Homework 4

Instructor: Xiangyu Guo

Deadline: Jul/27/2020
Your Name: \qquad Your Student ID: \qquad

Problems	1	2	3	4	Total
Max. Score	10	20	20	20	70
Your Score					

Problem 1 (10 points). Consider the following optimum binary search tree instance. We have 5 elements $e_{1}, e_{2}, e_{3}, e_{4}$ and e_{5} with $e_{1}<e_{2}<e_{3}<e_{4}<e_{5}$ and their frequencies are $f_{1}=5, f_{2}=25, f_{3}=15, f_{4}=10$ and $f_{5}=30$. Recall that the goal is to find a binary search tree for the 5 elements so as to minimize $\sum_{i=1}^{5} \operatorname{depth}\left(e_{i}\right) f_{i}$, where $\operatorname{depth}\left(e_{i}\right)$ is the depth of the element e_{i} in the tree. You need to output the best tree as well as its cost. You can try to complete the following tables and show the steps. In the two tables, $\operatorname{opt}(i, j)$ is the cost of the best tree for the instance containing $e_{i}, e_{i+1}, \ldots, e_{j}$ and $\pi(i, j)$ is the root of the best tree.

	1	2	3	4	5
1	5				
2		25			
3			15		
4				10	
5					30

$\frac{\pi(i, j)}{i}{ }^{j}$	1	2	3	4	5
1	1				
2		2			
3			3		
4				4	
5					5

Table 1: opt and π tables for the optimum binary search tree instance. For cleanness of the table, we assume $\operatorname{opt}(i, j)=0$ if $j<i$ and there are not shown in the left table.

$$
\begin{aligned}
\operatorname{opt}(1,2) & =\min \{0+\operatorname{opt}(2,2), \operatorname{opt}(1,1)+0\}+\left(f_{1}+f_{2}\right)= \\
\operatorname{opt}(2,3) & = \\
\operatorname{opt}(3,4) & = \\
\operatorname{opt}(4,5) & = \\
\operatorname{opt}(1,3) & =\min \{0+\operatorname{opt}(2,3), \operatorname{opt}(1,1)+\operatorname{opt}(3,3), \operatorname{opt}(1,2)+0\}+\left(f_{1}+f_{2}+f_{3}\right) \\
& = \\
\operatorname{opt}(2,4) & = \\
& = \\
\operatorname{opt}(3,5) & = \\
& =
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{opt}(1,4)= & \min \{0+\operatorname{opt}(2,4), \operatorname{opt}(1,1)+\operatorname{opt}(3,4), \operatorname{opt}(1,2)+\operatorname{opt}(4,4), \operatorname{opt}(1,3)+0\} \\
& \quad+\left(f_{1}+f_{2}+f_{3}+f_{4}\right) \\
= & \\
\operatorname{opt}(2,5)= & \\
= & \\
\operatorname{opt}(1,5)= & \\
= &
\end{aligned}
$$

Problem 2 (20 points) This problem asks for the maximum weighted independent set in a $2 \times n$ size grid. Formally, the set of vertices in the input graph G is $V=$ $\{1,2\} \times\{1,2,3, \cdots, n\}=\{(r, c): r \in\{1,2\}, c \in\{1,2,3, \cdots, n\}\}$. Two different vertices (r, c) and (r^{\prime}, c^{\prime}) in V are adjacent in G if and only if $\left|r-r^{\prime}\right|+\left|c-c^{\prime}\right|=1$. For every vertex $(r, c) \in V$, we are given the weight $w_{r, c} \geq 0$ of the vertex. The goal of the problem is to find an independent set of G with the maximum total weight. (Recall that $S \subseteq V$ is an independent set if there are no edges between any two vertices in S.) See Figure 1 for an example of an instance of the problem.

Figure 1: A maximum weighted independent set instance on a 2×6-grid. The weights of the vertices are given by the numbers. The vertices in rectangles form the maximum weighted independent set, with a total weight of 370 .

Design an $O(n)$-time dynamic programming algorithm to solve the problem. For simplicity, you only need to output the weight of the maximum weighted independent set, not the actual set.
(Hint: If you could not solve the above problem, you can first try to solve the simpler problem when the grid size is $1 \times n$ instead of $2 \times n$ (that is, the input graph is a path on n verticies))

Problem 3 (20 points) You are managing the construction of billboards on the highway I-90, which runs west- east for M miles in New York State. The possible sites for billboards are given by numbers $x_{1}, x_{2}, \ldots, x_{n}$, each in the interval $[0 \ldots M$] (specifying their position along I-90, measured in miles from its west end.)

- If you place a billboard at location x_{i} (for each $1 \leq i \leq n$), you receive a revenue $r_{i}>0$.
- The regulations imposed by NYS Highway Department require that two billboards must be placed at least >5 miles apart.
We want to decide the locations to place the billboards to that the total revenue is maximized.

Formally, the input consists of two length- n arrays X and R, where $X[i]$ is the i th position that you can choose to put a billboard, and $R[i]$ is the revenue you get if you put the billboard at $X[i]$.

Example: $n=4, M=20, X=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=[6,7,12,14]$ and $R=\left[r_{1}, r_{2}, r_{3}, r_{4}\right]=$ [$5,6,5,1]$. It can be checked the optimal solution would be to place the billboards at x_{1} and x_{3} with a total revenue of 10 .

Describe a Dynamic Programming algorithm for solving this problem in $O(n)$ time. For simplicity, your algorithm only need to output the maximum revenue, not the actual locations to place the billboards.

Problem 4 (20 points). Given a sequence $A[1 . . n]$ of numbers, we say that A is an N-shaped sequence if there are two indices i, j such that $1<i<j<n$ and

- $A[1]<A[2]<A[3]<\cdots<A[i]$,
- $A[i]>A[i+1]>A[i+2]>\cdots>A[j]$,
- $A[j]<A[j+1]<A[j+2]<\cdots<A[n]$.

For example $(3,6,9,12,11,10,12,13,17)$ is an N-shaped sequence.
Design an polynomial-time algorithm that, given an array A of n numbers, outputs the length of the longest N-shaped subsequence of A. (If no such subsequence exists, your algorithm can output $-\infty$). For example, if the input sequence is $(3,1,4,6,5,7,2)$, your algorithm should output 5 (because ($3,4,6,5,7$) is the longest N-shaped subsequence).

You will get all the points if the running time of your algorithm is $O\left(n^{2}\right)$.
(Hint: Divide the task into three folds: (1)Finding the longest increasing subsequence; (2) Finding the longest Λ-shaped subsequence using the information of (1); (3) Finding the longest N-shaped subsequence using the information of (2))

