On Approximating Degree-**Bounded Network Design Problems** Xiangyu Guo joint work with Guy Kortsarz, Bundit Laekhanukit, Shi Li, Daniel Vaz, and Jiayi Xian

Aug 17, 2020

Network Design Problems

- Input: an graph G = (V, E) with edge cost $c \in \mathbb{R}_{>0}^{E}$
- Output: A min-cost subgraph S of G satisfying certain requirements:
 - Connectivity requirement
 - Minimum spanning tree
 - Minimum Steiner tree
 - Minimum k-edge-connected subgraph
 - Degree bound $d \in \mathbb{R}_{>0}^{V}$: $\deg_{S}(v) \leq d_{v}, \forall v \in V$
- This talk: degree-bounded Directed Steiner Tree (DB-DST) and degree-bounded Group Steiner Tree on trees (DB-GST-on-trees)

Degree-bounded DST

- **Input: directed** graph G = (V, E) with
 - edge cost $c \in \mathbb{R}^{E}_{>0}$, degree bound $d \in \mathbb{R}^{V}_{>0}$,
 - root $r \in V$, k terminals $K \subseteq V$,

Output: min-cost tree $T \subseteq G$ rooted at *r* s.t.

• contain $r \to t$ path for every $t \in K$,

•
$$\forall v \in T$$
, $\deg_T^+(v) \le d_v$

Degree-bounded DST

- **Input:** directed graph G = (V, E) with
 - edge cost $c \in \mathbb{R}^{E}_{>0}$, degree bound $d \in \mathbb{R}^{V}_{>0}$,
 - root $r \in V$, k terminals $K \subseteq V$,

Output: min-cost tree $T \subseteq G$ rooted at *r* s.t.

• contain $r \to t$ path for every $t \in K$,

•
$$\forall v \in T$$
, $\deg_T^+(v) \le d_v$

Related work

- Degree-bounded network design in *undirected* graphs
 - $(1, d_v + 1)$ -apx for DB-MST [Singh-Lau'07]
 - $(2, \min\{d_v + 3, 2d_v + 2\})$ -apx for DB-Steiner forest [Lau-Zhou'15, Louis-Vishnoi'09]
- **Directed Steiner Tree:**
 - $\Omega(\log^{2-\epsilon} k)$ -hard [Halperin-Krauthgamer'03]
 - k^{ϵ} -apx in polynomial time [Zelikovsky'97]

• $O\left(\frac{\log^2 k}{\log\log k}\right)$ -apx in quasi-polynomial time [Grandoni-Laekhanukit-Li'19][Ghuge-Nagarajan'19]

Our result

problem, with $n^{O(\log n)}$ running time.

- First non-trivial approximation for the DB-DST problem.
- Close to the $(\Omega(\log^{2-\epsilon} k), \Omega(\log n))$ lower bound
- Based on rounding a novel LP formulation.
- Can handle other constraints: e.g., length bound, buy-at-bulk

Main Theorem. There's a randomized ($O(\log n \log k), O(\log^2 n)$)-bicriteria approx algorithm for the degree-bounded directed Steiner tree (DB-DST)

Degree-bounded GST-on-trees

Input: undirected tree G = (V, E) rooted at $r \in V$, with

- edge cost $c \in \mathbb{R}_{>0}^{E}$, degree bound $d \in \mathbb{R}_{>0}^{V}$
- *k* terminal groups $O_1, O_2, ..., O_k \subseteq V$.

Output: min-cost tree $T \subseteq G$ s.t.

• contains a path from r to every terminal group,

•
$$\forall v \in T, \deg_T(v) \leq d_v$$
.

Degree-bounded GST-on-trees

- **Input:** undirected tree G = (V, E) rooted at $r \in V$, with
 - edge cost $c \in \mathbb{R}^{E}_{>0}$, degree bound $d \in \mathbb{R}^{V}_{>0}$
 - *k* terminal groups $O_1, O_2, ..., O_k \subseteq V$.

Output: min-cost tree $T \subseteq G$ s.t.

