
CSE 331: Algorithm and Complexity Summer 2020

Homework 4
Instructor: Xiangyu Guo Deadline: Jul/27/2020

Your Name: Your Student ID:

Problems 1 2 3 4 Total
Max. Score 10 20 20 20 70
Your Score

Problem 1 (10 points). Consider the following optimum binary search tree instance.
We have 5 elements e1, e2, e3, e4 and e5 with e1 < e2 < e3 < e4 < e5 and their frequencies
are f1 = 5, f2 = 25, f3 = 15, f4 = 10 and f5 = 30. Recall that the goal is to find a
binary search tree for the 5 elements so as to minimize

∑5
i=1 depth(ei)fi, where depth(ei)

is the depth of the element ei in the tree. You need to output the best tree as well as its
cost. You can try to complete the following tables and show the steps. In the two tables,
opt(i, j) is the cost of the best tree for the instance containing ei, ei+1, ..., ej and π(i, j)
is the root of the best tree.

i

opt(i, j) j
1 2 3 4 5

1 5
2 25
3 15
4 10
5 30

i

π(i, j) j
1 2 3 4 5

1 1
2 2
3 3
4 4
5 5

Table 1: opt and π tables for the optimum binary search tree instance. For cleanness of
the table, we assume opt(i, j) = 0 if j < i and there are not shown in the left table.

opt(1, 2) = min{0 + opt(2, 2), opt(1, 1) + 0}+ (f1 + f2) =

opt(2, 3) =

opt(3, 4) =

opt(4, 5) =

opt(1, 3) = min{0 + opt(2, 3), opt(1, 1) + opt(3, 3), opt(1, 2) + 0}+ (f1 + f2 + f3)

=

opt(2, 4) =

=

opt(3, 5) =

=

1

opt(1, 4) = min{0 + opt(2, 4), opt(1, 1) + opt(3, 4), opt(1, 2) + opt(4, 4), opt(1, 3) + 0}
+ (f1 + f2 + f3 + f4)

=

opt(2, 5) =

=

opt(1, 5) =

=

Problem 2 (20 points) This problem asks for the maximum weighted independent
set in a 2 × n size grid. Formally, the set of vertices in the input graph G is V =
{1, 2} × {1, 2, 3, · · · , n} =

{
(r, c) : r ∈ {1, 2}, c ∈ {1, 2, 3, · · · , n}

}
. Two different vertices

(r, c) and (r′, c′) in V are adjacent in G if and only if |r − r′| + |c − c′| = 1. For every
vertex (r, c) ∈ V , we are given the weight wr,c ≥ 0 of the vertex. The goal of the problem
is to find an independent set of G with the maximum total weight. (Recall that S ⊆ V
is an independent set if there are no edges between any two vertices in S.) See Figure 1
for an example of an instance of the problem.

c

r

40

50 80

100 90

20 10

0

130

90

10

30

Figure 1: A maximum weighted independent set instance on a 2 × 6-grid. The weights
of the vertices are given by the numbers. The vertices in rectangles form the maximum
weighted independent set, with a total weight of 370.

Design an O(n)-time dynamic programming algorithm to solve the problem. For
simplicity, you only need to output the weight of the maximum weighted independent
set, not the actual set.

(Hint: If you could not solve the above problem, you can first try to solve the simpler
problem when the grid size is 1 × n instead of 2 × n (that is, the input graph is a path
on n verticies))

Problem 3 (20 points) You are managing the construction of billboards on the high-
way I-90, which runs west- east for M miles in New York State. The possible sites for
billboards are given by numbers x1, x2, . . . , xn, each in the interval [0 . . .M] (specifying
their position along I-90, measured in miles from its west end.)

2

• If you place a billboard at location xi (for each 1 ≤ i ≤ n), you receive a revenue
ri > 0.

• The regulations imposed by NYS Highway Department require that two billboards
must be placed at least > 5 miles apart.

We want to decide the locations to place the billboards to that the total revenue is
maximized.

Formally, the input consists of two length-n arrays X and R, where X[i] is the ith
position that you can choose to put a billboard, and R[i] is the revenue you get if you
put the billboard at X[i].

Example: n = 4,M = 20, X = [x1, x2, x3, x4] = [6, 7, 12, 14] and R = [r1, r2, r3, r4] =
[5, 6, 5, 1]. It can be checked the optimal solution would be to place the billboards at x1

and x3 with a total revenue of 10.
Describe a Dynamic Programming algorithm for solving this problem in O(n) time.

For simplicity, your algorithm only need to output the maximum revenue, not the actual
locations to place the billboards.

Problem 4 (20 points). Given a sequence A[1 .. n] of numbers, we say that A is an
N -shaped sequence if there are two indices i, j such that 1 < i < j < n and

• A[1] < A[2] < A[3] < · · · < A[i],
• A[i] > A[i+ 1] > A[i+ 2] > · · · > A[j],
• A[j] < A[j + 1] < A[j + 2] < · · · < A[n].

For example (3, 6, 9, 12, 11, 10, 12, 13, 17) is an N -shaped sequence.
Design an polynomial-time algorithm that, given an array A of n numbers, outputs

the length of the longest N -shaped subsequence of A. (If no such subsequence exists, your
algorithm can output −∞). For example, if the input sequence is (3, 1, 4, 6, 5, 7, 2), your
algorithm should output 5 (because (3, 4, 6, 5, 7) is the longest N -shaped subsequence).

You will get all the points if the running time of your algorithm is O(n2).
(Hint: Divide the task into three folds: (1)Finding the longest increasing subse-

quence; (2) Finding the longest Λ-shaped subsequence using the information of (1); (3)
Finding the longest N -shaped subsequence using the information of (2))

3

