CSE 331 Algorithms and Complexity

Xiangyu Guo
xiangyug@buffalo.edu
Syllabus:

- Course webpage
 - https://www.acsu.buffalo.edu/~xiangyug/teaching/cse331-summer20/index.html
 - contain schedule, HW, handouts

- Piazza (for Q&A)
 - https://piazza.com/buffalo/summer2020/cse331
 - also provided on the course webpage

- UB Learns (for submitting HWs)
 - you shall be enrolled automatically
Lectures (see details on Piazza)

- Recorded video uploaded to UBox

- UB Learns → Panopt

- Lecture time meeting (on Zoom)
 - Mon, Wed, Fri. 9:00 - 10:00 am

- Office hour (on Zoom)
 - Fri. 10:00 - 11:00 am. (tentative)
Expected background

• Math
 ◦ Read & Write proofs, Reasoning and induction
 ◦ Basic calculus (limits, differentiation, and integration) and basic linear algebra (matrix, linear equation system)

• Programming
 ◦ Recursion
 ◦ Data structure: linked list, stack, queue, binary tree
 ◦ PL: C/C++, Java, or Python

CSE 250
What you'll learn

- Meta algorithm design techniques
 - Backtracking
 - Greedy
 - Divide-and-Conquer (DaC)
 - Dynamic programming (DP)

- How to analyze algs rigorously
 - Correctness
 - Running time (efficiency)
 - Asymptotic notation (Big-O analysis)

- NP-completeness
 - "Life is just hard."
Reference

(reading is recommended but not required)

- **[KT] Algorithm Design**, by Jon Kleinberg and Eva Tardos
 - A classic, commonly used in previous alg courses of UB

 - An unified treatment of algs & DS.

- **[Eric] Algorithms**, by Jeff Erickson
 - My personal favorite.

see the course website for more!
Grading

- 40% 4-5 theory HW
 - pencils & papers
 - scan & upload PDF files to UBLearn.

- 10% 4 Programming HW
 - Allowed PL: C/C++, Java, or Python (recommended)

- 20% 1 Midterm (Jun 26, tentative)
 - Take-home or online (not decided yet)

- 30% Final (Aug 03, tentative)
 - form as above
Collaboration Policy

For HWs

▷ You are allowed to
 • Use course material (Textbook & handouts)
 • Ask me for hints
 • Collaborate with classmates
 - Explicitly give them credits
 - Write down sols in your own words

▷ You are **NOT** allowed to
 • Copy other students' sols.
 • Google or ask questions online for sols.
(II) What is an algorithm?

Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

- Computational prob.: relation between input/output.
 e.g., relation: output is $2x$ times the input.

- 3 major properties:
 - Well-defined: one can conduct every step mechanically
 - Correct: A input, produce correct output.
 - Efficient: runs fast.
Example: Greatest Common Divisor (GCD)

Problem def:
- Input: two integers $a, b > 0$
- Output: the GCD of a and b

GCD:
- $\max t$
- s.t. $a \mod t = 0$
- $b \mod t = 0$

Example: Input: 210, 270
- Output: 30

Alg.: Euclidean’s Alg
- Assume $a > b$
- $\text{GCD}(a, b) = a$ if $b = 0$ else $\text{GCD}(b, a \mod b)$

- $\text{GCD}(210, 210) = \text{GCD}(210, 60) = \text{GCD}(60, 30) = \text{GCD}(30, 0) = \text{output 30}$
Examp: Sorting

Prob Def: Input: seq of n numbers a_1, a_2, \ldots, a_n
Output: a permutation a'_1, a'_2, \ldots, a'_n s.t.
\[a'_1 \leq a'_2 \leq \cdots \leq a'_n \]

Examp: Input: 53, 12, 15, 0, 4, 97, 22
Output: 0, 4, 12, 15, 22, 53, 97.

Alg: Insertion Sort, Merge Sort, Quick Sort, ...
Non-Exmp: Be-A-Millionaire-Never-Pay-Tax

Alg: 1. Get a million $
2. Don't report tax until IRS come to you
 → tell them "I forgot"

• Not well defined:
 Step 1 — unclear how to conduct

• Not correct:
 Step 2 — You may get arrested.

• Not efficient:
 Step 1 — May take a lifetime.
Describe Alg

▷ Take GCD as example

- plain english: choose the minimum of the two inputs a and b, say \(b \leq a \), then compute GCD of b and a mod b, output a if b is 0.

- flow charts.

```
\begin{align*}
  a &> b \\
  a \mod b &= 0 \\
  a &= b \\
  b &= a \mod b \\
\end{align*}
```

\[\text{GCD} = b \]

✓ Pseudo-code.
GCD \((a, b) \)

while \(b > 0 \)

\((a, b) \leftarrow (b, a \mod b) \)

return \(a \)

- Actual FL
  ```
Analysis of Algorithms.

- Correctness
  - Need rigorous math proof
  - Advanced (not covered in this course)
    - CSE 631: "not far from correct" (approx alg)
    - CSE 632: "correct with some probability" (randomized alg)

- Efficiency
  - Asymptotic behavior:
    - How running time scales with input size.
    - Sorting $n$ numbers $\rightarrow$ time $T$
      - Sorting $\log n$ numbers $\rightarrow$ time ?

Won't consider engineering side.