
Aug 17, 2020

On Approximating Degree-
Bounded Network Design Problems

Xiangyu Guo
joint work with Guy Kortsarz, Bundit Laekhanukit,

Shi Li, Daniel Vaz, and Jiayi Xian

Network Design Problems
• Input: an graph with edge cost

• Output: A min-cost subgraph of satisfying certain requirements:

• Connectivity requirement

• Minimum spanning tree

• Minimum Steiner tree

• Minimum k-edge-connected subgraph

• Degree bound :

• This talk: degree-bounded Directed Steiner Tree (DB-DST) and degree-bounded
Group Steiner Tree on trees (DB-GST-on-trees)

G = (V, E) c ∈ ℝE
≥0

S G

d ∈ ℝV
≥0 degS(v) ≤ dv, ∀v ∈ V

Degree-bounded DST
Input: directed graph with

• edge cost , degree bound ,

• root , terminals ,

Output: min-cost tree rooted at s.t.

• contain path for every ,

• ,

G = (V, E)

c ∈ ℝE
≥0 d ∈ ℝV

≥0

r ∈ V k K ⊆ V

T ⊆ G r

r → t t ∈ K

∀ v ∈ T deg+
T(v) ≤ dv

r

K

Degree-bounded DST
r

K

deg+
T(v) ≤ dv

Input: directed graph with

• edge cost , degree bound ,

• root , terminals ,

Output: min-cost tree rooted at s.t.

• contain path for every ,

• ,

G = (V, E)

c ∈ ℝE
≥0 d ∈ ℝV

≥0

r ∈ V k K ⊆ V

T ⊆ G r

r → t t ∈ K

∀ v ∈ T deg+
T(v) ≤ dv

Related work
• Degree-bounded network design in undirected graphs

• -apx for DB-MST [Singh-Lau’07]

• -apx for DB-Steiner forest [Lau-Zhou’15, Louis-Vishnoi’09]

• Directed Steiner Tree:

• -hard [Halperin-Krauthgamer’03]

• -apx in polynomial time [Zelikovsky’97]

• -apx in quasi-polynomial time [Grandoni-Laekhanukit-Li’19][Ghuge-

Nagarajan’19]

(1, dv + 1)

(2, min{dv + 3,2dv + 2})

Ω(log2−ϵ k)

kϵ

O (log2 k
log log k)

Our result

Main Theorem. There’s a randomized -bicriteria
approx algorithm for the degree-bounded directed Steiner tree (DB-DST)
problem, with running time.

(O(log n log k), O(log2 n))

nO(log n)

• First non-trivial approximation for the DB-DST problem.

• Close to the lower bound

• Based on rounding a novel LP formulation.

• Can handle other constraints: e.g., length bound, buy-at-bulk

(Ω(log2−ϵ k), Ω(log n))

Degree-bounded GST-on-trees

Input: undirected tree rooted at , with

• edge cost , degree bound

• terminal groups .

Output: min-cost tree s.t.

• contains a path from to every terminal group,

• .

G = (V, E) r ∈ V

c ∈ ℝE
≥0 d ∈ ℝV

≥0

k O1, O2, …, Ok ⊆ V

T ⊆ G

r

∀ v ∈ T, degT(v) ≤ dv

r

:

:

:

:

O1

O2

O3

O4

Degree-bounded GST-on-trees

Input: undirected tree rooted at , with

• edge cost , degree bound

• terminal groups .

Output: min-cost tree s.t.

• contains a path from to every terminal group,

• .

G = (V, E) r ∈ V

c ∈ ℝE
≥0 d ∈ ℝV

≥0

k O1, O2, …, Ok ⊆ V

T ⊆ G

r

∀ v ∈ T, degT(v) ≤ dv

r

:

:

:

:

O1

O2

O3

O4

• Why study GST-on-trees?