• contains a path from *r* to every terminal group,

•
$$\forall v \in T, \deg_T(v) \leq d_v$$
.

- Why study GST-on-trees?
 - Source for the $\Omega(\log^{2-\epsilon} n)$ -hardness of DST [Halperin-Krauthgamer'03] • Our DB-DST alg converts the input to a GST-on-trees instance
- Our result:

- A polynomial-time ($O(\log n \log k), O(\log n)$)-apx algorithm for DB-GST-on-trees • (almost) tight on both the cost ratio and degree violation
 - Improves upon the $(O(\log n \log k), O(\log^2 n))$ -apx of [Kortsarz-Nutov'20]

Rest of the talk

The main algorithm for the DB-DST result:

- Encoding DSTs 1.
 - Encoding as a *decomposition tree* \bullet
 - From decomposition trees to *state trees*
- 2. Handling degree bound
- Rounding 3.

• Make every terminal *v* a leaf:

• Make every vertex *v* have out-degree ≤ 2

Balanced Partition Thm

For any *n*-vertex *binary* tree *T* that's not $\mathcal{A}_{\mathcal{A}_{\mathcal{A}_{\mathcal{A}_{\mathcal{A}_{\mathcal{A}}}}}$ or $\mathcal{A}_{\mathcal{A}_{\mathcal{A}_{\mathcal{A}_{\mathcal{A}}}}}$, we can split it into two subtrees T_1 and T_2 such that

•
$$T_1 \cup T_2 = T$$

•
$$|T_1|, |T_2| < \frac{2}{3}n + 1$$

• $|T_1 \cap T_2| = 1$,

decomposition tree of T

- An encoding of feasible DSTs
- Well-structured: $O(\log n)$ -depth full binary tree
- Goal: find the decomposition tree encoding the optimal DST

- An encoding of feasible DSTs
- Well-structured: $O(\log n)$ -depth full binary tree
- Goal: find the decomposition tree encoding the optimal DST state

State tree: a more succinct (but lossy) encoding

decomposition tree

all vertices in the subtree

root of the subtree

portals of the subtree

+

State Tree

decomposition tree of T

state tree of *T*

Obs: every node of the optimal state tree has at most $O(\log n)$ portals

Proof:

• Consider partitioning a subtree with state (r', S)

Obs: every node of the optimal state tree has at most $O(\log n)$ portals

Proof:

- Consider partitioning a subtree with state (r', S)
- Suppose we partition it at vertex r" and get two subtrees (r', S₁) and (r", S₂)
- Will introduce one new portal (r'') in each partition
- Recall the root state is (r, {r}), and the state tree is of depth O(log n).

Properties of the optimum state tree

- Root: state $(r, \{r\})$
- Depth: $O(\log n)$
- Simple state: \forall state (p, S) in the tree, $|S| \leq O(\log n)$

Key idea: we can "enumerate" such state trees in quasi-polynomial time

- **Question**: Number of possible ways to partition a state (*p*, *S*)?
- Ans = #{ choices of p' } × #{ choice of (S_1, S_2) }

$$\leq |V| \times 2^{|S|}$$
$$\leq n \times 2^{O(\log S)}$$

pg(n) = poly(n)

• Size of
$$\mathbf{T}^\circ = \operatorname{poly}(n)^{O(\log n)} = n^{O(\log n)}$$

• Def: Let T° be the union of all possible state trees rooted at $(r, \{r\})$ with depth $O(\log n)$.

- The optimal state tree is a subtree of \mathbf{T}°
- For every $v \in \mathbf{T}^\circ$, let $x_v := \mathbf{1}[v \text{ in the optimal state tree}]$
- Can be captured by a LP of size $\leq \text{poly}(\text{size}(\mathbf{T}^\circ)) = n^{O(\log n)}$

$$\min_{\substack{x \in [0, x_q]}{x_q = x_p}, \quad \forall \text{state node } p \quad (1)$$

$$x_p = x_q, \quad \forall \text{ virtual node } q, p \text{ child of } q \quad (3)$$

$$\sum_{\substack{] \mathbf{V}^{\circ} \\ o : \text{ base state}}} x_o C(o) ,$$

 $\sum x_o \le x_p, \qquad \forall p \in \mathbf{T}^\circ, t \in K \quad (2)$ *o* is descendant of *p*

$$\sum_{o: \text{ base state involving } t} X_o = 1, \qquad \forall t \in K$$
(4)

o : base state involving *t*

Handling the degree bound

- What about the degree bound?
- Ans: add degree information to states

 (r', S, ρ_S)

