Lee 1. SoS basics: from proof system to optimization.
(I) Setting:
, $f:\{0,1\}^{n} \rightarrow \mathbb{R}$

- Fact: f can be written as a polynomial with deg $\leq n$

$$
\text { eg } f(x)=\sum_{s \leq[n]} \hat{f}(s) \prod_{i \in s} x_{i}
$$

- \forall poly $p(x), x \in\{0,1\}^{n}, p(x)=\left\langle v_{p},(1, x)^{\otimes d}\right\rangle, v_{p} \in \mathbb{R}^{n^{O(d)}}$
- $(1, x)^{\otimes^{d}}$: e.g. $x=\left(x_{1}, x_{2}, x_{3}\right) \cdot(1, x)^{\otimes 2}=(1, x) \otimes(1, x)$
- $\operatorname{dim}=n^{\text {old) }}$. contain all deg . monomial in x_{i}.

$$
p(x)=1+x_{1} x_{2}+2 x_{1}^{2}+2 x_{2}^{2}=\ldots \ldots\left(\begin{array}{c}
x_{1} \\
x_{1} x_{2} \\
\vdots
\end{array}\right)
$$

(II) $O_{\text {ptimization }} \Rightarrow$ Certification

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Cert version: decide if opt $>c$, for given $c \in \mathbb{R}$.
- SoS cert: $\left\{g_{i}\right\}_{i=1}^{m} f-c=g_{1}^{2}+g_{2}^{2}+\cdots+g_{m}^{2}$

$$
\Rightarrow f-c \geqslant 0 \equiv \text { opt } \geqslant c \quad \operatorname{dog}-d \text { sos }
$$

- Size of SoS cert: $\sim \operatorname{deg}\left(g_{i}\right) \Rightarrow \operatorname{deg}\left(g_{i}^{2}\right) \leq d$

$$
g=\sum \hat{g} \Pi x_{i}=\langle v_{p} \cdot \underbrace{(1, x)}_{n^{o(d)}}\rangle
$$

$$
\cdot d=O(1), O(\log), O\left(n^{\varepsilon}\right) \quad O(n)
$$

Thu 1: If $f-c \geqslant 0$ has $\operatorname{deg}-d$ SoS cert, then it can be found in $n^{o(d)}$ time.
Pf sketch: $f-c=g_{1}^{2}+\cdots+g_{m}^{2}$. sit. $\operatorname{deg}\left(g_{i}\right) \leqslant d \forall i$.

$$
\begin{aligned}
& g_{i}^{2}=\left\langle v_{i},(1, x)^{\otimes d / 2}\right\rangle^{2}=\left((1, x)^{\otimes d}\right)^{\top} v_{i} v_{i}^{\top}(1, x)^{\otimes d / 2} \\
& \Rightarrow \quad f-c=\left((1, x)^{\otimes d / 2}\right)^{\top}\left(\sum_{i=1}^{m} v_{i} v_{i}^{\top}\right)(1, x)^{\otimes d / 2}
\end{aligned}
$$

wisd K s.t. $f-c=\overline{\langle x, K x\rangle}$
SDP: $=\{k \subset 0$
Solve fork match weft of $f-c$: linear constraint
s.

Exmp: $\quad f=x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}$

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}=\left\langle\left(1, x_{1}, x_{2}\right), K\left(1, x_{1}, x_{2}\right)\right\rangle \\
K \succsim 0 \\
K
\end{array} \quad K=\left(\begin{array}{lll}
K_{00}, K_{01} & K_{02} \\
& K_{11}, & K_{12} \\
& K_{22}
\end{array}\right)\right. \\
L H S=x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} \\
R H S=K_{00}+2 K_{01} x_{1}+2 K_{02} X_{2}+K_{11} x_{1} x_{2} \\
\left\{\begin{array}{l}
K_{00}=0 \\
K_{11}=-2 \\
K
\end{array}\right.
\end{array}\right.
$$

