
CSE 331: Algorithm and Complexity Summer 2020

Homework 3
Instructor: Xiangyu Guo Deadline: Jul/15/2020

Your Name: Your Student ID:

Problems 1 2 3 4 Total
Max. Score 10 20 20 20 70
Your Score

Problem 1 (10 points). For each of the following recurrences, use the master theorem
to give the tight asymptotic upper bound.

1. T (n) = T (n/2) +O(n).
2. T (n) = 4T (n/2) +O(n

√
n).

3. T (n) = 9T (n/3) +O(n2).
4. T (n) = 5T (n/2) +O(n2).

Problem 2 (20 points). We consider the following problem of counting stronger in-
versions. Given an array A of n positive integers, a pair i, j ∈ {1, 2, 3, · · · , n} of indices
is called a strong inversion if i < j and A[i] > 2A[j]. The goal of the problem is to count
the number of strong inversions for a given array A.

Give an O(n log n)-time divide-and-conquer algorithm to solve the problem. (Hint:
modify the merge-and-count rountine used for counting inversions.)

Problem 3 (20 points) An array A of n integers is said to be bi-monotone if there
is some i ∈ [n] such that the sub-array A[1 . . . i] is strictly increasing and the sub-
array A[i . . . n] is strictly decreasing. Formally, we have A[1] < A[2] < A[3] < · · · <
A[i1]<A[i]>A[i + 1] > A[i + 2] > · · · > A[n]. We say i is the peak index of the bi-
monotone array. For example, the array [30, 60, 80, 100, 120, 50, 20] is a bi-monotone
array and 5 is the peak index.

Given an array A of size n, which is promised to be bi-monotone, we need to output its
peak index. Design an O(log n)-time divide-and-conquer algorithm to solve the problem.

Problem 4 (20 points). Suppose you know the prices of one stock in sequence of
days. You can buy one share of the stock in some day and sell it in another day later.
The goal of the problem is to maximize the profit. Notice that you can only buy and sell
the stock once. If you can not make a profit, you do not need to buy and sell the stock.

The daily price of a stock is given in an array A[1 . . . n]. (A[1] is the stock price on
day 1 etc. n can be fairly large, say we have data for 30 years.) The task is to determine

1



the largest possible profit during the period of the stock. Specifically, we need to find i, j
such that (1) 1 ≤ i ≤ j ≤ n, and (2) A[j]− A[i] is maximum.

For example, if the prices of the stock in a sequence of 7 days is 15, 30, 18, 45, 9, 40,
35. Then you can buy one share of the stock in day 5 and sell it in day 6 and then your
profit is 40− 9 = 31.

Design an O(n log n)-time divide-and-conquer algorithm to solve the problem.

2


