On Approximating Degree-
Bounded Network Design Problems

Xiangyu Guo
joint work with Guy Kortsarz, Bundit Laekhanukit,
Shi Li, Daniel Vaz, and Jiayi Xian

Aug 17, 2020

Network Design Problems

» Input: an graph G = (V, E) with edge cost ¢ € | go
* Output: A min-cost subgraph S of G satisfying certain requirements:
* Connectivity requirement
* Minimum spanning tree
* Minimum Steiner tree

* Minimum k-edge-connected subgraph

« Degree boundd € | §o= deg((v) <d,VveV

 This talk: degree-bounded Directed Steiner Tree (DB-DST) and degree-bounded
Group Steiner Tree on trees (DB-GST-on-trees)

Degree-bounded DST

Input: directed graph G = (V, E) with

» edge costc € | go , degree boundd € R

e rootr € V, kterminals K C V,

Output: min-cost tree I' C G rooted at 7 s.t.

e contain r — ¢ path foreveryt € K,

» Vv e T, degr(v) <d,

Degree-bounded DST

Input: directed graph G = (V, E) with

» edge costc € | go , degree boundd € R

e rootr € V, kterminals K C V,

Output: min-cost tree T C G rooted at 7 s.t.

e contain r — ¢ path foreveryt € K,

» Vv e T, degr(v) <d,

Related work

* Degree-bounded network design in undirected graphs

* (I,d, + 1)-apx for DB-MST [Singh-Lau’o7]

* (2,min{d, + 3,2d, + 2})-apx for DB-Steiner forest [Lau-Zhou'1s, Louis-Vishnoi'og]
* Directed Steiner Tree:

+ Q(log” ¢ k)-hard [Halperin-Krauthgamer'o3]

* k€-apx in polynomial time [Zelikovsky’'g7]

log? k
O oS -apx in quasi-polynomial time [Grandoni-Laekhanukit-Li'19][Ghuge-
loglog k

Nagarajan'1g]

Our result

Main Theorem. There’s a randomized (O(log n log k), O(log?* n))-bicriteria
approx algorithm for the degree-bounded directed Steiner tree (DB-DST)

problem, with 712" running time.

* First non-trivial approximation for the DB-DST problem.

» Close to the (Q(log* ¢ k), Q(log n)) lower bound

* Based on rounding a novel LP formulation.

* Can handle other constraints: e.g., length bound, buy-at-bulk

Degree-bounded GST-on-trees

Input: undirected tree G = (V, E) rooted at r € V, with

» edge costc € | 50 , degree bound d € | go

* k terminal groups O, 0,, ..., 0, C V.

Output: min-cost tree I' C G s.t.

e contains a path from r to every terminal group,

» Vv e T,degp(v) <d,.

Degree-bounded GST-on-trees

Input: undirected tree G = (V, E) rooted at r € V, with

» edge costc € | go , degree bound d € R”

>0

* k terminal groups O, 0,, ..., 0, C V.

Output: min-cost tree I' C G s.t.

e contains a path from r to every terminal group,

» Vv e T,degp(v) <d,.

* Why study GST-on-trees?

» Source for the Q(log®~¢ n)-hardness of DST [Halperin-Krauthgamer’o3]
* Our DB-DST alg converts the input to a GST-on-trees instance
* QOur result:
A polynomial-time (O(log n log k), O(log n))-apx algorithm for DB-GST-on-trees
* (almost) tight on both the cost ratio and degree violation

» Improves upon the (O(log n log k), O(log? n))-apx of [Kortsarz-Nutov’20]

Rest of the talk

The main algorithm for the DB-DST resuilt:
1. Encoding DSTs

* Encoding as a decomposition tree

* From decomposition trees to state trees

2. Handling degree bound
3. Rounding

Preprocessing

» Make every terminal v a leaf: \KJ
ve K

* Make every vertex v have out-degree < 2

N

cost =0

Decomposition 'Tree

(@ : terminal)

Decomposition 'Tree

Balanced Partition Thm

For any n-vertex binary tree T that’s not o/o\o
or O\O , we can split it into two subtrees 7
and 75, such that

2

¢ ‘TlﬂT2‘=1,

(@ : terminal)

Decomposition 'Tree

{ra aa b9 Ca d9 e?f;g’ h’ l’]}

N

\r,a,b,c,d,e,j} e, f,g,h,1}

/ \ / \ O(log n)

ir,a,b,c,dy d,e,j} e)i} .8 h]

/\

{r,a,d} ta, b, c}

decomposition tree of T

(@ : terminal)

Decomposition 'Tree

* An encoding of feasible DST's
» Well-structured: O(log n)-depth full binary tree

* Goal: find the decomposition tree encoding the optimal DST

Decomposition 'Tree

* An encoding of feasible DSTs

» Well-structured: O(log n)-depth full binary tree
* Goal: find the decompesition tree encoding the optimal DST

state

State tree: a more succinct (but lossy) encoding

State Tree

decomposition tree

le,f, g, h,i} all vertices in the subtree

N

e, fo1} 8 hj

@ NV

state tree root of the subtree
(e, {e}) T
/ \ portals of the subtree
(e; 1. e]) (5 4D

(@ : terminal)