(II) Back to optimization

$$
\min _{x} f(x) \Rightarrow \max _{c \in \mathbb{R}} c_{\text {opt 1 }} \text { s.t. } f(x)-<\text { has SoS } S_{d} \text { cert }
$$

$$
\Leftrightarrow \min _{c \in \mathbb{R}} c \text { spit } \text { set. } f(x)-c \text { has no } S_{0} S_{d} \text { cert }
$$

cor

- What is "no Sos $_{\alpha}$ cert"?
- Wien f as a vector

$$
\begin{aligned}
\cdot & \langle f, g\rangle=\frac{1}{2^{n}} \sum_{x} f(x) g(x) \\
\cdot & \notin \operatorname{cone}\left(S_{0} S_{d}\right) \Rightarrow \exists \mu \text { separate } f \\
& \left\{\begin{array}{l}
\langle\mu, f\rangle<0 \\
\\
\{\mu, g\rangle \geqslant 0 \quad \forall g \in \text { cone }\left(s_{0} S_{d}\right)
\end{array}\right.
\end{aligned}
$$

$$
\cdot \backslash\langle\mu, 1\rangle=1
$$

Def: μ is called doeg-d psendo-distribution.

$$
\tilde{\mathbb{E}}_{\mu}[f]:=\langle\mu \cdot f\rangle \quad \tilde{\mathbb{E}}: p \text { seudo- axpectation }
$$

Fact : thas no $S_{0} S_{d}$ cert $\Leftrightarrow \exists$ dey-d $\mu, \widetilde{\mathbb{E}}_{\mu}[f] \leqslant 0$

$$
\begin{aligned}
& \min _{c \in \mathbb{R}} c \text { s.t. } \frac{f(x)-c \text { hes no } \text { So }_{2} \text { cert }}{\Leftrightarrow} \\
& \Rightarrow \min _{\mu, c} c \\
& \text { s.t. }\langle\mu \mu, f \text { s.t. }\langle\mu, f-c\rangle \leq 0 \quad \mu \text { is pseublo-distr } \\
&=\tilde{E}_{\mu}[f] \leq c
\end{aligned}
$$

$$
\Rightarrow c^{*}=\min _{\mu} \widetilde{\mathbb{E}}_{\mu}[f]
$$

$\min f(x) \quad$ SoS relaxation

$$
\min _{\mu} \mathbb{E}_{\mu}[f]
$$

s.t. μ is deg-d pseudodister

- $n^{O(d)}$ time solvable. (in most interesting cases)
- Rounding: $\mu \xrightarrow{\text { extract }} x \in\{0,1\}^{n}$

$$
\mu:\{0.1\}^{n} \mapsto \mathbb{R}
$$

- What about constrained optimization?

$$
\begin{array}{r}
\text { min } f(x) \text { st. } P_{1}(x) \geqslant 0, \cdots, P_{m}(x) \geqslant 0 \\
\\
q_{1}(x)=0, \cdots, q_{r}(x)=0
\end{array}
$$

- Sob cert for opt $>C$: a set of $\operatorname{deg}-\frac{d}{2}$ polyns $\left\{g_{i}\right\}$ s.t.

$$
f-c=g_{0}^{2}+\sum_{i=1}^{m} p_{i} g_{i}^{2}+\sum_{i} q_{i} g_{i}^{2}
$$

" " $\{f \geqslant c\}$ is SoS-deduced from axiom $\left\{P_{i} \geqslant 0: i \in[m]\right\}$ "
Q : What if the feasible region is \varnothing, e.g. $P(x)=x_{1}^{2}-4$? Ans: Sometimes SoS is unable to tell: The $3 \times 0 R$ SoS LB.
$\operatorname{Def(3XOR):} \begin{array}{rl}x_{i} \oplus x_{j} \oplus x_{k}=a_{i j k} & x \in\{0,1\}^{n}, a_{i j k} \in\{0,1\} \\ \vdots & \\ \max _{x \in\{ \pm 1\}^{n}} \sum_{i j k} x_{i} x_{j} x_{k} \cdot a_{i j k} & \text { Known: [Hastad] }\end{array}$
Thm (SoSLB) $\exists 3 \times \circ R$ inst φ. $\circ p t(\varphi) \leqq \frac{1}{2}+\varepsilon, S_{0} S_{D m}(\varphi) \geqslant 1-\varepsilon$, i.e.

