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Abstract. Matching systems can be used in different operation tasks
such as verification task and identification task. Different optimization
criteria exist for these tasks - reducing cost of acceptance decisions for
verification systems and minimizing misclassification rate for identifica-
tion systems. In this paper we show that the optimal combination rules
satisfying these criteria are also different. The difference is caused by
the dependence of matching scores produced by a single matcher and as-
signed to different classes. We illustrate the theory by experiments with
biometric matchers and handwritten word recognizers.

1 Introduction

Traditionally, the goal of pattern classification algorithms is to minimize the
misclassification rate or cost[7]. With the development of biometric field another
type of optimization criteria became important - minimizing the cost of veri-
fying the hypothesis of whether the input belongs to the prespecified class. In
particular, for biometric verification system we need to determine whether the
presented biometric input belongs to the claimed enrolled person. The verifica-
tion problem is a two-class problem - the input does belong to the hypothesis
class (genuine verification attempt) or does not (impostor). On the other hand,
the traditional classification problem still takes place in biometrics as an identi-
fication problem: given biometric input determine the person among N enrolled
persons. Note, that similar task division existed before in other pattern recogni-
tion tasks. As an example of verification system in a handwriting application, a
bank check recognition system might hypothesize about the value of the check
based on the legal field, and numeric string recognition module must confirm
that courtesy value coincides with the legal amount[4]. Or, more frequently, a
handwriting recognition module is used to identify each word between N words
in the lexicon.

It turns out that different tasks might require different optimizations of recog-
nition algorithms. Example 1 of this paper presents two hypothetical recognition
algorithms with one more suited for verification task and another for identifica-
tion task. Similarly, if we have two or more matching algorithms, and we want
to combine their results, the best combination algorithms might be different
for different tasks. The goal of this paper is to show that this is indeed the



case. Whereas the optimal combination algorithm for verification systems corre-
sponds to likelihood ratio combination rule, the optimal combination algorithm
for identification systems might be different, and it is rather difficult to find.

1.1 Performance Measures

Different modes of operation demand different performance measures. For veri-
fication systems the performance is traditionally measured by means of Receiver
Operating Characteristic (ROC) curves or by Detection Error Trade-off (DET)
curve. These curves are well suited for describing the performance of two-class
pattern classification problems. In such problems there are two types of errors:
the samples of first class are classified to belong to second class, and samples of
second class are classified to be in first class. The decision to classify a sample to
be in one of two classes is usually based on some threshold. Both performance
curves show the relationship between two error rates with regards to a threshold
(see [2] for precise definition of above performance measures). In our case we will
use ROC curves for comparing algorithm performance.

For measuring performance of identification systems we will use ranking
approach. In particular, we are interested in maximizing the rate of correctly
identifying the input, first-rank-correct rate. If we look at identification task as
a pattern classification problem, this performance measure will directly corre-
spond to the traditional minimization of the classification error. Note that there
are also other approaches to measure performance in identification systems[2],
e.g. Rank Probability Mass, Cumulative Match Curve, Recall-Precision Curve.
Though they might be useful for some applications, in our case we will be more
interested in correct identification rate.

2 Verification Systems

The problem of combining matchers in verification systems can be easily solved
with pattern classification approach. As we already noted, there are two classes:
genuine verification attempts and impostor verification attempts. The hypothesis
identity of the input is provided before matching. Each matcher j outputs a score
sj corresponding to a match confidence between input sample and hypothesis
identity. Assuming that we combine M matchers, our task is to perform two-class
classification (genuine and impostor) in M -dimensional score space {s1, . . . , sM}.
If the number of combined matchers M is small, we will have no trouble in
training pattern classification algorithm.

We employ the Bayesian risk minimization method as our classification ap-
proach[7]. This method states that the optimal decision boundaries between two
classes can be found by comparing the likelihood ratio

flr(s
1, . . . , sM ) =

pgen(s1, . . . , sM )

pimp(s1, . . . , sM )
(1)



to some threshold θ where pgen and pimp are M -dimensional densities of score
tuples {s1, . . . , sM} corresponding to two classes - genuine and impostor verifi-
cation attempts. In order to use this method we have to estimate the densities
pgen and pimp from the training data.

