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Abstract. The problem of combining biometric matchers for person verification
can be viewed as a pattern classification problem, and any trainable paé®grn
sification algorithm can be used for score combination. But biometric reegch

of different modalities possess a property of the statistical indepeadsrheir
output scores. In this work we investigate if utilizing this independence know
edge results in the improvement of the combination algorithm. We show both
theoretically and experimentally that utilizing independence provides better a
proximation of score density functions, and results in combination impnewt

1 Introduction

The biometric verification problem can be approached asssifigation problem with
2 classes: claimed identity is the true identity of the mattperson (genuine event) and
claimed identity is different from the true identity of thengon (impostor event). During
matching attempt usually a single matching score is aVail@and some thresholding is
used to decide whether matching is a genuine or an impostoit.ev

If M biometric matchers are used, then a sebbfnatching scores is available to
make a decision about match validity. This set of scores eameadily visualized as a
point in M -dimensional score space. Consequently, the combinat&kii$ reduced to
a 2-class classification problem with pointsfi-dimensional score space. Thus any
generic pattern classification algorithm can be used to ndakesions on whether the
match is genuine or impostor. Neural networks, decisioestr8VVMs were all success-
fully used for the purpose of combining matching scores.

If we use biometric matchers of different modalities (e.ggérprint and face rec-
ognizers) then we possess an important information abalépendence of match-
ing scores. If generic pattern classification algorithnes wed subsequently on these
scores, the independence information is simply discartied. possible to use the
knowledge about score independence in combination andheinafits would be gained?

In this paper we will explore the utilization of the classifiadependence infor-
mation in the combination process. We assume that classiigput a set of scores
reflecting the confidences of input belonging to the corredpw class.

2 Previous Work

The assumption of classifiers independence is quite réegrifor pattern recognition
field since the combined classifiers usually operate on time $aput. Even when using



completely different features for different classifiers #tores can be dependent. For
example, features can be similar and thus dependent, orimaality characteristic
can influence the scores of the combined classifiers. Mudheoéffort in the classifier
combination field has been devoted to dependent classifidrmast of the algorithms
do not make any assumptions about classifier independehoegh independence as-
sumption was used to justify some combination methods|th snethods were mostly
used to combine dependent classifiers.

One recent application where independence assumptiors iolthe combination
of biometric matchers of different modalities. In the cagenaltimodal biometrics the
inputs to different sensors are indeed independent (fanple there is no connection
of fingerprint features to face features). The growth of ket applications resulted
in some works, e.g. [2], where independence assumptioreid pioperly to combine
multimodal biometric data.

We approach classifier combination problem from the petsmeof machine learn-
ing. Biometric scores usually correspond to some distaneasore between matched
templates. In order to utilize the independence knowletigestores should be some-
how normalized before combination to correspond to somisstal variables, e.g.
posterior class probability. Such normalization shouldcbesidered as a part of the
combination algorithm, and the training of the normaliaatalgorithm as a part of the
training of the combination itself. Thus combination ruksaming classifier indepen-
dence (such as product rule in [1]) requires training sintidaany classification algo-
rithm used as a combinator. The question is whether the uselependence assump-
tion in combination rule gave us any advantage over usingriepattern classifier in
a score space.

Our knowledge about classifier independence can be matloathaexpressed in
the following definition:

Definition 1. Letindexj,1 < j < M represent the index of classifier, and < i <
N represent the index of class. Classifiels andC';, are independent if for any clags
the output scoreszl andsf2 assigned by these classifiers to the claage independent
random variables. Specifically, the joint density of thesslfiers’ scores is the product
of the densities of the scores of individual classifiers:

p(sl".51%) = p(si') * p(s??)
Above formula represents an additional knowledge abossdiars, which can be used
together with our training set.