• Source for the -hardness of DST [Halperin-Krauthgamer’03]

• Our DB-DST alg converts the input to a GST-on-trees instance

• Our result:

 A polynomial-time -apx algorithm for DB-GST-on-trees

• (almost) tight on both the cost ratio and degree violation

• Improves upon the -apx of [Kortsarz-Nutov’20]

Ω(log2−ϵ n)

(O(log n log k), O(log n))

(O(log n log k), O(log2 n))

Rest of the talk

The main algorithm for the DB-DST result:

1. Encoding DSTs
• Encoding as a decomposition tree

• From decomposition trees to state trees

2. Handling degree bound

3. Rounding

Preprocessing

cost = 0v
v

• Make every vertex have out-degreev ≤ 2

v ∈ K cost = 0

v

• Make every terminal a leaf:v

Decomposition Tree
r

(: terminal)

G

Decomposition Tree
r

(: terminal)

T1

T2

T

r′

Balanced Partition Thm

For any -vertex binary tree that’s not
or , we can split it into two subtrees
and such that

•

•

• ,

n T
T1

T2

T1 ∪ T2 = T

|T1 | , |T2 | <
2
3

n + 1

|T1 ∩ T2 | = 1

Decomposition Tree
r

(: terminal)

a

b c

d

e

f

g h

i

j

{r, a, b, c, d, e, f, g, h, i, j}

{r, a, b, c, d, e, j} {e, f, g, h, i}

{r, a, b, c, d} {d, e, j} {e, f, i} {f, g, h}

O(log n)

{r, a, d} {a, b, c}

decomposition tree of T

T

• An encoding of feasible DSTs

• Well-structured: -depth full binary tree

• Goal: find the decomposition tree encoding the optimal DST

O(log n)

Decomposition Tree

• An encoding of feasible DSTs

• Well-structured: -depth full binary tree

• Goal: find the decomposition tree encoding the optimal DST

O(log n)

Decomposition Tree

state

State tree: a more succinct (but lossy) encoding

State Tree
r

(: terminal)

a

b c

d

e

f

g h

i

j

{e, f, g, h, i}

decomposition tree

{e, f, i} {f, g, h}

all vertices in the subtree

(e, {e})

(e, {f, e}) (f, {f})

state tree root of the subtree

portals of the subtree
+

T

State Tree
(r, {r})

(r, {r, e}) (e, {e})

{r, a, b, c, d, e, f, g, h, i, j}

{r, a, b, c, d, e, j} {e, f, g, h, i}

{r, a, b, c, d} {d, e, j} {e, f, i} {f, g, h}

{r, a, d} {a, b, c}

decomposition tree of T

(r, {r, d}) (d, {d, e}) (e, {e, f}) (f, {f})

(r, {r, a, d}) (a, {a})

state tree of T

r′

S

Proof:

• Consider partitioning a subtree with state (r′ , S)

Obs: every node of the optimal state tree has at most portals O(log n)

r′

r′ ′

S1

S2

Obs: every node of the optimal state tree has at most portals O(log n)

Proof:

• Consider partitioning a subtree with state (r′ , S)

• Suppose we partition it at vertex and get two
subtrees and

r′ ′

(r′ , S1) (r′ ′ , S2)
• Will introduce one new portal () in each partition

• Recall the root state is , and the state tree is of
depth . QED

r′ ′

(r, {r})
O(log n)

Properties of the optimum state tree

• Root: state

• Depth:

• Simple state: state in the tree,

(r, {r})

O(log n)

∀ (p, S) |S | ≤ O(log n)

Key idea: we can “enumerate” such state trees in quasi-polynomial time

• Ans = #{ choices of } #{ choice of }

p′ × (S1, S2)

≤ |V | × 2|S|

≤ n × 2O(log n) = poly(n)

• Question: Number of possible ways to partition a state ?(p, S)

S

p

S1

p

S2

p′

G G

 virtual node :
 way of partitioning a state

…………

… … … ………

(p, S) O(log n)

… …

(r, {r})

… …

• Def: Let be the union of all possible state trees rooted at with depth .