$$
\max _{\mu} \underset{\sim}{\underset{E}{E}}\left[\sum x_{i} x_{j} x_{k} a_{i j k}\right] \geqslant 1-\varepsilon
$$

(III) SoS as proof system

- Certification: proposition: $f(x) \geqslant 0$

$$
\underset{n^{0(d)} \text { time }}{\text { solvable }} \begin{cases}\text { proof: } & f=g_{1}^{2}+\cdots+g_{2}^{2} \\ \text { refutation: } & c f+g_{1}^{2}+\cdots+g_{2}^{2}=-1, c \geqslant 0\end{cases}
$$

- $\{f \geqslant 0\} \vdash_{d}\{g \geqslant h\}: g-h=f \sum_{i=1}^{m} q_{i}^{2} \quad\left(\operatorname{deg}\left(q_{i}^{2}\right)+\operatorname{deg}(f) \leq d\right)$ f.g.h: poly
- "Imply $\left(1-_{\alpha}\right) ": \forall \mu \in S_{0} S_{d}$ relax of $\{f \geqslant 0\}$ $f:\{0,1\}^{n} \rightarrow R$ $x \in\left\{0,15^{n}\right.$ there's $\underset{\mu}{\tilde{E}}[\varphi(x)-h(x)] \geqslant 0$
- $\mu=$ "pretend" μ is a real distr over $\{x=f(x) \geqslant 0\}$

Romping. . Try to round/sample μ to a integral $x \in\{0,1\}^{n}$

- randomized rounding \Rightarrow feasible x w.p. $p(x)$

$$
\& \quad p(x) \geqslant \frac{1}{2}
$$

- If further : $\{f(x) \geqslant 0\} \vdash_{\alpha}\left\{p(x) \geqslant \frac{1}{2}\right\}$.

Then psendo-distr suffice.

$$
\text { Exp: } \max _{x \in\{0,1\}^{n}} \sum_{i, j, j \in E}\left(x_{i}-x_{j}\right)^{2}
$$

$$
\Rightarrow \quad \max 1
$$

$$
\begin{array}{ll}
\max 1 . & \text { SoS }_{2} \\
\text { s.t. } & \sum_{i . j}\left(x_{i}-x_{j}\right)^{2}>c
\end{array} \stackrel{\{0,1\}^{n} \rightarrow \mathbb{R}}{\Rightarrow} \quad \begin{aligned}
& \text { pretend } \mu
\end{aligned} \mu \text { is a }
$$

pretend μ is a distr over x s.t. $f(x)>c$

Rounding: $\cdot \underset{\mathbb{E}_{\mu}}{\tilde{L}}\left[x_{i}\right]=s_{i}, \tilde{\mathbb{E}}_{\mu}^{2}\left[x_{i} x_{j}\right]=\widetilde{\sigma}_{i j}$

$$
\cdot \xi_{i j} \sim \mathcal{N}\left(\binom{\xi_{i}}{\xi_{j}}, \begin{array}{c}
\sigma_{i} \sigma_{i j} \sigma_{i j} \\
\sigma_{i j}
\end{array}\right), \xi_{i} \in \mathbb{R}^{2},(i, j) \in E
$$

- raudom $\alpha \in \mathbb{R}^{n}$.

