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Abstract. There is an increased interest in the combination of biomet-
ric matchers for person verification. Matchers of different modalities can
be considered as independent 2-class classifiers. This work tries to answer
the question of whether assumption of the classifier independence could
be used to improve the combination method. The combination added
error was introduced and used to evaluate performance of various com-
bination methods. The results show that using independence assumption
for score density estimation indeed improves combination performance.
At the same time it is likely that a generic classifier like SVM will still
perform better. The magnitudes of experimentally evaluated combina-
tion added errors are relatively small, which means that choice of the
combination method is not really important.

1 Introduction

Use of multiple biometric identification devices requires robust combination algo-
rithms to increase their effectiveness. Though a plethora of possible combination
algorithms are described in scientific literature, there seems to be no consensus
on which is the best. Hence a practitioner is forced to try different combination
strategies in order to see which algorithm works best for the task at hand.

In this paper we shall deal with the combination of independent classifiers.
We assume that classifiers output a set of scores reflecting the confidences of
input belonging to corresponding class. It is safe to assume that matching scores
for biometrics of different modalities (e.g. fingerprint and face) are indepen-
dent random variables. The matchers or classifiers possessing this property are
independent classifiers. This assumption is fairly restrictive for the field of clas-
sifier combination since combined classifiers usually operate on the same input.
Though frequently using completely different features for different classifiers still
results in dependent scores. For example, features can be dependent, image qual-
ity characteristic can influence scores of combined classifiers, and input may have
an inherent low match to stored class templates giving low scores for all match-
ers. In certain situation even classifiers operating on different inputs will have
dependent scores, as in the case of using two fingers for identification (fingers
will likely be both moist, both dirty or both applying same pressure to the sen-
sor). In the case of multimodal biometrics the inputs to different sensors are
independent (for example, no connection of fingerprint features to face features



have been noticed so far). Hence matching scores will also be independent. We
will use this property in our work.

Much of the effort in the classifier combination field has been devoted to
dependent classifiers and most of the algorithms do not make any assumptions
about classifier independence. The main purpose of this work is to see if inde-
pendence assumption can be effectively used to improve the combination results.
We will use the property that the joint density of the classifiers’ scores is the
product of the densities of the scores of individual classifiers.

We choose the magnitude of added error as a measure of combination good-
ness. It is the difference between an error of optimal Bayesian combination and
current combination algorithm. In order to calculate this error we make a hy-
pothesis on the true score distribution, and produce training and testing samples
using these hypothesized distributions. This technique could be used to estimate
added error in real-world classifier combinations. The main purpose of using this
technique is to provide some confidence in combination results. This would en-
able us to say: ”‘The total combination error in this particular combination is

5% and added error due to combination algorithm is likely to be less than 1%”’.

2 Previous Work

The added error introduced by Tumer and Ghosh[1] was under much consider-
ation lately [2-5]. The definition of this added error requires assumption that
combined classifiers operate in the same feature space and class samples are
random points in this space with some fixed distributions. The Bayes error is
determined by the distributions in the feature space and added error is the dif-
ference of the combination error of trained classifiers and Bayes error.

This framework does not work for combinations of biometric classifiers since
these classifiers do not have the same feature space. For our task we will be
treating classifiers as black boxes outputting matching scores. Scores are random
variables in the score space defined by some fixed score distributions and the com-
bination algorithm is a classifier operating in the score space. The Baeys error,
or rather minimum Bayes cost, of the combination is determined by the score
distributions. And we define combination added error, or combination added
cost, as a difference between total error(cost) and this Bayes error(cost). The
difference with the previous definition is that we use distributions of scores in
score space and not distributions of feature vectors in feature vector space for
definition of Bayes error. Thus our combination added error in contrast to pre-
viously defined added error[1] will not depend on the added errors of individual
classifiers but will depend only on the combination algorithm. See section 3.2
for formal definition of combination added error.

To further explain the difference between two types of added error, let us
have an example of few imperfect classifiers operating in the same feature space.
Suppose that we have optimal combination based on Bayesian classifier operating
on scores in score space (assuming the score distribution are known). In this case
added error in Tumer and Ghosh’s framework will be some non-zero number



reflecting the errors made by classifiers. In our setting the added error is 0,
since the combination algorithm is perfect and did not add any errors to the
classification results.