• Size of

T∘ (r, {r}) O(log n)

T∘ = poly(n)O(log n) = nO(log n)

T∘

(p, S1) (p′ , S2)

(p′ , (S1, S2))

• The optimal state tree is a subtree of

• For every , let [in the optimal state tree]

• Can be captured by a LP of size

T∘

v ∈ T∘ xv := 1 v

≤ poly(size(T∘)) = nO(log n)

min
x∈[0,1]V∘ ∑ xoc(o) ,

xp = xq,

∑ xo ≤ xp, ∀p ∈ T∘, t ∈ K (2)

∑ xo = 1, ∀t ∈ K (4)

∑ xq = xp,

o is descendant of p
q : child of p o : base state involving t

∀state node p (1)

o : base state involving t

o : base state

∀ virtual node q, p child of q (3)

Handling the degree bound

• What about the degree bound?

• Ans: add degree information to states

(r′ , S, ρS)

(r′ ′ , (S1, S2), ρr′ ′
)

(r′ , S1, ρS1
)(r′ ′ , S2, ρS2

)

Virtual node
new portal

+
portal set partition

+
out-degree of the new portal

State node
root of the subtree

+
set of portals

+
out-degree of each portal

• Question: Number of possible ways to partition a state ?(p, S, ρS)

• Ans = #{ choices of } #{ choice of } #{ choices of }

• Size of

p′ × (S1, S2) × ρp′

≤ |V | × 2|S| × dp′

≤ n × 2O(log n) × n = poly(n)

T∘ ≤ poly(n)O(log n) = nO(log n)

Handling the degree bound

Recursive rounding
• Let be the LP solution{xv}v∈T∘

Alg round(p)

• if p is state node:

‣ pick child q of p with probability

‣ return {p} round(q)

• else if p is a virtual node:

‣ return {p} round(left child of p) round(right child of p)

• else return {p}

•

xq/xp

∪

∪ ∪

…………

p

…………

Recursive rounding

Alg round(p)

• if p is state node:

‣ pick child q of p with probability

‣ return {p} round(q)

• else if p is a virtual node:

‣ return {p} round(left child of p) round(right child of p)

• else return {p}

•

xq/xp

∪

∪ ∪

…………

p

q

• Let be the LP solution{xv}v∈T∘

…………

Recursive rounding

Alg round(p)

• if p is state node:

‣ pick child q of p with probability

‣ return {p} round(q)

• else if p is a virtual node:

‣ return {p} round(left child of p) round(right child of p)

• else return {p}

•

xq/xp

∪

∪ ∪

…………

p

q

• Let be the LP solution{xv}v∈T∘

……

• Let root of , round()

• Thm 1 [GKR’]: Let be the tree encoded by state tree , then

• LP cost

•

• For every terminal , connects w.p.

r ← T∘ τ ← r

00 T0 τ

𝔼[cost(T0)] ≤

∀ v ∈ T0, deg+
T0

(v) ≤ dv

t ∈ K T0 t ≥ Ω(1/log n)

Recursive rounding

Main algorithm

• Let

• For :

• round()

• tree encoded by

• return

Q = O(log n log k)

i ← 1...Q

τi ← r

Ti ← τi

T = T1 ∪ T2 ∪ ⋯TQ

Thm 2: W.p. , connects all terminals, and each appears in
for at most times.

≥ 0.9 T v ∈ V T
O(log2 n)

Thm 2: W.p. , connects all terminals, and each appears in for at
most times.

≥ 0.9 T v ∈ V T
O(log2 n)

Thm 1 [GKR’]: Let be the tree encoded by state tree , then

• LP cost

•

• For every terminal , connects w.p.

00 T0 τ

𝔼[cost(T0)] ≤

∀ v ∈ T0, deg+
T0

(v) ≤ dv

t ∈ K T0 t ≥ Ω(1/log n)

+

 and 𝔼[cost(T)] ≤ OPT ⋅ O(log n log k) ∀ v ∈ T, deg+
T(v) ≤ dv ⋅ O(log2 n)

Summarize

• We give a randomized -apx algorithm for the DB-DST
problem with running time.

• Generalizations:

• The degree bound is handled by simple enumeration.

• Applicable for constraints that can be enumerated in poly(n) time, e.g., length-
bound, buy-at-bulk.

• In particular, we can reproduce the result of [Ghuge-Nagarajan’20]

(O(log n log k), O(log2 n))
nO(log n)

Thank you!

