
CSE 331: Algorithm and Complexity Summer 2020

Programming Homework
Instructor: Xiangyu Guo Deadline: Jul/31/2020

Your Name: Your Student ID:

Problems 1 2 3 Total
Max. Score 10 10 10 30
Your Score

Submission format
1. You should submit one source file for each problem.
2. Your code need to read the input from the console and output directly to the

console.
3. Your code shouldn’t output anything other than the desired output. For example,

do not output messages like “The output is:”.
4. Allowed programming languages:

• Python: use Python version ≥ 3. You can run “python --version” to check
its version. Do not use any third-party packages other the standard library.

• C++: use C++ 11 or later. Do not use any library files other than the STL.
• Java: use Java version ≥ 1.8. You can run “java -version” to check its

version. Do not use any third-party libraries.

Problem 1 (10 points).
You need to implement the Prim’s algorithm for the minimum spanning tree problem.
An O(n2 +m)-time algorithm is sufficient to pass all test cases.

Input: You need to read the input from the console. In the first line of the input, we
have two positive integers n and m. n is the number of vertices in the graph and m is the
number of edges in the graph. The vertices are indexed from 1 to n. You can assume that
1 ≤ n ≤ 1000 and 1 ≤ m ≤ 100000. In the next m lines, each line contains 3 integers:
u, v and w,with 1 ≤ u < v ≤ n and 1 ≤ w ≤ 106. This indicates that there is an edge
(u, v) of weight w. You can also assume that the graph is connected and there are no
parallel edges.

Output: You need to output to the console. The first line of the output is an integer
indicating the total weight of the minimum spanning tree. From line 2 to line n, you need
to output the n − 1 edges in the minimum spanning tree. Each line contains 2 integers
between 1 and n, indicating the two end-points of an edge.

1



Example: Your code should be able to (compile and) execute as follows:

Python python prim.py <input.txt >output.txt

C++
g++ -std=c++11 prim.cpp -o prim
./prim <input.txt >output.txt

Java javac prim.java
java prim <input.txt >output.txt

Below are examples for input and output:

input.txt output.txt
9 14 42
1 2 5 1 2
1 8 12 2 3
2 3 8 3 6
2 8 11 3 9
3 4 13 4 5
3 6 4 5 6
3 9 2 6 7
4 5 9 7 8
4 6 14
5 6 10
6 7 3
7 8 1
7 9 6
8 9 7

Problem 2 (10 points).
You need to implement the divide-and-conquer algorithm for counting inversions. As in
the Problem 1, you need to read from the standard input (i.e, the terminal) and output
to the standard output (i.e, the screen).

Input format: The first line of the input contains one positive integers n, 1 ≤ n ≤ 106.
The next n lines contain the n integers A[1], A[2], . . . , A[n]; every integer is between 0
and 108.

Output format: Just output 1 line, which is total number of inversions.

Example: Your code should be able to compile and execute like in Problem 1. Below
are examples for input and output. Output is 7 because there are 7 inversion pairs:
(7, 3), (7, 5), (20, 16), (20, 5), (20, 8), (16, 5), (16, 8).

2



input.txt output.txt
6 7
7
3
20
16
5
8

Problem 3 (10 points).
You need to implement the dynamic programming algorithm for the longest common
subsequence problem.

Input: As in previous problems, you need to read the input from the console. It contains
two lines, each containing one string. You can assume each string only contains upper
and lower case letters and numbers; the length of each string is at most 1000.

Output: You need to output to the console. The first line of the file is an integer
indicating the length of the longest common subsequence between the two strings. The
second line contains the longest common subsequence (which may not be unique).

Example: Your code should be able to compile and execute like in Problem 1. Below
are examples for input and output.

input.txt output.txt
bacdca 4
adbcda adca

3


