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Network Design Problems
• Input: an graph  with edge cost  

• Output: A min-cost subgraph  of  satisfying certain requirements: 

• Connectivity requirement 

• Minimum spanning tree 

• Minimum Steiner tree 

• Minimum k-edge-connected subgraph 

• Degree bound :   

• This talk: degree-bounded Directed Steiner Tree (DB-DST) and degree-bounded 
Group Steiner Tree on trees (DB-GST-on-trees)
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Degree-bounded DST
Input: directed graph  with  

• edge cost  , degree bound ,  

• root ,  terminals ,  

Output: min-cost tree  rooted at  s.t. 
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Related work
• Degree-bounded network design in undirected graphs 

• -apx for DB-MST [Singh-Lau’07] 

• -apx for DB-Steiner forest [Lau-Zhou’15, Louis-Vishnoi’09] 

• Directed Steiner Tree:  

• -hard [Halperin-Krauthgamer’03] 

• -apx in polynomial time [Zelikovsky’97] 

• -apx in quasi-polynomial time [Grandoni-Laekhanukit-Li’19][Ghuge-

Nagarajan’19]

(1, dv + 1)

(2, min{dv + 3,2dv + 2})

Ω(log2−ϵ k)

kϵ

O ( log2 k
log log k )



Our result

Main Theorem. There’s a randomized -bicriteria 
approx algorithm for the degree-bounded directed Steiner tree (DB-DST) 
problem, with  running time.

(O(log n log k), O(log2 n))

nO(log n)

• First non-trivial approximation for the DB-DST problem. 

• Close to the  lower bound 

• Based on rounding a novel LP formulation. 

• Can handle other constraints: e.g., length bound, buy-at-bulk

(Ω(log2−ϵ k), Ω(log n))



Degree-bounded GST-on-trees

Input: undirected tree  rooted at , with 

• edge cost  , degree bound  

•  terminal groups .  

Output: min-cost tree  s.t. 

• contains a path from  to every terminal group,  

• .
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• Why study GST-on-trees? 

• Source for the -hardness of DST [Halperin-Krauthgamer’03] 

• Our DB-DST alg converts the input to a GST-on-trees instance 

• Our result:  

    A polynomial-time -apx algorithm for DB-GST-on-trees 

• (almost) tight on both the cost ratio and degree violation 

• Improves upon the -apx of [Kortsarz-Nutov’20]

Ω(log2−ϵ n)

(O(log n log k), O(log n))

(O(log n log k), O(log2 n))



Rest of the talk 

The main algorithm for the DB-DST result: 

1. Encoding DSTs  
• Encoding as a decomposition tree 

• From decomposition trees to state trees 

2. Handling degree bound 

3. Rounding



Preprocessing

cost = 0v
v

• Make every vertex  have out-degreev ≤ 2

v ∈ K cost = 0

v

• Make every terminal  a leaf:v



Decomposition Tree
r

(      : terminal )

G



Decomposition Tree
r

(      : terminal )

T1

T2

T

r′ 

Balanced Partition Thm 

For any -vertex binary tree  that’s not         
or         , we can split it into two subtrees  
and  such that  

•  

•  

• , 

n T
T1

T2

T1 ∪ T2 = T

|T1 | , |T2 | <
2
3

n + 1

|T1 ∩ T2 | = 1



Decomposition Tree
r

(      : terminal )

a

b c

d

e

f

g h

i

j

{r, a, b, c, d, e, f, g, h, i, j}

{r, a, b, c, d, e, j} {e, f, g, h, i}

{r, a, b, c, d} {d, e, j} {e, f, i} {f, g, h}

O(log n)

{r, a, d} {a, b, c}

decomposition tree of T

T



• An encoding of feasible DSTs 

• Well-structured: -depth full binary tree 

• Goal: find the decomposition tree encoding the optimal DST

O(log n)

Decomposition Tree



• An encoding of feasible DSTs 

• Well-structured: -depth full binary tree 

• Goal: find the decomposition tree encoding the optimal DST

O(log n)

Decomposition Tree

state

State tree: a more succinct (but lossy) encoding



State Tree
r

(      : terminal )

a

b c

d

e

f

g h

i

j

{e, f, g, h, i}

decomposition tree

{e, f, i} {f, g, h}

all vertices in the subtree

(e, {e})

(e, {f, e}) ( f, {f})

state tree root of the subtree

portals of the subtree
+

T



State Tree
(r, {r})

(r, {r, e}) (e, {e})

{r, a, b, c, d, e, f, g, h, i, j}

{r, a, b, c, d, e, j} {e, f, g, h, i}

{r, a, b, c, d} {d, e, j} {e, f, i} {f, g, h}

{r, a, d} {a, b, c}

decomposition tree of T

(r, {r, d}) (d, {d, e}) (e, {e, f}) ( f, {f})

(r, {r, a, d}) (a, {a})

state tree of T



r′ 

S

Proof: 

• Consider partitioning a subtree with state (r′ , S)

Obs: every node of the optimal state tree has at most  portals O(log n)



r′ 

r′ ′ 

S1

S2

Obs: every node of the optimal state tree has at most  portals O(log n)

Proof: 