The likelihood ratio combination method is theoretically optimal for veri-
fication systems and its performance only limited by our ability to correctly
estimate score densities. But, since our problem is the separation of genuine and
impostor classes, we could apply many existing pattern classification techniques
as well. For example, support vector machines have shown good performance in
many tasks, and can be definitely used to improve the likelihood ratio method.
In [8] we performed some comparisons of likelihood ratio method with SVMs on
an artificial task and found that on average (over many random training sets)
SVMs do have slightly better performance, but for a particular training set it
might not be true. The difference in performance is quite small and decreases
with the increasing number of training samples.

3 Identification Systems

In identification systems a hypothesis of the input sample is not available and
we have to choose the input’s class among all possible classes. Denote N as the
number of classes. The total number of matching scores available for combination
now is MN : N matching scores for N classes from each of M combined classifiers.
If numbers M and N are not big, then we can use generic pattern classifiers in
MN -dimensional score space to find the input’s class among N classes. For some
problems, e.g. digit or character recognition, this is an acceptable approach; the
number of classes is small and usually there is a sufficient number of training
samples to properly train pattern classification algorithms operating in MN

score space.
But for our applications in handwritten word recognition and biometric per-

son identification the number of classes is too big and the number of training
samples is too small (there might be even no training samples at all for a par-
ticular lexicon word), so the pattern classification in the MN -dimensional score
space seems to be out of the question. The traditional approach in this situation
is to use some combination rules. The combination rule implies the use of some
combination function f operating only on M scores corresponding to one class,
f(s1, . . . , sM ), and it states that the decision class C is the one which maximizes
the value of a combination function:

C = arg max
i=1,...,N

f(s1
i , . . . , s

M
i ) (2)

Note that in our notation the upper index of the score corresponds to the
classifier, which produced this score, and lower index corresponds to the class
for which it was produced. The names of combination rules are usually di-
rectly derived from the names of used combination functions: the sum function
f(s1, . . . , sM ) = s1 + · · ·+ sM corresponds to the sum rule, the product function
f(s1, . . . , sM ) = s1 . . . sM corresponds to the product rule and so on.



Many combination rules have been proposed so far, but there is no agreement
on the best one. It seems that different applications require different combination
rules for best performance. Anyone wishing to combine matchers in real life has
to test few of them and choose the one with best performance.

3.1 Likelihood Ratio Combination Rule

As we already know, likelihood ratio function is the optimal combination func-
tion for verification systems. We want to investigate whether it will be opti-
mal for identification systems. Suppose we performed a match of the input
sample by all M matchers against all N classes and obtained MN matching
scores {sj

i}i=1,...,N ;j=1,...,M . Assuming equal prior class probabilities, the Bayes
decision theory states that in order to minimize the misclassification rate the
sample should be classified as one with highest value of likelihood function
p({sj

i}i=1,...,N ;j=1,...,M |ωk). Thus, for any two classes ω1 and ω2 we have to clas-
sify input as ω1 rather than ω2 if

p({sj
i}i=1,...,N ;j=1,...,M |ω1) > p({sj

i}i=1,...,N ;j=1,...,M |ω2) (3)

Let us make an assumption that the scores assigned to each class are sampled
independently from scores assigned to other classes; scores assigned to genuine
class are sampled from M -dimensional genuine score density, and scores assigned
to impostor classes are sampled from M -dimensional impostor score density:

p({sj
i}i=1,...,N ;j=1,...,M |ωk)

= p({s1
1, . . . , s

M
1 }, . . . , {s1

ωk
, . . . , sM

ωi
}, . . . , {s1

N , . . . , sM
N }|ωk)

= pimp(s
1
1, . . . , s

M
1 ) . . . pgen(s1

ωk
, . . . , sM

ωk
) . . . pimp(s

1
N , . . . , sM

N )

