sum_{x \in \{n, 1\}^{n}} (x_{1}, -x_{1})^{2}] = f(x)$
Thus I: V Max Cut inst and SoS_{2} sol μ , one can find a real distr μ'
(in poly-time) s.t. $E[f(x) \ge 0.878 E[Tf(x)]]$
Conjecture (UGC): achieving $(0.878 + E) - apx$ is NP-hard.
 $= \min_{\substack{p \in IH, U}} \frac{2arcose}{I - e}$
 $\equiv achieving (0.878 + E) - apx$ need $\Omega(n) - deg$ SoS
Known: $\Omega(log n) - deg$ SoS.

Lum 1:
$$\forall \deg \ge 2$$
 pseudo-distr μ on $\{0, 13^n, \exists Gaussian \ \mu' \text{ on } \mathbb{R}^n$
matching the 1st and 2nd moment of μ .
 $\widehat{\mathbb{E}}_{\mu} [\pi_i] = \widehat{\mathbb{E}}_{\mu} [\pi_i] \cdot [\vartheta, i]$.
 $\widehat{\mathbb{E}}_{\mu} [\pi_i \chi_j] = \widehat{\mathbb{E}}_{\mu} [\pi_i \chi_j]$

W.l.o.g. assume $\widetilde{\mathbb{H}}_{n}[\mathcal{X}_{i}] = \frac{1}{2}$, $\mathcal{V} \in [n]$. • If otherwise, let $\mu_0 = \frac{1}{2}\mu(x) + \frac{1}{2}\mu((1-x))$, then $\widetilde{E}_{\mu_0}[x;] = \frac{1}{2}$ and $\widetilde{E}_{\mu_0}[f] = \widetilde{E}_{\mu}[f]$: since f(x) = f(1-x)Alg: • By Imm I, we have $g \in \mathbb{R}^n$, $g \sim \mathcal{N}(\frac{1}{2} \cdot \mathbb{1}_n, \frac{5}{2})$ where $\widehat{\Sigma} = \widehat{E}_{\mu}(x - \frac{1}{2} \cdot \mathbb{1}_n)(x - \frac{1}{2} \cdot \mathbb{1}_n)^T$ · Out $\hat{\mathbf{X}} \in \{0, 1\}^n$, $\hat{\mathbf{X}}_i = \mathbb{1}[g_i > \frac{1}{2}] \longrightarrow \mathbb{N}'$ Thm 1: $\mathbb{E} = \left(\hat{\chi}_{i} - \hat{\chi}_{j}\right)^{2} \ge 0.878 = \mathbb{E} \left[\left(\chi_{i} - \chi_{j}\right)^{2}\right]$ (i) $\mathbb{E} = g$

Pt: fix (hij) EE. $\mathbb{E}_{g}(\hat{x}_{i} - \hat{x}_{j})^{2} = \Pr\left[\left(g_{i} > \frac{1}{2} \land g_{j} \leq \frac{1}{2}\right) \text{ or } \left(g_{i} \leq \frac{1}{2} \land g_{j} > \frac{1}{2}\right)\right]$ $= \Pr[(g_{1} - \frac{1}{2})(g_{5} - \frac{1}{2}) \le 0]$ $(\text{Let } \xi_{i} = 2g_{i} - 1) = \text{Pri}_{i} \xi_{i} < 0]$ g~N(0,42) • $P_r[\varphi_{\hat{z}} \varphi_{\hat{z}} < 0] = distrof(\varphi_{\hat{z}}, \varphi_{\hat{z}})$

 $(\xi_{i},\xi_{j}) \sim \mathcal{N}((\hat{o}),\xi(\hat{\Sigma}_{i},\hat{\Sigma}_{j}))$

$$\begin{split} &\widetilde{\Sigma}_{ij} = \widetilde{E}_{\mu} [(x_i - \frac{1}{2})^2] = \widetilde{E}_{\mu} x_i^2 - (\widetilde{E}_{\mu} x_i)^2 = \frac{1}{4} \\ &\widetilde{\Sigma}_{ij} = \widetilde{E}_{\mu} [(x_i - \frac{1}{2})(x_j - \frac{1}{2})] = \widetilde{E} x_i x_j - \frac{1}{4} \\ &\Rightarrow (\xi_i, \xi_j) \sim \mathcal{N}(0, (1 \ \ell_{ij})) \quad (\text{let } \ell_{ij} = 4\widetilde{\Sigma}_{ij} \\ &4\widetilde{E} x_i x_j - 1) \\ &\widetilde{E} - corr \ baussian) \\ & How to \ sample \ from \\ &\Rightarrow 0 \ fix \ \mathcal{U}, \ \mathcal{V} \in \mathbb{R}^2, \ \|\mathcal{U}\| = \|\mathcal{V}\| = 1, \ \mathcal{L}\mathcal{U}, \ \mathcal{V} = \ell_{ij} \\ &\widetilde{\mathcal{V}} = \mathcal{V}(0, I_2), \ \text{out put } \xi_j = \mathcal{L}\xi, \ \mathcal{W}, \ \xi_j = \mathcal{L}\xi, \ \mathcal{V} \end{split}$$

Goemans-Williamson nounding, X = 0.878

f-c wo SoSd optz max c s.t. f(x)-c has SoSz cort CEIR opti f opt, min C s.t. for)-c has no SoS, cert CER opt2 f-c Sofd optz-2 if opt2- 2 7 opt, - Contradiction $= \gamma opt_2 - \epsilon \leq opt_1$