On Approximating DegreeBounded Network Design Problems

Xiangyu Guo

joint work with Guy Kortsarz, Bundit Laekhanukit, Shi Li, Daniel Vaz, and Jiayi Xian

Network Design Problems

- Input: an graph $G=(V, E)$ with edge $\operatorname{cost} c \in \mathbb{R}_{\geq 0}^{E}$
- Output: A min-cost subgraph S of G satisfying certain requirements:
- Connectivity requirement
- Minimum spanning tree
- Minimum Steiner tree
- Minimum k-edge-connected subgraph
- Degree bound $d \in \mathbb{R}_{\geq 0}^{V}: \operatorname{deg}_{S}(v) \leq d_{v}, \forall v \in V$
- This talk: degree-bounded Directed Steiner Tree (DB-DST) and degree-bounded Group Steiner Tree on trees (DB-GST-on-trees)

Degree-bounded DST

Input: directed graph $G=(V, E)$ with

- edge cost $c \in \mathbb{R}_{\geq 0}^{E}$, degree bound $d \in \mathbb{R}_{\geq 0}^{V}$,
- root $r \in V, k$ terminals $K \subseteq V$,

Output: min-cost tree $T \subseteq G$ rooted at r s.t.

- contain $r \rightarrow t$ path for every $t \in K$,
- $\forall v \in T, \operatorname{deg}_{T}^{+}(v) \leq d_{v}$

Degree-bounded DST

Input: directed graph $G=(V, E)$ with

- edge cost $c \in \mathbb{R}_{\geq 0}^{E}$, degree bound $d \in \mathbb{R}_{\geq 0}^{V}$,
- root $r \in V, k$ terminals $K \subseteq V$,

Output: min-cost tree $T \subseteq G$ rooted at r s.t.

- contain $r \rightarrow t$ path for every $t \in K$,
- $\forall v \in T, \operatorname{deg}_{T}^{+}(v) \leq d_{v}$

Related work

- Degree-bounded network design in undirected graphs
- $\left(1, d_{v}+1\right)$-apx for DB-MST [Singh-Lau'o7]
- $\left(2, \min \left\{d_{v}+3,2 d_{v}+2\right\}\right)$-apx for DB-Steiner forest [Lau-Zhou'15, Louis-Vishnoi'oo]
- Directed Steiner Tree:
- $\Omega\left(\log ^{2-\epsilon} k\right)$-hard [Halperin-Krauthgamer'o3]
- k^{ϵ}-apx in polynomial time [Zelikovsky'97]
. $O\left(\frac{\log ^{2} k}{\log \log k}\right)$-apx in quasi-polynomial time [Grandoni-Laekhanukit-Li'19][GhugeNagarajan'19]

Our result

Main Theorem. There's a randomized $\left(O(\log n \log k), O\left(\log ^{2} n\right)\right)$-bicriteria approx algorithm for the degree-bounded directed Steiner tree (DB-DST) problem, with $n^{O(\log n)}$ running time.

- First non-trivial approximation for the DB-DST problem.
- Close to the $\left(\Omega\left(\log ^{2-\epsilon} k\right), \Omega(\log n)\right)$ lower bound
- Based on rounding a novel LP formulation.
- Can handle other constraints: e.g., length bound, buy-at-bulk

Degree-bounded GST-on-trees

Input: undirected tree $G=(V, E)$ rooted at $r \in V$, with

- edge cost $c \in \mathbb{R}_{\geq 0}^{E}$, degree bound $d \in \mathbb{R}_{\geq 0}^{V}$
- k terminal groups $O_{1}, O_{2}, \ldots, O_{k} \subseteq V$.

Output: min-cost tree $T \subseteq G$ s.t.

- contains a path from r to every terminal group,
- $\forall v \in T, \operatorname{deg}_{T}(v) \leq d_{v}$.

Degree-bounded GST-on-trees

Input: undirected tree $G=(V, E)$ rooted at $r \in V$, with

- edge cost $c \in \mathbb{R}_{\geq 0}^{E}$, degree bound $d \in \mathbb{R}_{\geq 0}^{V}$
- k terminal groups $O_{1}, O_{2}, \ldots, O_{k} \subseteq V$.

Output: min-cost tree $T \subseteq G$ s.t.