 $(r'', (S_1, S_2), \rho_{r''})$ (r', S_1, ρ_{S_1})

Virtual node

new portal

portal set partition

out-degree of the new portal

Handling the degree bound

- Question: Number of possible ways to partition a state (p, S, ρ_S) ?
- Ans = #{ choices of p' } × #{ choice of (S_1, S_2) } × #{ choices of $\rho_{p'}$ }

• Size of $\mathbf{T}^{\circ} \leq \operatorname{poly}(n)^{O(\log n)} = n^{O(\log n)}$

• Let $\{x_v\}_{v \in \mathbf{T}^\circ}$ be the LP solution

```
Alg round(p)
```

- **if** *p* is state node:
 - pick child q of p with probability x_q/x_p
 - **return** $\{p\} \cup round(q)$
- **else if** *p* is a virtual node:
 - return $\{p\} \cup$ round(left child of p) \cup round(right child of p)
- else return {p}

• Let $\{x_v\}_{v \in \mathbf{T}^\circ}$ be the LP solution

```
Alg round(p)
```

- **if** *p* is state node:
 - pick child q of p with probability x_q/x_p
 - **return** $\{p\} \cup round(q)$
- **else if** *p* is a virtual node:
 - return $\{p\} \cup$ round(left child of p) \cup round(right child of p)
- else return {p}

• Let $\{x_v\}_{v \in \mathbf{T}^\circ}$ be the LP solution

```
Alg round(p)
```

- if *p* is state node: \bullet
 - pick child q of p with probability x_q/x_p
 - **return** $\{p\} \cup$ round(q)
- else if *p* is a virtual node:
 - return {p} \cup round(left child of p) \cup round(right child of p)
- else return {*p*} •

....

- Let $\mathbf{r} \leftarrow \text{root of } \mathbf{T}^\circ$, $\tau \leftarrow \text{round}(\mathbf{r})$
- Thm 1 [GKR'00]: Let T_0 be the tree encoded by state tree τ , then
 - $\mathbb{E}[\operatorname{cost}(T_0)] \leq \operatorname{LPcost}$
 - $\forall v \in T_0, \deg_{T_0}^+(v) \le d_v$
 - For every terminal $t \in K$, T_0 connects t w.p. $\geq \Omega(1/\log n)$

•)

Main algorithm

- Let $Q = O(\log n \log k)$ For $i \leftarrow 1...Q$: $\tau_i \leftarrow \text{round}(\mathbf{r})$ $T_i \leftarrow \text{tree encoded by } \tau_i$ return $T = T_1 \cup T_2 \cup \cdots T_Q$

for at most $O(\log^2 n)$ times.

Thm 2: W.p. ≥ 0.9 , T connects all terminals, and each $v \in V$ appears in T

• $\mathbb{E}[\operatorname{cost}(T_0)] \leq \operatorname{LP}\operatorname{cost}$

•
$$\forall v \in T_0, \deg_{T_0}^+(v) \le d_v$$

most $O(\log^2 n)$ times.

Thm 2: W.p. ≥ 0.9 , T connects all terminals, and each $v \in V$ appears in T for at

Summarize

- problem with $n^{O(\log n)}$ running time.
- Generalizations:
 - The degree bound is handled by simple enumeration.
 - bound, buy-at-bulk.
 - In particular, we can reproduce the result of [Ghuge-Nagarajan'20]

• We give a randomized $(O(\log n \log k), O(\log^2 n))$ -apx algorithm for the DB-DST

• Applicable for constraints that can be enumerated in poly(n) time, e.g., length-

Thank you!