(4)

After substituting 4 into 3 and canceling out common factors we obtain the
following inequality for accepting class ω1 rather than ω2:

pgen(s1
ω1

, . . . , sM
ω1

)pimp(s
1
ω2

, . . . , sM
ω2

) > pimp(s
1
ω1

, . . . , sM
ω1

)pgen(s1
ω2

, . . . , sM
ω2

)

or
pgen(s1

ω1
, . . . , sM

ω1
)

pimp(s1
ω1

, . . . , sM
ω1

)
>

pgen(s1
ω2

, . . . , sM
ω2

)

pimp(s1
ω2

, . . . , sM
ω2

)
(5)

The terms in each part of the above inequality are exactly the values of the
likelihood ratio function flr taken at the sets of scores assigned to classes ω1

and ω2. Thus, the class maximizing the MN -dimensional likelihood function
of inequality 3 is the same as a class maximizing the M -dimensional likelihood
ratio function of inequality 5. The likelihood ratio combination rule is the optimal
combination rule under used assumptions of score independence.

The main assumption that we made while deriving likelihood ratio combina-
tion rule is that the score samples in each identification trial are independent.
That is, genuine score is sampled from genuine score distribution and is inde-
pendent from impostor scores which are independent and identically distributed



Matchers firstimp secondimp thirdimp meanimp

CMR 0.4359 0.4755 0.4771 0.1145

WMR 0.7885 0.7825 0.7663 0.5685

li 0.3164 0.3400 0.3389 0.2961

C 0.1419 0.1513 0.1562 0.1440

G 0.1339 0.1800 0.1827 0.1593

Table 1. Correlations between sgen and different statistics of the impostor score sets
produced during identification trials for considered matchers.

according to impostor score distribution. We can verify if this assumption is true
for our matchers.

Table 1 shows correlations between genuine score and some functions of the
impostor score sets obtained in the same identification trial. firstimp column
has correlations between genuine and the best impostor score, and so on. Non-
zero correlations indicate that the scores are dependent, and likelihood ratio
combination rule will not necessarily be optimal for our applications.

The main reason for the dependence among matching scores produced dur-
ing identification trial is that they are derived using same input signal. The next
two examples will illustrate the effect of score dependences on the performance
of identification systems. In particular, second example confirms that if identi-
fication system uses likelihood ratio combination, then its performance can be
worse than the performance of a single matcher.

Example 1 Suppose we have an identification system with one matcher and, for
simplicity, N = 2 classes. During each identification attempt a matcher produces
two scores corresponding to two classes, and, since by our assumption the input
is one of these two classes (closed set identification), one of these scores will
be genuine match score, and another will be impostor match score. Suppose
we collected a data on the distributions of genuine and impostor scores and
reconstructed score densities (let them be gaussian) as shown in Figure 1.

Consider two possible scenarios on how these densities might have originated
from the sample of the identification attempts:

1. Both scores sgen and simp are sampled independently from genuine and
impostor distributions.

2. In every observed identification attempt : simp = sgen − 1. Thus in this
scenario the identification system always correctly places genuine sample on
top. There is a strong dependency between scores given to two classes, and
score distributions of Figure 1 do not reflect this fact.

If a system works in verification mode and we have only one match score to
make a decision on accepting or rejecting input, we can only compare this score
to some threshold. By doing so both scenarios would have same performance: the
rate of false accepts (impostor samples having match score higher than threshold)
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Fig. 1. Hypothetical densities of matching(genuine) and non-matching(impostors)
scores.

and the rate of false rejects (genuine samples having match score lower than
threshold) will be determined by integrating impostor and genuine densities of
Figure 1 no matter what scenario we have. If system works in identification mode,
the recognizer of the second scenario will be a clear winner: it is always correct
while the recognizer of first scenario can make mistakes and place impostor
samples on top.

This example shows that the performance of the matcher in the verification
system might not predict its performance in the identification system. Given
two matchers, one might be better for verification systems, and another for
identification systems.