Another assumption made in Tumer and Ghosh’s added error framework
is that the outputs of the classifiers approximate posterior class probabilities
s; = P(c¢;|z). Since in that framework all classifiers use same feature vector
z, this implies that output scores of classifiers are very strongly correlated. If
we think about score space si, ..., S,, the outputs of these classifiers would be
near the diagonal sy = --- = s,. Decision boundary of combination algorithm
can be represented as a hypersurface in score space and combination decision is
roughly equivalent to hypersurface intersecting diagonal at same place. So this
added error is mostly concerned with what happens locally near diagonal of the
score space and how combination algorithm hypersurfaces intersect it. In this
situation, any fixed combination rule will produce approximately the same total
recognition error, since their hypersurfaces will be able to intersect the diagonal
in some optimal place.

In our case we consider a more general case of output scores not approximat-
ing posterior class probabilities and present anywhere in the score space. This is
a frequent situation with biometric scores which usually represent some internal
matching distance. In this situation, the total error would greatly depend on the
used combination rule and score densities. So any combination method which
has limited number of trainable parameters will be considered suboptimal in
this situation. For example, weighted sum rule will have hyperplanes as decision
boundaries and would fail to properly separate classes with normally distributed
scores and with hyperquadric decision surface.

It would make little sense to define combination added error for such meth-
ods and perform its analysis. Indeed, if optimal decision surface is of the form
supported by such combination, the added error will be very close to 0 (limited
number of parameters, large number of training samples), and its comparison to
any other method will be unfair. On the other hand, if optimal decision surface
is different from the ones supported by combination algorithm, there will always
be some fixed minimum added error, which this combination method would not
be able to improve no matter how many training samples we have.

For these reasons we consider only combination algorithms able to approx-
imate any decision functions given a sufficient number of training samples. In
particular, we consider combination methods based on non-parametric density
estimation, neural networks and support vector machines. We are interested in
seeing what magnitude of combination added error they make with respect to
different parameters of combination: number of training samples, total error,
number of combined classifiers.

3 Combination Methods

In this work we shall deal with 2-class classifiers. As we mentioned earlier, the
main motivation for this work is the combination of biometric matchers. The



combination problem in this area is usually split into two tasks: verification and
identification. The verification problem asks if a person’s identity coincides with
the claimed one, and the identification problem asks to which person among &
enrolled persons the given biometric readings belong. We investigate the veri-
fication problem and assume that there are two classes of events: the claimed
identity coincides with the person’s identity and claimed identity is different
from the person’s identity.

Though two classes are considered, only one score for each matcher is usually
available - matching score between input biometric and stored biometric of the
claimed identity. Consequently, we will assume that the output of the 2-class
classifiers is 1-dimensional. For example, samples of one class might produce
output scores close to 0, and samples of the other class produce scores close to
1. The set of output scores originating from n classifiers can be represented by
a point in n-dimensional score space. Assuming that for all classifiers samples
of class 1 have scores close to 0, and scores of class 2 are close to 1, the score
vectors in combined n-dimensional space for two classes will be close to points
{0,...,0} and {1, ...,1}. Any generic pattern classification algorithm can be used
in this n-dimensional space as a combination algorithm.

Note that this is somewhat different from the usual framework of k-class clas-
sifier combination, where k-dimensional score vectors are used and, for example,
samples of class i are close to vector {0,...,1,...,0} with only 1 at ith place. In
this case the scores for n classifiers will be located in nk-dimensional space and
the classification problem will be more difficult. This framework will be suitable
for a biometric identification problem, and should be addressed in the future
work.

Since we assume that we combine independent classifiers, is it possible to use
this information to design better combination than generic 2-class n-dimensional
classifier? The idea is that it might be possible to better estimate joint score
density of n classifiers as a product of n separately estimated score densities of
each classifier. Effectively, an n-dimensional (for 2 classes) combination problem
will be reduced to n 1-dimensional density estimation problems. The question
is will this combination based on density products perform better than generic
pattern classifiers?

