Recitation (V): NP-Completeness.

Ex: "Show the following problem is in NP"

A (decision) problem X is in NP if:

1. \forall "Yes"-inst s_x of X
2. \exists poly-time certifier A that accepts s_x and another object c, verifies that s_x is indeed a "Yes"-inst
3. The object c is called a "certificate"
Exmp (I) Knapsack

Input: n items with weight w_1, \ldots, w_n, value v_1, \ldots, v_n
weight bound W, value threshold V

Output: Decide if $\exists S \subseteq [n]$ s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i > V$

- Certificate: optimal solution S^*
- Certificate: verify

1. $\sum_{i \in S^*} w_i \leq W$
2. $\sum_{i \in S^*} v_i > V$
Example (II): 3-Coloring

Input: graph $G = (V, E)$, color set $\{R, G, B\}$

Output: Decide if $\exists \pi : V \rightarrow \{R, G, B\}$ s.t.

\[\forall (u, v) \in E, \pi(u) \neq \pi(v) \]

Certificate: π^*

Certifier: check for every $(u, v) \in E$

whether $\pi^*(u) \neq \pi^*(v)$.
Example (III): LIS

Input: array of \(n \) numbers \(A = [a_1, \ldots, a_n] \), integer \(k \)

Output: Decide if there is an increasing subsequence of \(A \) with length \(\geq k \)

- **Certificate:** the LIS \(S \) of \(A \)
- **Certificate:** checks
 1. \(S \) is indeed increasing
 2. \(|S| \geq k \)
Reduction: $Y \leq_p X$

Given an instance s_Y of problem Y, show how to construct (in polynomial time) an instance s_X of problem X such that:

- s_Y is a Yes-instance of Y \Rightarrow s_X is a Yes-inst. of X
- s_X is a Yes-inst. of X \Rightarrow s_Y is a Yes-inst. of Y.
Example (I): 3-Coloring $\leq_p 4$-Coloring

3-Coloring inst

G

$\{R, G, B\}$

4-Coloring inst

G

$\{R, G, B, O\}$

Reduction
Exmp (ii) Hamiltonian Path \leq_p Degree-3 Spanning Tree

Def (Degree-3 Spanning Tree)

Input: graph $G = (V, E)$, $|V| = n$

Output: Decide if \exists spanning tree T s.t. $\forall v \in V$, $\deg_T(v) \leq 3$
0 “Yes”-inst of HP \Rightarrow “Yes”-inst of 3-ST:

Combining the HP in G with all the extra edges we added gives a 3-ST.
2. "Yes"-inst of 3-ST \Rightarrow "Yes"-inst of HP

Given a 3-ST T in G', we remove all the extra edges, then the remained part of T (let's say T') is a (s, t)-HP in G:

Let $d_v := \deg_{T'}(v)$, then

1. $d_s = d_t = 1$
2. $\forall v \neq s, t, d_v \leq 2$

But by the hand-shake lemma

$$d_s + d_t + \sum_{v \neq s, t} d_v = 2(n-1) \Rightarrow \sum_{v \neq s, t} d_v = 2n - 4$$

$\Rightarrow d_v = 2, \forall v \neq s, t$.

Thus T' is a HP.