Example 2 Consider a combination of two matchers in two class identification
system: one matcher is from the first scenario, and the other is from the second
scenario. Assume that these matchers are independent. Let the upper score index
refer to the matcher producing this score; s

j
i is the score for class i assigned

by the classifier j. From our construction we know that the second matcher
always outputs genuine score on the top. So the optimal combination rule for
identification system will simply discard scores of first matcher and retain scores
of the second matcher:

f(s1, s2) = s2 (6)

The input will always be correctly classified as arg maxi s2
i .

Let us now use the likelihood ratio combination rule for this system. Since
we assumed that matchers are independent, the densities of genuine pgen(s1, s2)
and impostor pimp(s

1, s2) scores are obtained by multiplying corresponding one-
dimensional score densities of two matchers. In our example, impostor scores are
distributed as a Gaussian centered at (0, 0), and genuine scores are distributed
as a Gaussian centered at (1, 1). Figure 2(a) contains the contours of function
|pgen − pimp| which allows us to see the relative position of these gaussians. The



gaussians have same covariance matrix, and thus the optimal decision contours
are hyperplanes[7] - lines s1 + s2 = c. Correspondingly, the likelihood ratio com-
bination function is equivalent to the combination function f = s1 + s2 (note,
that true likelihood ratio function will be different, but if two functions have
same contours, then their combination rules will be the same). Such combina-
tion improves the performance of the verification system relative to any single
matcher; Figure 2(b) shows corresponding ROC curves for any single matchers
and their combination.
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Fig. 2. (a) Two-dimensional distributions of genuine and impostor scores for examples
2 and 3 (b) ROC curves for single matchers and their likelihood ratio combination.

Suppose that (s1
1, s

2
1) and (s1

2, s
2
2) are two score pairs obtained during one

identification trial. The likelihood ratio combination rule classifies the input as
a class maximizing likelihood ratio function:

arg max
i=1,2

pgen(s1
i , s

2
i )

pimp(s1
i , s

2
i )

= arg max
i=1,2

s1
i + s2

i (7)

Let the test sample be (s1
1, s

2
1) = (−0.1, 1.0), (s1

2, s
2
2) = (1.1, 0). We know from

our construction that class 1 is the genuine class, since the second matcher
assigned score 1.0 to it and 0 to the second class. But its score pair (1.1, 0)
is located just above the diagonal s1 + s2 = 1, and the score pair (−0.1, 1.0)
corresponding to class 1 is located just below this diagonal. Hence class 2 has
bigger ratio of genuine to impostor densities than class 1, and the likelihood
ratio combination method would incorrectly classify class 2 as the genuine class.

Thus the optimal for verification system likelihood ratio combination rule
(7) has worse performance than a single second matcher. On the other hand,
the optimal for identification system rule (6) does not improve the performance
of the verification system. Recall, that in section 3.1 we showed that if scores
assigned by matchers to different classes are independent, then likelihood ratio
combination rule is optimal for identification systems, as well as for verification



systems. Current example shows that if there is a dependency between scores,
this is no longer a case, and the optimal combination for identification systems
can be different from the optimal combination for verification systems.

4 Experiments

We have performed three sets of experiments for this paper - one for combin-
ing two word recognizers and two for combining fingerprint and face biometric
matchers. Two handwritten word recognizers are Character Model Recognizer
(CMR)[3] and Word Model Recognizer (WMR)[5]. Both recognizers employ sim-
ilar approaches to word recognition: they oversegment the word images, match
the combinations of segments to characters and derive a final matching score for
each lexicon word as a function of character matching scores. Still, the correct
identification rates of these recognizers (see Table 2) reveal that these match-
ers produce somewhat complementary results and their combination might be
beneficial.

Our data consists of three sets of 2654, 1723 and 1770 word images repre-
senting UK postal town and county names of approximately same quality (the
data was provided as these three subsets and we did not regroup them). The
word recognizers were run on these images and their match scores for the total of
1681 lexicon words were saved. Since our data was already separated into three
subsets, we used this structure for producing training and testing sets. Each
experiment was repeated three times, each time one subset is used as a training
set, and two other sets are used as test sets. Final results are derived as averages
of these three training/testing phases.

