CSE 331: Algorithm and Complexity

Summer 2020

Homework 1

Instructor: Xiangyu Guo

Deadline: Jun/15/2020

Your Name: _____

Your Student ID: _____

Problems	1	2	3	Total
Max. Score	10	16	24	50
Your Score				

Problem 1 (10 points).

(a) (5 points)For each pair of functions f and g in the following table, indicate whether $f = O(g), f = \Omega(g)$ and $f = \Theta(g)$ respectively.

f(n)	g(n)	0	Ω	Θ
$\log_{10}(n/2)$	$\log_2(n^7)$			
$\left\lceil \sqrt{10n^2 + 100n} \right\rceil$	n			
$n^3 - 100n$	$100n^2\log n$			
$(\log n)^{\log n}$	$n^2 \log^2 n$			
(n-1)!	$(4/3)^n$			

 $(\lceil x \rceil$ means the smallest integer larger than or equal to x, e.g. $\lceil 3 \rceil = 3, \lceil 2.2 \rceil = 3)$

- (b) (5 points) Justify your answer for the question "whether $\lceil \sqrt{10n^2 + 100n} \rceil = O(n)$?", using both the two equivalent definitions of the *O*-notation:
 - (i) Show that there exists constant $c, n_0 > 0$ s.t. when $n > n_0$, $\left\lceil \sqrt{10n^2 + 100n} \right\rceil$ and cn always satisfy some relation.

(ii) Limit test: analyzing the result of $\lim_{n\to\infty} \frac{\left\lceil \sqrt{10n^2+100n} \right\rceil}{n}$

Problem 2 (16 points).

(2a) (4 points). Given an array A of n integers, we need to check if there are two integers in the array with summation equal 0. Consider the following simple algorithm:

^{1:} for $i \leftarrow 1$ to n - 1 do

^{2:} for $j \leftarrow i + 1$ to n do

^{3:} if A[i] + A[j] = 0 then return yes

^{4:} return no.

Give a **tight** upper bound (i.e., a $\Theta(\cdot)$ bound) on the running time of the algorithm and justify your answer.

(2b) (12 points). Now suppose we have the same problem as (2a) except that the array A is sorted in non-decreasing order. Consider the following algorithm:

1: $i \leftarrow 1, j \leftarrow n$ 2: while i < j do 3: if A[i] + A[j] = 0 then return yes 4: if A[i] + A[j] < 0 then $i \leftarrow i + 1$ else $j \leftarrow j - 1$ 5: return no

Briefly argue about the correctness of the algorithm and give a **tight** upper bound on the running time of the algorithm (here you do NOT need to justify the upper bound). To prove the correctness you need to show that: (i) the algorithm always terminates (i.e., it won't loop forever); (ii) when there do exists some pair A[i] + A[j] = 0 (note there can be multiple such pairs), the algorithm will always return yes; (iii) when no such pair exists, the algorithm can only return no.

Problem 3 (24 points). For problem (3a), you can either write down the edges or draw the DFS/BFS tree. For problem (3b) and (3c), write your algorithm as pseudo-code, and explain the ideas using a few words.

(3a) (8 points). Using DFS and BFS to traverse the graph shown in Figure 1 starting from vertex *a*. List the edges included in the DFS tree and BFS tree. Here we assume the vertices are explored in *lexicographic order*: for example, when you are checking the neighbors of vertex *a*, you should first look at *b*, then *c*, then *d*.

Figure 1: Traverse the graph using DFS and BFS

- (3b) (8 points). A cycle in an undirected graph G = (V, E) is a sequence of $t \ge 3$ different vertices v_1, v_2, \dots, v_t such that $(v_i, v_{i+1}) \in E$ for every $i = 1, 2, \dots, t-1$ and $(v_t, v_1) \in E$. Given the adjacency-list representation of an undirected graph G = (V, E), design an O(n + m)-time algorithm to decide if G contains a cycle or not. (Here n = |V| and m = |E|) (Hint: modify DFS/BFS)
- (3c) (8 points). A cycle in a directed graph G = (V, E) is a sequence of $t \ge 2$ different vertices v_1, v_2, \dots, v_t such that $(v_i, v_{i+1}) \in E$ for every $i = 1, 2, \dots, t-1$ and $(v_t, v_1) \in E$. Given the adjacency-list representation of a directed graph G = (V, E), design an O(n + m)-time algorithm to decide if G contains a cycle or not. (Here n = |V| and m = |E|)

Figure 2: Cycles in undirected and directed graphs. (1, 2, 5, 3) is a cycle in the undirected graph. (1, 2, 5, 6, 7, 3) is a cycle in the directed graph. However, (1, 2, 5, 8, 3) is not a cycle in the directed graph.

Remark On a cycle of a directed graph, the directions of the edges have to be consistent. See Figure 1. So, converting a directed graph to a undirected graph and then using algorithm for (3a) does not give you a correct algorithm for (3b). (**Hint:** A directed graph with cycle means you cannot *order* all vertices in one direction.)