State Tree

{r?c,d,e,f,g\h,i,j} (r, {r})
{7b,c,<j} {67&< (r,{r,e}) (e, {e})
{r,a,b,c,d} {d,e,j} e, f,i} /.8 h} (r,{r,d}) (d,{d,e}) (e,{e,f)) (., {f})
{r,a,d)} la,b,c!} (r,{r,a,d}) (a,{a}l)

decomposition tree of T state tree of T

Obs: every node of the optimal state tree has at most O(log n) portals

Proof:

» Consider partitioning a subtree with state (7', S)

Obs: every node of the optimal state tree has at most O(log n) portals

Proof:

» Consider partitioning a subtree with state (7', S)

* Suppose we partition it at vertex " and get two
subtrees (7, .8,) and (7", $,)

* Will introduce one new portal (") in each partition

* Recall the root stateis (7, {r}), and the state tree is of
depth O(log n). QED

Properties of the optimum state tree

* Root: state (7, {r})

* Depth: O(log n)

 Simple state: V state (p, S) in the tree, | S| < O(log n)

Key idea: we can “enumerate” such state trees in quasi-polynomial time

* Question: Number of possible ways to partition a state (p, S) ?

* Ans = #{ choices of p’} X #{ choice of (5, $,) }

IA

| V| X 215

IN

n X 2 Ologn) = poly(n)

* Def: Let T be the union of all possible state trees rooted at (r, {r}) with depth O(log n).

» Size of T° = poly(n)?Uoen = pOlogn)

To

virtual node A : oo oo

way of partitioning a state (p, S),/ O(log n)

(p/a (Slv SZ))
(P, 51) O/\O (P, S,)

* The optimal state tree is a subtree of T°

» Foreveryv € T°, letx, := 1[vin the optimal state tree]

» Can be captured by a LP of size < poly(size(T?)) = n9Uoen)

min_ Zxac(o),

xe[0,11Y

o : base state

2 xq — xp, Ystate nodep (1) Z x < xp, Vp = To, [€ K (2)

g : child of p o : base state involving ¢
o is descendant of p

= x_, Vvirtual node g,p childofg (3) 2 x, =1, Vie K (4)

o : base state involving ¢

Handling the degree bound

* What about the degree bound?

 Ans: add degree information to states

State node @
root of the subtree (r', S, ps)
T o Virtual node 4

set of portals
new portal

|
|

out-degree of each portal (r", (81,5,), p,)

portal set partition

|

out-degree of the new portal

(r,,a S29 /052) (r,a Sla ,051)

Handling the degree bound

* Question: Number of possible ways to partition a state (p, S, ps) ?

e Ans = #{ choices of p’} X #{ choice of (8, $,) } X #{ choices of Py}

< | V] X 2151 X d,
< n X 2 Ollogn) X n = poly(n)

» Size of T° < poly(n)PUoen = ,Ologn)

Recursive rounding

* Let {x,} - be the LP solution

Alg round(p)

* if pis state node:

> pick child g of p with probability x_/x,

» return {p} U round(g)

* elseif pisa virtual node:

» return {p} U round(left child of p) U round(right child of p)

* else return {p}

® <

Recursive rounding

* Let {x,} - be the LP solution

Alg round(p)

* if pis state node:

> pick child g of p with probability x_/x,

» return {p} U round(g)

* elseif pisa virtual node:

» return {p} U round(left child of p) U round(right child of p)

* else return {p}

Recursive rounding

* Let {x,} - be the LP solution

Alg round(p)

* if pis state node:

> pick child g of p with probability x_/x,

» return {p} U round(g)

* elseif pisa virtual node:

» return {p} U round(left child of p) U round(right child of p)

* else return {p}

Recursive rounding

e Letr <« rootof T°, 7 « round(r)

* Thm 1 [GKR'00]: Let 7, be the tree encoded by state tree 7, then

* [E[cost(7,)] < LP cost

+ Vv € Tj,degr (v) < d,

* For every terminal t € K, T,, connects ¢ w.p. > Q(1/logn)

Main algorithm

* Let Q = O(lognlogk)
e Fori « 1...0:
* 7. < round(r)

» T, « tree encoded by 7,

» return I'= 11U T, U -1

Thm 2: W.p. > 0.9, T connects all terminals, and each v € VappearsinT
for at most O(log” 1) times.

Thm 1 [GKR'00]: Let 7}, be the tree encoded by state tree 7, then

* [E[cost(7;,)] < LP cost

+ Vv €T degr(v) <d,

* For every terminal t € K, T,, connects t w.p. > €2(1/log n)

|

Thm 2: W.p. > 0.9, T connects all terminals, and each v € V appears in T for at

most O(log” 1) times.

$

“[cost(T)] < OPT - O(lognlogk)and Vv € T, dngTr(v) <d,- O(log” n)

Summarize

* We give a randomized (O(log n log k), O(log” n))-apx algorithm for the DB-DST
problem with 72" running time.

* Generalizations:
* The degree bound is handled by simple enumeration.

* Applicable for constraints that can be enumerated in poly(n) time, e.g., length-
bound, buy-at-bulk.

* In particular, we can reproduce the result of [Ghuge-Nagarajan’20]

‘Thank you!