Lee II: SoS_{2} for Max Cut.
Prob: Given $G=(V=[n], E)$. $\max _{x \in\{0,1\}^{n}} \overline{|E|} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}=f(x)$
Thy 1: \forall Max Cut inst and SoS_{2} sol μ, one can find a real distr μ^{\prime} (in poly-time) s.t. ${\underset{\mu}{\mu^{\prime}}} f(x) \geqslant 0.878 \frac{\widetilde{\mathbb{E}}}{\mu}[f(x)]$
Conjecture (UGC): achieving $(0.878+\varepsilon)$-ap is NP-hard.

$$
=\min _{\rho \in[-1,]} \frac{2 \arccos \rho}{1-e}
$$

\equiv achieving $(0.878+\varepsilon)$-ap need $\Omega(n)$-deg sos Known: $\Omega(\log n)$-dey SoS.
Lmm 2: \forall deg $\geqslant 2$ pseuda-dister μ on $\{0,1\}^{n}, \exists$ Gaussian μ^{\prime} on \mathbb{R}^{n} matching the 1 st and 2 nd moment of μ.

$$
\begin{aligned}
& \widetilde{\mathbb{E}}_{\mu}\left[x_{i}\right]=\mathbb{E}_{\mu^{\prime}}\left[x_{i}\right] \quad \forall, i . j . \\
& \tilde{\mathbb{E}}_{\mu^{\prime}}\left[x_{i} x_{j}\right]=\mathbb{E}_{\mu^{\prime}}\left[x_{i} x_{j}\right]
\end{aligned}
$$

W.lo.g. assume $\widetilde{\mathbb{E}}_{\mu}\left[x_{i}\right]=\frac{1}{2}, \forall i \in[n]$.

- If otherwise, let $\mu_{0}=\frac{1}{2} \mu(x)+\frac{1}{2} \mu(1-x)$, then $\tilde{\mathbb{E}}_{\mu_{0}}\left[x_{i}\right]=\frac{1}{2}$ and $\tilde{\mathbb{E}}_{\mu_{0}}[f]=\widetilde{\mathbb{E}}_{\mu}[f]$: since $f(x)=f(\mathbb{1}-x)$
Alg:
- By Lm 1, we have $g \in \mathbb{R}^{n}, g \sim \mathcal{N}\left(\frac{1}{2} \cdot \mathbb{1}_{n} \cdot \tilde{\sum}\right)$ where $\tilde{\Sigma}=\widetilde{\mathbb{E}}_{\mu}\left(x-\frac{1}{2} \mathbb{1}_{n}\right)\left(x-\frac{1}{2} \mathbb{1}_{n}\right)^{\top}$
- Out $\hat{x} \in\{0,1\}^{n}, \hat{x}_{i}=\mathbb{1}\left[g_{i}>\frac{1}{2}\right]$

Thm 1: $\underset{(i, j) L E}{\mathbb{E}} \underset{g}{\mathbb{E}}\left(\hat{x}_{i}-\hat{x}_{j}\right)^{2} \geqslant 0.878 \underset{(i, j) \sim E}{\mathbb{E}} \underset{\mu}{\underset{E}{E}}\left[\left(x_{i}-x_{j}\right)^{2}\right]$

Pf: $f_{i x}(i, j) \in E$.