3.1 Combination Using Products of Density Functions

Consider a combination problem with n independent 2-class classifiers. Denote
the density function of scores produced by j-th classifier for elements of class
i as pi;(x;), the joint density of scores of all classifiers for elements of class
i1 as p;(x), and the prior probability of class ¢ as P;. Denote the region of n-
dimensional score space being classified by combination algorithm as elements
of class i as R;, and the cost associated with misclassifying elements of class
i as ;. Then the total cost of misclassification in this problem is defined as
c=MP fRz p1(x)dx + Ao Py le pa(x)dx.



Since Ry and R, cover whole score space, [ g, D1(X)dx + /, R, P1(X)dx = 1.
Thus

c=MP (1 —/ pl(x)dx> + /\2P2/ p2(x)dx
R1 Rl
= NP+ [ (aPapa(x) = M Pip ) dx
Ry

To minimize cost ¢ the region R; should be exactly the set of points x for which
A2 Popa(x) — A1 Pip1(x) < 0. Since we have independent classifiers,
pi(x) = []; pij(z;) and decision surfaces are described by the equation

F(A1,A2,%) = Ao Popa(x) — M Pip1(x)

n n
= 0P [[ poi(e;) = NP [ prj(2) =0 (1)
=1 =1
To use equation 1 for combining classifiers we need to learn 2n 1-dimensional
probability density functions p;;(z;) from training samples.

3.2 Combination Added Error

Learning 1-dimensional probability density function p;;(z;) from training sam-
ples will result in their approximations p;;(z;). Using equation 1 with these ap-
proximations will result in decision regions R} which ordinarily will not coincide
with optimal Bayesian decision regions R;. The combination added cost(AC) will
be defined as a difference between cost of using trained regions R} and optimal
regions R; for combination:

AC = /\1P1/

p1(x)dx + Ao Py / p2(x)dx
R,

B

- )\1P1/ p1(x)dx — )\2P2/ pa(x)dx  (2)
Ro R

Using set properties such as R} = (R} N R1) U (R] N Ry), we get

AC = (/\1P1p1 (X) - /\QPQpQ(X)) dx
RéﬁRl

+ / CaPopa(x) — MPipr (x)) dx (3)
R,NRy

For generic classifiers we define R} as the region in which samples are classified
as belonging to class i. The combination added error is defined in the same way.

In the following experiments we will assume that prior costs and probabilities
of classes are equal, and use term ’error’ instead of ’cost’. We also will be using
relative combination added error, which will be defined as combination added
error divided by the Bayesian error, and this number will be used in tables.
For example, number 0.1 will indicate that combination added error is 10 times
smaller than Bayesian error.



4 Experiments

The experiments were performed for two normally distributed classes with means
at (0,0) and (1,1) and different variance values (same for both classes). It was
also assumed that costs and prior probabilities of both classes are equal. The
Bayesian decision boundary in this situation is a straight line  + y = 1. Note
that both sum and product combination rules have this line as a decision surface,
and combinations using these rules would give no combination added error. This
is the situation where specific distributions would favor particular fixed combi-
nation rules, and this is why we eliminated these rules from our experiments.

The product of densities method described in previous section is denoted here
as DP. The kernel density estimation method with normal kernel densities [6]
was used for estimating one-dimensional score densities. We chose least-square
cross-validation method for finding a smoothing parameter. Arguably, the choice
of normal kernel would favor this combination method given underlying normal
distributions. We employed kernel density estimation Matlab toolbox [7] for
implementation of this method.

For comparison we used generic classifiers provided in PRTools[8] toolbox.
SVM is a support vector machine with second order polynomial kernels, Parzen
is is a density estimation Parzen classifier, and NN is back-propagation trained
feed-forward neural net classifier with one hidden layer of 3 nodes.

Each experiment would simulate sampling score distributions to get training
data, training classifiers with this training data and evaluating classifier perfor-
mance. Since score distributions are available, it is possible to generate arbitrarily
large testing set, but instead we simply used formula 3 to numerically get added
error. For each setting we average results of 100 simulation runs and take it as
average added error. These average added errors are reported in the tables.

In the first experiment (table 1) we tried to see what added errors different
methods of classifier combination have relative to the properties of score distri-
butions. Thus we varied the standard deviation of the score distributions (STD)
which varied the minimum Bayesian error of classifiers. All classifiers in this
experiment were trained on 300 training samples.