• Consider partitioning a subtree with state (r′ , S)

• Suppose we partition it at vertex  and get two 
subtrees  and 

r′ ′ 

(r′ , S1) (r′ ′ , S2)
• Will introduce one new portal ( ) in each partition 

• Recall the root state is , and the state tree is of 
depth .                                                              QED

r′ ′ 

(r, {r})
O(log n)



Properties of the optimum state tree  

• Root: state  

• Depth:  

• Simple state:  state  in the tree, 

(r, {r})

O(log n)

∀ (p, S) |S | ≤ O(log n)

Key idea: we can “enumerate” such state trees in quasi-polynomial time



• Ans = #{ choices of  }  #{ choice of  } 

                                                                       

                                                                     

p′ × (S1, S2)

≤ |V | × 2|S|

≤ n × 2O(log n) = poly(n)

• Question: Number of possible ways to partition a state  ?(p, S)

S

p

S1

p

S2

p′ 

G G



  virtual node     : 
 way of partitioning a state

…………

… … … ………

(p, S) O(log n)

… …

(r, {r})

… …

• Def: Let  be the union of all possible state trees rooted at  with depth . 

• Size of 

T∘ (r, {r}) O(log n)

T∘ = poly(n)O(log n) = nO(log n)

T∘

(p, S1) (p′ , S2)

(p′ , (S1, S2))



• The optimal state tree is a subtree of  

• For every , let  [  in the optimal state tree] 

• Can be captured by a LP of size 

T∘

v ∈ T∘ xv := 1 v

≤ poly(size(T∘)) = nO(log n)

min
x∈[0,1]V∘ ∑ xoc(o) ,

xp = xq,

∑ xo ≤ xp, ∀p ∈ T∘, t ∈ K (2)

∑ xo = 1, ∀t ∈ K (4)

∑ xq = xp,

o is descendant of p
q : child of p o : base state involving t

∀state node p (1)

o : base state involving t

o : base state

∀ virtual node q, p child of q (3)



Handling the degree bound

• What about the degree bound?  

• Ans: add degree information to states

(r′ , S, ρS)

(r′ ′ , (S1, S2), ρr′ ′ 
)

(r′ , S1, ρS1
)(r′ ′ , S2, ρS2

)

Virtual node 
new portal 

+ 
portal set partition 

+ 
out-degree of the new portal

State node 
root of the subtree 

+ 
set of portals 

+ 
out-degree of each portal



• Question: Number of possible ways to partition a state  ?(p, S, ρS)

• Ans = #{ choices of  }  #{ choice of  }  #{ choices of  } 

                                                                                     

                                                                                              

• Size of 

p′ × (S1, S2) × ρp′ 

≤ |V | × 2|S| × dp′ 

≤ n × 2O(log n) × n = poly(n)

T∘ ≤ poly(n)O(log n) = nO(log n)

Handling the degree bound



Recursive rounding
• Let  be the LP solution{xv}v∈T∘

Alg round(p) 

• if p is state node: 

‣ pick child q of p with probability  

‣ return {p}  round(q) 

• else if p is a virtual node: 

‣ return {p}  round(left child of p)  round(right child of p) 

• else return {p}

•

xq/xp

∪

∪ ∪

…………

p
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• Let  be the LP solution{xv}v∈T∘
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• Let root of  , round( ) 

• Thm 1 [GKR’ ]: Let  be the tree encoded by state tree , then  

• LP cost 

•  

• For every terminal ,  connects  w.p.

r ← T∘ τ ← r

00 T0 τ

𝔼[cost(T0)] ≤

∀ v ∈ T0, deg+
T0

(v) ≤ dv

t ∈ K T0 t ≥ Ω(1/log n)

Recursive rounding



Main algorithm

• Let  

• For : 

• round( ) 

• tree encoded by  

• return 

Q = O(log n log k)

i ← 1...Q

τi ← r

Ti ← τi

T = T1 ∪ T2 ∪ ⋯TQ

Thm 2: W.p. ,  connects all terminals, and each  appears in  
for at most  times.

≥ 0.9 T v ∈ V T
O(log2 n)



Thm 2: W.p. ,  connects all terminals, and each  appears in  for at 
most  times.

≥ 0.9 T v ∈ V T
O(log2 n)

Thm 1 [GKR’ ]: Let  be the tree encoded by state tree , then  

• LP cost 

•  

• For every terminal ,  connects  w.p.

00 T0 τ

𝔼[cost(T0)] ≤

∀ v ∈ T0, deg+
T0

(v) ≤ dv

t ∈ K T0 t ≥ Ω(1/log n)

+

 and 𝔼[cost(T)] ≤ OPT ⋅ O(log n log k) ∀ v ∈ T, deg+
T(v) ≤ dv ⋅ O(log2 n)



Summarize

• We give a randomized -apx algorithm for the DB-DST 
problem with  running time. 

• Generalizations: 

• The degree bound is handled by simple enumeration. 

• Applicable for constraints that can be enumerated in poly(n) time, e.g., length-
bound, buy-at-bulk. 

• In particular, we can reproduce the result of [Ghuge-Nagarajan’20]

(O(log n log k), O(log2 n))
nO(log n)



Thank you!