$$
\begin{aligned}
& \underset{g}{\mathbb{E}}\left(\hat{x}_{i}-\hat{x}_{j}\right)^{2}= \operatorname{Pr}\left[\left(g_{i}>\frac{1}{2} \wedge g_{j} \leqslant \frac{1}{2}\right)\right. \text { or } \\
&\left.\left(g_{i} \leqslant \frac{1}{2} \wedge g_{j}>\frac{1}{2}\right)\right] \\
&\left(\text { Let } \xi_{i}=2 g_{i}-1\right)= \operatorname{Pr}\left[\left(g_{i}-\frac{1}{2}\right)\left(g_{j}-\frac{1}{2}\right) \leq 0\right] \\
& \xi \sim \mathcal{N}(0,4 \tilde{\Sigma}) \operatorname{Pr}\left[\xi_{i} \xi_{j}<0\right] \\
& \cdot \operatorname{Pr}\left[\xi_{i} \xi_{j}<0\right] \Rightarrow \operatorname{distr} \text { of }\left(\xi_{i}, \xi_{j}\right) \\
&\left(\xi_{i}, \xi_{j}\right) \sim \mathcal{N}\left(\binom{0}{0}, 4\left(\begin{array}{c}
\tilde{\Sigma}_{i 1}, \tilde{\Sigma}_{i j} \\
\tilde{\Sigma}_{i j} \\
\tilde{\Sigma}_{j j}
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \widetilde{\Sigma}_{i j}=\tilde{\mathbb{E}}_{\mu}\left[\left(x_{i}-\frac{1}{2}\right)^{2}\right]=\widetilde{\mathbb{E}}_{\mu} x_{i}^{2}-\left(\tilde{\mathbb{E}}_{\mu} x_{i}\right)^{2}=\frac{1}{4} \\
& \widetilde{\Sigma}_{i j}=\tilde{\mathbb{E}}_{\mu}\left[\left(x_{i}-\frac{1}{2}\right)\left(x_{j}-\frac{1}{2}\right)\right]=\tilde{\mathbb{E}} x_{i} x_{j}-\frac{1}{4} \\
& \Rightarrow \quad\left(\xi_{i}, \xi_{j}\right) \sim \mathcal{N}\left(0,\left(\begin{array}{ll}
1 & e_{i j} \\
e_{i j} & 1
\end{array}\right) \quad\binom{\text { Let } e_{i j}=4 \tilde{\Sigma}_{i j}}{4 \widetilde{\mathbb{E}} x_{i} x_{j}-1}\right.
\end{aligned}
$$

($\rho_{- \text {corr Gaussian })}$

- How to sample from
$\Rightarrow 0$ fix $u, v \in \mathbb{R}^{2},\|u\|=\|v\|=1,\langle u, v\rangle=e_{i j}$
(2) pick $\mathcal{F} \sim \mathcal{N}\left(0, I_{2}\right)$, output $G_{i}=\langle\xi, u\rangle, \xi_{j}=\langle\xi, v\rangle$

claim: $\left(\xi_{i,} \xi_{j}\right) \sim N\left(0 .\left(\varepsilon_{j} \varepsilon_{j}\right)\right)$
- Hyperplane rounding:

$$
\begin{aligned}
& \operatorname{Pr}\left[\xi_{i} \xi_{j}<0\right] \\
= & \operatorname{Pr}[\langle\xi, u\rangle\langle\xi, v\rangle<0]=\frac{\theta}{\pi}
\end{aligned}
$$

$$
\underset{g}{\mathbb{E}}\left(\hat{x}_{i}-\hat{x}_{j}\right)^{2}=\frac{\theta}{\pi}=\frac{\arccos P_{i j}}{\pi}
$$

Recall $\tilde{\mathbb{E}_{\mu}}\left[\left(x_{i}-x_{j}\right)^{2}\right]=\frac{1}{2}\left(1-e_{i j}\right) \quad\left(e_{i j}=4 \tilde{E} x_{i} x_{j}-1\right)$

$$
\Rightarrow q x^{\text {ratio }} \geqslant \min \frac{\mathbb{E}_{j}\left(\hat{x}_{i}-\hat{x}_{j}\right)^{2}}{\tilde{\mathbb{E}}\left(x_{i}-x_{j}\right)^{2}}=\min _{\rho_{i j}} \frac{2 \arccos \rho_{i j}}{\pi\left(1-\rho_{i j}\right)}=0.818
$$

Goemans-Williamson rounding, $\alpha_{G W}=0.878$
$\max C$ s.t. $f(x)-C$ has $S_{0} S_{d}$ cert CER opti
$\min C$ s.t. $f(x)-C$ has no $S_{0} S_{d}$ cert ce\& optz

$f-c S_{0} S_{d}$
$\operatorname{aptz}-\varepsilon$

$$
\Rightarrow f-c S_{o} S_{d}
$$

if optz- \gg opt, : contradiction

$$
\begin{aligned}
& \text { if optz } \\
& \Rightarrow q p t_{2}-\varepsilon \leq p^{2} 1
\end{aligned}
$$