- contains a path from r to every terminal group,
- $\forall v \in T, \operatorname{deg}_{T}(v) \leq d_{v}$.
- Why study GST-on-trees?
- Source for the $\Omega\left(\log ^{2-\epsilon} n\right)$-hardness of DST [Halperin-Krauthgamer'o3]
- Our DB-DST alg converts the input to a GST-on-trees instance
- Our result:

A polynomial-time $(O(\log n \log k), O(\log n))$-apx algorithm for DB-GST-on-trees

- (almost) tight on both the cost ratio and degree violation
- Improves upon the $\left(O(\log n \log k), O\left(\log ^{2} n\right)\right)$-apx of [Kortsarz-Nutov'2o]

Rest of the talk

The main algorithm for the DB-DST result:

1. Encoding DSTs

- Encoding as a decomposition tree
- From decomposition trees to state trees

2. Handling degree bound
3. Rounding

Preprocessing

- Make every terminal v a leaf:

- Make every vertex v have out-degree ≤ 2

Decomposition Tree

Decomposition Tree

Balanced Partition Thm

For any n-vertex binary tree T that's not or or 0_{0}, we can split it into two subtrees T_{1} and T_{2} such that

- $T_{1} \cup T_{2}=T$
- $\left|T_{1}\right|,\left|T_{2}\right|<\frac{2}{3} n+1$
- $\left|T_{1} \cap T_{2}\right|=1$,

Decomposition Tree

Decomposition Tree

- An encoding of feasible DSTs
- Well-structured: $O(\log n)$-depth full binary tree
- Goal: find the decomposition tree encoding the optimal DST

Decomposition Tree

- An encoding of feasible DSTs
- Well-structured: $O(\log n)$-depth full binary tree
- Goal: find the decompesition tree encoding the optimal DST state

State tree: a more succinct (but lossy) encoding

State Tree

decomposition tree

State Tree

decomposition tree of T
state tree of T

Obs: every node of the optimal state tree has at most $O(\log n)$ portals

Proof:

- Consider partitioning a subtree with state $\left(r^{\prime}, S\right)$

Obs: every node of the optimal state tree has at most $O(\log n)$ portals

Proof:

- Consider partitioning a subtree with state $\left(r^{\prime}, S\right)$
- Suppose we partition it at vertex $r^{\prime \prime}$ and get two subtrees $\left(r^{\prime}, S_{1}\right)$ and ($r^{\prime \prime}, S_{2}$)
- Will introduce one new portal $\left(r^{\prime}\right)$ in each partition
- Recall the root state is $(r,\{r\})$, and the state tree is of depth $O(\log n)$.

QED

Properties of the optimum state tree

- Root: state ($r,\{r\}$)
- Depth: $O(\log n)$
- Simple state: \forall state (p, S) in the tree, $|S| \leq O(\log n)$

Key idea: we can "enumerate" such state trees in quasi-polynomial time

- Question: Number of possible ways to partition a state (p, S) ?
- Ans $=\#\left\{\right.$ choices of $\left.p^{\prime}\right\} \times \#\left\{\right.$ choice of $\left.\left(S_{1}, S_{2}\right)\right\}$

$$
\begin{array}{cccc}
\leq & |V| & \times & 2^{|S|} \\
\leq & n & \times & 2^{O(\log n)} \quad=\quad \operatorname{poly}(n)
\end{array}
$$

- Def: Let \mathbf{T}° be the union of all possible state trees rooted at $(r,\{r\})$ with depth $O(\log n)$.
- Size of $\mathbf{T}^{\circ}=\operatorname{poly}(n)^{O(\log n)}=n^{O(\log n)}$

- The optimal state tree is a subtree of \mathbf{T}°
- For every $v \in \mathbf{T}^{\circ}$, let $x_{v}:=\mathbf{1}[v$ in the optimal state tree $]$
- Can be captured by a LP of size $\leq \operatorname{poly}\left(\operatorname{size}\left(\mathbf{T}^{\circ}\right)\right)=n^{O(\log n)}$

$$
\begin{align*}
& \min _{x \in[0,1]^{\mathrm{v}^{\circ}}} \sum_{o: \text { base state }} x_{o} c(o), \\
& \sum x_{o} \leq x_{p}, \quad \forall p \in \mathbf{T}^{\circ}, t \in K \\
& o \text { : base state involving } t \\
& o \text { is descendant of } p \\
& x_{p}=x_{q}, \quad \forall \text { virtual node } q, p \text { child of } q \tag{3}\\
& \sum x_{o}=1, \quad \forall t \in K \tag{4}
\end{align*}
$$

