Homework 1

Instructor: Xiangyu Guo
Deadline: Jun/15/2020
Your Name: \qquad Your Student ID: \qquad

Problems	1	2	3	Total
Max. Score	10	16	24	50
Your Score				

Problem 1 (10 points).

(a) (5 points)For each pair of functions f and g in the following table, indicate whether $f=O(g), f=\Omega(g)$ and $f=\Theta(g)$ respectively.

$f(n)$	$g(n)$	O	Ω	Θ
$\log _{10}(n / 2)$	$\log _{2}\left(n^{7}\right)$			
$\left\lceil\sqrt{10 n^{2}+100 n}\right\rceil$	n			
$n^{3}-100 n$	$100 n^{2} \log n$			
$(\log n)^{\log n}$	$n^{2} \log ^{2} n$			
$(n-1)!$	$(4 / 3)^{n}$			

($\lceil x\rceil$ means the smallest integer larger than or equal to x, e.g. $\lceil 3\rceil=3,\lceil 2.2\rceil=3$)
(b) (5 points) Justify your answer for the question "whether $\left\lceil\sqrt{10 n^{2}+100 n}\right\rceil=$ $O(n)$?", using both the two equivalent definitions of the O-notation:
(i) Show that there exists constant $c, n_{0}>0$ s.t. when $n>n_{0},\left\lceil\sqrt{10 n^{2}+100 n}\right\rceil$ and $c n$ always satisfy some relation.
(ii) Limit test: analyzing the result of $\lim _{n \rightarrow \infty} \frac{\left\lceil\sqrt{10 n^{2}+100 n}\right\rceil}{n}$

Problem 2 (16 points).

(2a) (4 points). Given an array A of n integers, we need to check if there are two integers in the array with summation equal 0 . Consider the following simple algorithm:

```
for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
    for }j\leftarrowi+1 to n do
        if }A[i]+A[j]=0\mathrm{ then return yes
    return no.
```

Give a tight upper bound (i.e., a $\Theta(\cdot)$ bound) on the running time of the algorithm and justify your answer.
(2b) (12 points). Now suppose we have the same problem as (2a) except that the array A is sorted in non-decreasing order. Consider the following algorithm:

```
while \(i<j\) do
        if \(A[i]+A[j]=0\) then return yes
        if \(A[i]+A[j]<0\) then \(i \leftarrow i+1\) else \(j \leftarrow j-1\)
    return no
```

Briefly argue about the correctness of the algorithm and give a tight upper bound on the running time of the algorithm (here you do NOT need to justify the upper bound). To prove the correctness you need to show that: (i) the algorithm always terminates (i.e., it won't loop forever); (ii) when there do exists some pair $A[i]+$ $A[j]=0$ (note there can be multiple such pairs), the algorithm will always return yes; (iii) when no such pair exists, the algorithm can only return no.

Problem 3 (24 points). For problem (3a), you can either write down the edges or draw the DFS/BFS tree. For problem (3b) and (3c), write your algorithm as pseudo-code, and explain the ideas using a few words.
(3a) (8 points). Using DFS and BFS to traverse the graph shown in Figure 1 starting from vertex a. List the edges included in the DFS tree and BFS tree. Here we assume the vertices are explored in lexicographic order: for example, when you are checking the neighbors of vertex a, you should first look at b, then c, then d.

Figure 1: Traverse the graph using DFS and BFS
(3b) (8 points). A cycle in an undirected graph $G=(V, E)$ is a sequence of $t \geq 3$ different vertices $v_{1}, v_{2}, \cdots, v_{t}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for every $i=1,2, \cdots, t-1$ and $\left(v_{t}, v_{1}\right) \in E$. Given the adjacency-list representation of an undirected graph $G=(V, E)$, design an $O(n+m)$-time algorithm to decide if G contains a cycle or not. (Here $n=|V|$ and $m=|E|$)
(Hint: modify DFS/BFS)
(3c) (8 points). A cycle in a directed graph $G=(V, E)$ is a sequence of $t \geq 2$ different vertices $v_{1}, v_{2}, \cdots, v_{t}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for every $i=1,2, \cdots, t-1$ and $\left(v_{t}, v_{1}\right) \in E$. Given the adjacency-list representation of a directed graph $G=(V, E)$, design an $O(n+m)$-time algorithm to decide if G contains a cycle or not. (Here $n=|V|$ and $m=|E|)$

Figure 2: Cycles in undirected and directed graphs. $(1,2,5,3)$ is a cycle in the undirected graph. $(1,2,5,6,7,3)$ is a cycle in the directed graph. However, $(1,2,5,8,3)$ is not a cycle in the directed graph.

Remark On a cycle of a directed graph, the directions of the edges have to be consistent. See Figure 1. So, converting a directed graph to a undirected graph and then using algorithm for (3a) does not give you a correct algorithm for (3b). (Hint: A directed graph with cycle means you cannot order all vertices in one direction.)