STD [Bayesian error|| DP | SVM |Parzen| NN

0.2 0.0002 1.0933(0.2019|1.2554 |3.1569
0.3 0.0092 0.1399(0.0513|0.1743 |0.1415
0.4 0.0385 0.0642|0.0294|0.0794 |0.0648
0.5 0.0786 0.0200]0.0213/0.0515|0.0967

Table 1. Dependence of combination added error on the variance of score distributions.

The first observation is that smaller standard deviations result in larger rela-
tive added errors. This is expected in the case of density based classifiers because
of the inherent difficulty of estimating density in the tails of distributions. Small



standard deviation means that optimal decision boundary will be at the ends
of both class distributions, and a density based method will work poorly there.
Interestingly, SVM and NN classifiers also showed similar behavior. Another
observation is that SVM showed better performance than all other methods,
especially for low Bayesian error cases. Only for ST D = .5 DP method was able
to get similar performance.

In the second experiment (table 1) we wanted to see the dependency of
combination added error on the size of the training data. We fixed the standard
deviation to be 0.5 and performed training/error evaluating simulations for 30,
100 and 300 training samples.

Number of training samples|| DP | SVM |Parzen| NN
30 0.2158|0.1203|0.2053 |0.1971
100 0.0621{0.0486|0.0788|0.0548
300 0.0200{0.0213|0.0515 |0.0967

Table 2. Dependence of combination added error on the training size.

As expected, the added error diminishes with increased training data size. It
seems that the DP method gets better faster with increased training data size,
but it is not certain. Interestingly, the magnitude of added error is relatively
small for all methods. Note that we did not experiment with the number of
hidden units of neural network, which might explain why its performance did
not improve much with the increased number of training samples.

For the third experiment (table 3) we attempted to see how added error
changes if we combine 3 classifiers instead of 2. We take normally distributed
scores with standard deviations of .4 and the size of the training data as 30.
Though additional classifier makes relative combination added error bigger, the

Number of classifiers|Bayes error|| DP | SVM |Parzen| NN
2 0.0385 |{0.2812|0.1645|0.2842 (0.2669
3 0.0004 ||0.8544/0.7882|0.6684|0.8747

Table 3. Dependence of combination added error on the number of classifiers

dramatic decrease of Bayesian error would be much more important for total
error. Also note that result for 3 classifiers and results of first two rows of table
1 have comparable Bayesian errors, with SVM method not performing as well
as for two classifiers.



5 Conclusion

In this paper we presented the results of evaluating combination added error.
We experimentally showed that this error is relatively small for all combination
methods. So it does not really matter which combination method is used to
combine results of classifiers. By using a larger number of training samples an
inferior combinator will easily outperform superior combinator. Thus it is more
important what minimum Bayesian error combination has, which is determined
by classifiers’ performances and their interdependence (assuming that trainable
generic classifier is used as combinator and not fixed combination rules, like sum
or product rule). The choice of combination algorithm becomes more important
when classifiers have small Bayesian errors.

The presented method for combining independent classifiers by means of
multiplying one-dimensional densities showed slightly better performance than
comparable Parzen classifier. Thus using independence information can be ben-
eficial for density based classifiers. At the same time DP method was still not
as good as SVM. It seems that if more training samples were used and more
classifiers are combined, DP might be better than SVM.

Though only one type of density functions was used in our experiments, the
technique can be easily expanded to other density functions. Clearly, perfor-
mance of presented methods can be different if other density functions are used.
In real-life applications it would make sense to set a hypotheses on available
biometric score densities, and perform similar type of experiments in order to
find the best combination method.

Still, even if such experiments are performed, and best combination method
is found, it is not guaranteed that the combination method will be the best for
a particular available training sample. Note that figures in presented tables are
averages of added errors over different training sets. In fact there were many
simulation cases, where inferior combination algorithm outperformed all other
algorithms for a particular training set.

The main motivation of this paper was to find a possibly best combination
method for multimodal biometric matchers. Though presented techniques will
help to choose a reasonably well performing combination method, other factors
should also be taken into consideration. For example, if costs of incorrect clas-
sification or prior probabilities of classes change, the SVM or neural network
method will require retraining. Also, if output of combination confidence is re-
quired for system operation, these methods might be a bad choice. The ability
of density based methods to output posterior class probability can be a decisive
factor for their adoption.
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