Handling the degree bound

- What about the degree bound?
- Ans: add degree information to states

Handling the degree bound

- Question: Number of possible ways to partition a state (p, S, ρ_{S}) ?
- Ans $=\#\left\{\right.$ choices of $\left.p^{\prime}\right\} \times \#\left\{\right.$ choice of $\left.\left(S_{1}, S_{2}\right)\right\} \times \#\left\{\right.$ choices of $\left.\rho_{p^{\prime}}\right\}$

\leq	$\|V\|$	\times	$2^{\|S\|}$	\times	$d_{p^{\prime}}$
\leq	n	\times	$2^{O(\log n)}$	\times	n

- Size of $\mathbf{T}^{\circ} \leq \operatorname{poly}(n)^{O(\log n)}=n^{O(\log n)}$

Recursive rounding

- Let $\left\{x_{v}\right\}_{v \in \mathbf{T}^{\mathbf{0}}}$ be the LP solution

Alg round (p)

- if p is state node:
pick child q of p with probability x_{q} / x_{p}
- return $\{p\} \cup \operatorname{round}(q)$
- else if p is a virtual node:
- return $\{p\} \cup$ round(left child of $p) \cup$ round(right child of p)
- else return $\{p\}$

Recursive rounding

- Let $\left\{x_{v}\right\}_{v \in \mathbf{T}^{\circ}}$ be the LP solution

Alg round (p)

- if p is state node:
pick child q of p with probability x_{q} / x_{p}
- return $\{p\} \cup$ round (q)
- else if p is a virtual node:
- return $\{p\} \cup$ round(left child of $p) \cup$ round(right child of p)

- else return $\{p\}$

Recursive rounding

- Let $\left\{x_{v}\right\}_{v \in \mathbf{T}^{\circ}}$ be the LP solution

Alg round (p)

- if p is state node:
pick child q of p with probability x_{q} / x_{p}
- return $\{p\} \cup \operatorname{round}(q)$
- else if p is a virtual node:
- return $\{p\} \cup$ round(left child of $p) \cup$ round(right child of p)
- else return $\{p\}$

Recursive rounding

- Let $\mathbf{r} \leftarrow \operatorname{root}$ of $\mathbf{T}^{\circ}, \tau \leftarrow \operatorname{round}(\mathbf{r})$
- Thm 1 [GKR'00]: Let T_{0} be the tree encoded by state tree τ, then
- $\mathbb{E}\left[\operatorname{cost}\left(T_{0}\right)\right] \leq \mathrm{LP}$ cost
- $\forall v \in T_{0}, \operatorname{deg}_{T_{0}}^{+}(v) \leq d_{v}$
- For every terminal $t \in K, T_{0}$ connects t w.p. $\geq \Omega(1 / \log n)$

Main algorithm

- Let $Q=O(\log n \log k)$
- For $i \leftarrow 1 \ldots Q$:
- $\tau_{i} \leftarrow \operatorname{round}(\mathbf{r})$
- $T_{i} \leftarrow$ tree encoded by τ_{i}
- return $T=T_{1} \cup T_{2} \cup \cdots T_{Q}$

Thm 2: W.p. $\geq 0.9, T$ connects all terminals, and each $v \in V$ appears in T for at most $O\left(\log ^{2} n\right)$ times.

Thm 1 [GKR'00]: Let T_{0} be the tree encoded by state tree τ, then

- $\mathbb{E}\left[\operatorname{cost}\left(T_{0}\right)\right] \leq \mathrm{LP}$ cost
- $\forall v \in T_{0}, \operatorname{deg}_{T_{0}}^{+}(v) \leq d_{v}$
- For every terminal $t \in K, T_{0}$ connects t w.p. $\geq \Omega(1 / \log n)$
$+$

Thm 2: W.p. $\geq 0.9, T$ connects all terminals, and each $v \in V$ appears in T for at most $O\left(\log ^{2} n\right)$ times.
$\mathbb{E}[\operatorname{cost}(T)] \leq \mathrm{OPT} \cdot O(\log n \log k)$ and $\forall v \in T, \operatorname{deg}_{T}^{+}(v) \leq d_{v} \cdot O\left(\log ^{2} n\right)$

Summarize

- We give a randomized $\left(O(\log n \log k), O\left(\log ^{2} n\right)\right)$-apx algorithm for the DB-DST problem with $n^{O(\log n)}$ running time.
- Generalizations:
- The degree bound is handled by simple enumeration.
- Applicable for constraints that can be enumerated in poly (n) time, e.g., lengthbound, buy-at-bulk.
- In particular, we can reproduce the result of [Ghuge-Nagarajan'2o]

Thank you!