We used biometric matching score set BSSR1 distributed by NIST[1]. This
set contains matching scores for a fingerprint matcher and two face matchers ’C’
and ’G’. Fingerprint matching scores are given for left index ’li’ finger matches
and right index ’ri’ finger matches. In this work we used both face matching
scores and fingerprint ’li’ scores and we do two types of combinations: ’li’&’C’
and ’li’&’G’. We used bigger subsets of this data set with 6000 identification
attempts to create a set of virtual persons and their matching scores. After
discarding enrollees and identification trials with failed biometric enrollment we
obtained two equal sets - 2991 identification trials with 2997 enrolled persons
with each part used as training and testing sets in two phases.

For our applications the number of matchers M is 2 and the number of
training samples is large (bigger than 1000), so we can successfully estimate the
score densities for the likelihood ratio combination method. We approximate
both densities as the sums of 2-dimensional gaussian Parzen kernels. The win-
dow parameter is estimated by the maximum likelihood method on the training
set[6] using leave-one-out technique. Note that window parameter is different for
genuine and impostor density approximations.



4.1 Identification System Experiments

Table 2 shows the performance of likelihood ratio rule on our data sets. Whereas
the combinations of biometric matchers have significantly higher correct identifi-
cation rates than single matchers, the combination of word recognizers has lower
correct identification rate than a single WMR matcher. Example 2 provides an
explanation to this result; there is a strong dependence in matching scores for
WMR and it affects the performance of likelihood ratio combination.

Matchers Total 1st matcher 2nd matcher Either one Likelihood Weighted
is correct is correct is correct Ratio Rule Sum Rule

CMR&WMR 6147 3366 4744 5105 4293 5015

li&C 5982 4870 4856 5789 5817 5816

li&G 5982 4870 4635 5731 5737 5711

Table 2. Correct identification rate for likelihood ratio and weighted sum combination
rules.

We compare the performance of the likelihood ratio combination method
with the weighted sum combination rule f(s1, . . . , sM ) = w1s

1 + · · · + wMsM .
We train the weights so that the number of successful identification trials on the
training set is maximized. Since we have two matchers in all configurations we use
brute-force method: we calculate the correct identification rate of combination
function f(s1, s2) = ws1 + (1−w)s2 for different values of w ∈ [0, 1], and find w

corresponding to highest rate.

The numbers of successful identification trials on the test sets is presented
in Table 2. In all cases we see an improvement over the performances of single
matchers. The combination of word recognizers is now successful and is in line
with the performance of other combinations of matchers. Weighted sum method
seems to perform slightly worse than likelihood ratio for biometric matchers,
which can be explained by its simplicity. Another possible reason for this is that
likelihood ratio combination rule is actually the optimal rule for classifiers with
independent identification trial scores, and scores of biometric matchers show
less dependence than scores of word recognizers.

4.2 Verification System Experiments

Figure 3 contains ROC curves likelihood ratio and weighted sum combination
rules in verirification tasks. The weights in the weighted sum rule are the same
as trained in identification experiments. In all cases we get slightly worse perfor-
mance from the weighted sum rule than from the likelihood ratio rule. This con-
firms our assertion that the likelihood ratio is the optimal combination method
for verification systems.
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Fig. 3. ROC curves for combinations of (a) CMR and WMR, (b) ’li’ and ’C’, (c) ’li’
and ’G’

5 Conclusion

The combination of matchers for verification problems is relatively easy task
with likelihood ratio combination rule being the optimal method, as well as
many other two-class pattern classification methods. On the other hand, the
combination in identification problems might require different methods, and it
is rather difficult task. In practice, presented results argue that we can not
effectively use same combination method for both verification and identification.
Though the weighted sum rule shows good performance in identification systems,
there is a need to develop more finely trainable combination methods.
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