Our goal is to investigate how combination methods can &y use the indepen-
dence information, and what performance gains can be aahi@v particular we inves-
tigate the performance of Bayesian classification rulegiajpproximated score densi-
ties. If we did not have any knowledge about classifier indepace, we would have
performed the approximation af -dimensional score densities by, saf;dimensional
kernels. The independence knowledge allows us to recastrdimensional score
densities of each classifier, and set the approxim&tedimensional density as a prod-
uct of 1-dimensional ones. So, the question is how much benefit dawdoy consider-
ing the product of reconstructéedimensional densities instead of direct reconstruction
of M-dimensional score density.



In [4] we presented the results of utilizing independenderination on assumed
gaussian distributions of classifiers’ scores. This pappeats main results of those
experiments in Section 4. The new developments presentddsipaper are the the-
oretical analysis of the benefits of utilizing independeimfermation with regards to
Bayesian combination of classifiers (Section 3), and erpants with output scores of
real biometric matchers (Section 5).

3 Combining Independent Classifiers with Density Functions

As we noted above, we are solving a combination problem Withndependent 2-
class classifiers. Each classifjeoutputs a single score; representing the classifier’s
confidence of input being in class 1 rather than in class 2ukedenote the density
function of scores produced by theth classifier for elements of clagsasp;;(x;),

the joint density of scores of all classifiers for elementslags: asp;(x), and the
prior probability of class asP;. Let us denote the cost associated with misclassifying
elements of classas)\;. Bayesian cost minimization rule results in the decisiofee

f(AL, A2,%) = Ao Papa(x) — A Pipi(x) =0 1)

In order to use this rule we have to leatfi-dimensional score densities(x), pa(x)
from the training data. In case of independent classifigs) = [, p;;(x;) and deci-
sion surfaces are described by the equation

M M
A2 P szj(xj) — AP Hp1j<33j) =0 )

j=1 j=1

To use the equation 2 for combining classifiers we need ta |12&f 1-dimensional
probability density functiong;;(z;) from the training samples. So, the question is
whether we get any performance improvements when we usgi@g@afor combina-
tion instead of equation 1. Below we will provide a theorattiastification for utilizing
equation 2 instead of 1 and following sections will presemhe experimental results
comparing both methods.

3.1 Asymptotic Properties of Density Reconstruction

Let us denote true one-dimensional densitieg,asnd f> and their approximations by
Parzen kernel method &s and f. Let us denote the approximation error functions as
61 = f1 — fiandes = fo — fo. Also let fi2, f12 ande;» denote true two-dimensional
density, its approximation and approximation ereqs: = flg — fis.

We will use the mean integrated squared error in currenstigation:

wise() = ([ - 1)

— 00

oo

where expectation is taken over all possible training sslting in approximatiorf.
It is noted in [3] that ford-dimensional density approximations by kernel methods

MISE(f) ~n~ %t



where n is the number of training samples used to obfajnis the number of deriva-
tives of f used in kernel approximationg §hould bep times differentiable), and win-
dow size of the kernel is chosen optimally to minimi?ze{SE(f).

Thus approximating densit » by two-dimensional kernel method results in asymp-
totic MISE estimate R .

MISE(flg) ~n 22

But for independent classifiers the true two-dimensionakdg f;, is the product of
one-dimensional densities of each scofg: = f; * fo and our algorithm presented
in the previous sections approximatgg, as a product of approximations of one-
dimensional approximationg;  fo. MISE of this approximations can be estimated
as

MISE(fy * f2) = (/ / (v) — fi(a) + f2(y))2dxdy) _
E</OO/ ((fr(z) + er(2)) * (fo(y) + e2(y)) — fi(z) *f2(y))2d93dy> =
(/ / (fi@)ea(y) + f2(y)er () + e (2)ea(v)) dxdy) (3)

By expanding poweel under integral we ge6 terms and evaluate each one sepa-
rately below. We additionally assume thﬁj’ooo f?(x)dx is finite, which is satisfied
if, for example, f; are boundedj(i are true score density functions). Also, note that

