
CSE 331: Algorithm and Complexity Summer 2020

Homework 1
Instructor: Xiangyu Guo Deadline: Jun/15/2020

Your Name: Your Student ID:

Problems 1 2 3 Total
Max. Score 10 16 24 50
Your Score

Problem 1 (10 points).
(a) (5 points)For each pair of functions f and g in the following table, indicate whether

f = O(g), f = Ω(g) and f = Θ(g) respectively.

f(n) g(n) O Ω Θ

log10(n/2) log2(n
7)⌈√

10n2 + 100n
⌉

n

n3 − 100n 100n2 log n

(log n)logn n2 log2 n

(n− 1)! (4/3)n

(⌈x⌉ means the smallest integer larger than or equal to x, e.g. ⌈3⌉ = 3, ⌈2.2⌉ = 3)
(b) (5 points) Justify your answer for the question “whether

⌈√
10n2 + 100n

⌉
=

O(n)?”, using both the two equivalent definitions of the O-notation:

(i) Show that there exists constant c, n0 > 0 s.t. when n > n0,
⌈√

10n2 + 100n
⌉

and cn always satisfy some relation.

(ii) Limit test: analyzing the result of limn→∞
⌈√10n2+100n⌉

n

Problem 2 (16 points).
(2a) (4 points). Given an array A of n integers, we need to check if there are two integers

in the array with summation equal 0. Consider the following simple algorithm:

1: for i← 1 to n− 1 do
2: for j ← i+ 1 to n do
3: if A[i] + A[j] = 0 then return yes
4: return no.

1



Give a tight upper bound (i.e., a Θ(·) bound) on the running time of the algorithm
and justify your answer.

(2b) (12 points). Now suppose we have the same problem as (2a) except that the array
A is sorted in non-decreasing order. Consider the following algorithm:

1: i← 1, j ← n
2: while i < j do
3: if A[i] + A[j] = 0 then return yes
4: if A[i] + A[j] < 0 then i← i+ 1 else j ← j − 1

5: return no

Briefly argue about the correctness of the algorithm and give a tight upper bound
on the running time of the algorithm (here you do NOT need to justify the upper
bound). To prove the correctness you need to show that: (i) the algorithm always
terminates (i.e., it won’t loop forever); (ii) when there do exists some pair A[i] +
A[j] = 0 (note there can be multiple such pairs), the algorithm will always return
yes; (iii) when no such pair exists, the algorithm can only return no.

Problem 3 (24 points). For problem (3a), you can either write down the edges or
draw the DFS/BFS tree. For problem (3b) and (3c), write your algorithm as pseudo-code,
and explain the ideas using a few words.
(3a) (8 points). Using DFS and BFS to traverse the graph shown in Figure 1 starting

from vertex a. List the edges included in the DFS tree and BFS tree. Here we
assume the vertices are explored in lexicographic order: for example, when you are
checking the neighbors of vertex a, you should first look at b, then c, then d.

Figure 1: Traverse the graph using DFS and BFS

2



(3b) (8 points). A cycle in an undirected graph G = (V,E) is a sequence of t ≥ 3
different vertices v1, v2, · · · , vt such that (vi, vi+1) ∈ E for every i = 1, 2, · · · , t − 1
and (vt, v1) ∈ E. Given the adjacency-list representation of an undirected graph
G = (V,E), design an O(n +m)-time algorithm to decide if G contains a cycle or
not. (Here n = |V | and m = |E|)
(Hint: modify DFS/BFS)

(3c) (8 points). A cycle in a directed graph G = (V,E) is a sequence of t ≥ 2 different
vertices v1, v2, · · · , vt such that (vi, vi+1) ∈ E for every i = 1, 2, · · · , t − 1 and
(vt, v1) ∈ E. Given the adjacency-list representation of a directed graph G = (V,E),
design an O(n + m)-time algorithm to decide if G contains a cycle or not. (Here
n = |V | and m = |E|)

1

2 5

3

4 6 7

1

2 5

3

4 6 7

8

Figure 2: Cycles in undirected and directed graphs. (1, 2, 5, 3) is a cycle in the undirected
graph. (1, 2, 5, 6, 7, 3) is a cycle in the directed graph. However, (1, 2, 5, 8, 3) is not a
cycle in the directed graph.

Remark On a cycle of a directed graph, the directions of the edges have to be consistent.
See Figure 1. So, converting a directed graph to a undirected graph and then using
algorithm for (3a) does not give you a correct algorithm for (3b). (Hint: A directed
graph with cycle means you cannot order all vertices in one direction.)

3


