CSE 331: Algorithm and Complexity

Summer 2020

Homework 2

Instructor: Xiangyu Guo

Deadline: 7/01/2020

Your Name: _

Your	Student	IL):
------	---------	----	----

Problems	1	2	3	4	Total
Max. Score	10	20	20	20	70
Your Score					

Problem 1 (10 points). Consider the following graph G with non-negative edge weights. Use Dijkstra's algorithm to compute the shortest paths from s to all other

vertices in G. Fill the following table to describe the execution of the algorithm. The algorithm maintains a set Γ of vertices, of which vertices have their $d(\cdot)$ value equals the shortest path length. The d value of a vertex $v \notin \Gamma$ is $\min_{u \in S:(u,v) \in E} (d(u) + w(u,v))$. The π value of a vertex v is the vertex $u \in \Gamma$ such that d(v) = d(u) + w(u,v); if $d(v) = \infty$, then $\pi(v) = "/"$.

iteration	vertex added	a	a		b		c 0		$d \mid e$		2		: 	<i>g</i>	
	to Γ	d	π	d	π	d	π	d	π	d	π	d	π	d	π
1	s	∞	/	9	s	17	s	2	s	∞	/	∞	/	∞	/
2															
3															
4															
5															
6															
7															
8															

Table 1: Dijkstra's algorithm for Shortest Path

Problem 2 (20 points). Assume we are given an undirected graph G = (V, E) with non-negative edge weights $(w_e)_{e \in E}$, and two vertices s and t in V.

- (2a) (10 points) Let T be the unique minimum spanning tree of G. Is the following statement true or false? If we change the weight of every edge e from w_e to w_e^2 , then T is still the unique minimum spanning tree of G. Justify your answer.
- (2b) (10 points) Let P be the unique shortest path from s to t. Is the following statement true or false? If we change the weight of every edge e from w_e to w_e^2 , then P is still the unique shortest path from s to t. Justify your answer.

Problem 3 (20 points). Balanced strings are those who have equal quantity of "L" and "R" characters. Given a balanced string s, the goal is to split it into the *maximum amount* of balanced strings. For example, if s = "RLRRLLRLRL", the optimal split is splitting into "RL", "RRL", "RL", "RL", each substring contains same number of "L" and "R". Another example is s = "LRRLLRLR", where there're multiple ways to split s, but the only optimal way is "LR"+"RL"+"LR"+"LR".

- (5 points) Suppose your greedy strategy is to pick the first few characters from s. Which characters are you going to choose?
- (15 points) Prove the safety property of your greedy strategy. (Hint: note that s itself is already balanced.)

Problem (20 points). Consider a long country road with houses scattered very sparsely along it. You may picture the road as a long straight line segment, with the starting point (mile stone 0) and the endpoint (mile stone L). Each house is identified by its distance to the western endpoint. A cell phone company wants to set up cell phone services along the road. The company can place a base station at any house. (The monthly charge will be waived if a base station is located in a house, so the house owners are eager to accommodate base stations). The power of base stations are limited that can only cover a distance of 5 miles. The goal for the company is to select a minimum number of base stations so that every house on the road is within 5 miles of a base station. (The bases stations are connected by other means, say by Satellite. So the distance between them can be more than 5 miles). See Figure 1 for a example.

Figure 1: Using 5 base stations to cover all houses in A (denoted by the solid circles on the line).

A formal description of the problems: The input is an array A of n points: $A = a_1 < a_2 < \ldots < a_n$, where each a_i $(1 \le i \le n)$ represents a house. We need to select a subset $B \subseteq A$ such that: (1) for every point $a_i \in A$, there is a point $a_i \in B$ with

 $|a_i - a_j| \leq 5$, and (2) the size of B is minimum, subject to condition (1). Describe a greedy algorithm for solving this problem. You need to prove the correctness of the algorithm.

- (5 points) Suppose your greedy strategy picks base station locations from left to right. Where would you set up your first base station?
- (15 points) Prove the safety property of your greedy strategy.