MISE(f;) = (f )2 (x )ah;) = ( foooo(Gi)Q(x)da:> o
E(/Z /Z ff(x)G%(y)dxdy) = /Z f2(x)da<E </Z eg(y)dy) U
4)
E(/O; /Z f%(y)e?(x)dxdy) = /Z fg(y)dy*E</°; Eg(x)dx> o 2T
©)

E(/_Z /_O:O f1(m)el(x)fz(y)ﬁz(y)d:cdy> —
B([" nwawa) e[~ pwewa)

< \//_O:O ff(x)d:c\/E (/_O; e%(x)dw) (6)

. \/ /- f%(y)dy\/E< / N e%(y)dy)




E(/Z /, O; f 1($>61(m)e§(y)dxdy> -
E(/O; fl(x)€1(x)dm> *E</Z €§(y)dy) .

\/ /- f%<x>dx\/E ([ awa)e( [~ awa)
~ \/7:7177 = o(n~ =)

([ d@nweaty) - o) ®)

E(/_Z /_ O; 6?<x>e%(y)dxdy> _
E(/_Z e?(x)@)E(/_Z eg(y)dy) _ o)

Thus we proved the following theorem:

(7)

Similarly,

(9)

Theorem1 If score densities of two independent classifigrand f, arep times differ-
entiable and bounded, then the mean integrated squared eftbeir product approx-
imation obtained by means of product of their separate agprationsMISE(f; *

fz) ~ n*%%, whereas mean integrated squared error of their productraximation
obtained by direct approximation of two-dimensional d8ngis (z, y) = f1(z) * f2(y)

MISE(f15) ~n~ %%,

Since asymptoticallyf% < n*m%, the theorem states that under specified con-
ditions it is more beneficial to approximate one-dimensiaieasities for independent
classifiers and use a product of approximations, insteagmioaimating two or more
dimensional joint density by multi-dimensional kernel$isl'theorem partly explains
our experimental results of the next section, where we shewvld pdf method (den-
sity product) of classifier combination is superior to mditinensional Parzen kernel
method of classifier combination. This theorem applies émipdependent classifiers,
where knowledge of independence is supplied separatetytine training samples.

4 Experiment with Artificial Score Densities

In this section we summarize the experimental results ptsly presented in [4]. The
experiments are performed for two normally distributedsés with means at (0,0) and
(1,1) and different variance values (same for both clas¥és)used a relative combina-
tion added error, which is defined as a combination added éivioled by the Bayesian
error, as a performance measure. For example, table eriry ofdicates that the com-
bination added error is 10 times smaller than the Bayestan dhe combination added



error is defined as an added error of the classification algorused during combina-
tion [4].

The product of densities method is denoted here as '1d pt&.Kernel density esti-
mation method with normal kernel densities [5] is used feinegting one-dimensional
score densities. We chose the least-square cross-vahdagthod for finding a smooth-
ing parameter. We employ kernel density estimation Matialbiox [6] for implementa-
tion of this method. For comparison we used generic classifimvided in PRTools[7]
toolbox. '2d pdf’ is a method of direct approximation 2fdimensional score densi-
ties by 2-dimensional Parzen kernels. SVM is a support vector machiith second
order polynomial kernels, and NN is back-propagation #difeed-forward neural net
classifier with one hidden layer of 3 nodes. For each settieg@verage results of 100
simulation runs and take it as the average added error. Evesage added errors are
reported in the tables.

In the first experiment (Figure 1(a)) we tried to see what ddeleors different
methods of classifier combination have relative to the ptggeeof score distributions.
Thus we varied the variances of the normal distributia)sihich varied the minimum
Bayesian error of classifiers. All classifiers in this expemt were trained on 300 train-
ing samples. In the second experiment (Figure 1(b)) we wiatiotsee the dependency
of combination added error on the size of the training date.fikéd the variance to
be 0.5 and performed training/error evaluating simulatifam 30, 100 and 300 training
samples.

o [[1d pdff2d pdff SVM | NN

0.2[1.09331.25540.20193.1564

0.3[0.13990.17430.05130.1415

0.4//0.06420.07940.02940.0648

0.5/[0.02000.05150.02130.0967
(@)

Training size 1d pdfi2d pdff SVM | NN
30 0.21580.20530.12030.1971
100 0.06210.07880.04860.0548
300 0.02000.05150.02130.0967
(b)

Fig. 1. The dependence of combination added error on the variance ofdistnibutions (a) and
the dependence of combination added error on the training data size (b).

As expected, the added error diminishes with increaseditiggdata size. It seems
that the 1d pdf method improves faster than other methodsingreased training data
size. This correlates with the asymptotic properties ofsdgrapproximations of Sec-
tion 3.1.

These experiments provide valuable observations on thadmgf utilizing the
knowledge of the score independence of two classifiers. 8fherted numbers are aver-
ages over 100 simulations of generating training datajitrgiclassifiers and combining
them. Caution should be exercised when applying any coioeclsi$o real life problems.
The variation of performances of different combination Inoets over these simulations
is quite large. There are many simulations where 'worse @raye method’ performed
better than all other methods for a particular training $&us, in practice it is likely



that the method, we find best in terms of average error, issofdpned by some other
method on a particular training set.

5 Experiment with Biometric Matching Scores

We performed experiments comparing performances of deapjproximation based
combination algorithms (as in example 1) on biometric matglscores from BSSR1
set [8]. The results of these experiments are presentedjurd-R.
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Fig. 2. ROC curves for BSSR1 fingerprint and face score combinations utiliZingpdf recon-
struction’) and not utilizing ('2d pdf reconstruction’) score indeparaeassumption: (a), (b)
BSSR1 fingerprint (li set) and face (C set); (c), (d) BSSR1 finger i set) and face (G set) .

In the graphs (a) and (b) we combine scores from the left ifidggerprint matching
(set li) and face (set C) matching. In graphs (c) and (d) welinenthe same set of
fingerprint scores and different set of face scores (setrGhoth cases we have 517
pairs of genuine matching scores and 517*516 pairs of ingpasatching scores. The
experiments are conducted using leave-one-out proceBarezach user all scores for



this user (one identification attempt - 1 genuine and 516 stgrscores) are left out for
testing and all other scores are used for training the coatibim algorithm (estimating
densities of genuine and impostor matching scores). Theesad 'left out’ user are
then evaluated on the ratio of impostor and genuine desgit@viding test combination
scores. All test combination scores (separately genuidgrapostor) for all users are
used to create the ROC curves. We use two graphs for each R@€iowrder to show
more detail. The apparent 'jaggedness’ of graphs is caugéudividual genuine test
samples - there are only 517 of them and most are in the redilmwd=AR and high
FRR.

Graphs show we can not assert the superiority of any one catin method. Al-
though the experiment with artificial densities shows thabnstructing one-dimensional
densities and multiplying them instead of reconstructimg-timensional densities re-
sults in better performing combination method on averagéhis particular training set
the performance of two methods is roughly the same. The asyimpound of Section
3 suggests that combining three or more independent clssifiight make utilizing
independence information more valuable, but provided sletdad only match scores
for two independent classifiers.

6 Conclusion

The method for combining independent classifiers by myitigl one-dimensional den-
sities shows slightly better performance than a comparahbbsification with approx-
imated two-dimensional densities. Thus using the indepeoe information can be
beneficial for density based classifiers. The experimeesllts are justified by the
asymptotic estimate of the density approximation error.

The knowledge about independence of the combined classifésr also be incor-
porated into other generic classification methods useddothination, such as neural
networks or SVMs. We expect that their performance can bdaignimproved on
multimodal biometric problems.
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