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Abstract— The matching scores in biometric systems are section IV we analyze the possible dependences between
usually calculated using one enrolled (gallery) template and one matching scores and apply this analysis to our dataseteln th
test (probe, user) template. In this paper we investigate the de- gaction \ we present the results of experiments on accepting

pendencies existing between scores related to the same enrolled ificati It . I ifi thod di
biometric template or to the same user biometric template. We verication resulls using enrofiee-specific methods, and |

discuss linear score dependency models which are handled by the section VI we present the results of enrollee-specific
the Z- or T-normalization, and sample statistics based models. combinations.
We show that different models might better account for score
dependen(_:e in different matches. The dependen(_:y models might Il. DEEINITIONS AND EXPERIMENTAL SETUP
also be different for enrollee or for user specific score sets.
Finally, we investigate the application of two such models,

o A. Dataset
Z-normalization and second best score model, to construct

enrollee specific verification system decision and combination  |n this work we used the biometric matching score set
algorithms. The experiments are performed on NIST BSSR1 BgsR1 distributed by NIST[1]. This set contains matching
biometric score dataset. . : y—
scores for a fingerprint matcher and two face matchers 'C

|. INTRODUCTION and 'G’. Fingerprint matching scores are given for left inde

li” finger matches and right index 'ri’ finger matches. For

The biometric matching score is usually calculated experiments in acceptance decisions in verification system

as a dl_stance between two templa_tgs, one enrolied in G of the four matchers was considered separately. For
biometric database and the other originating from the pers%xperiments in combinations, we considered all 6 possible
currently being authenticated. The former might be called 3 matcher combinations

gallery template];, , and the latter a test or probe template, We used the bigger subsets of the database involving

Tyt S9.p = S(Tg’.Tp)' Th_e_matc_hlng score 1S s_ubsequ_entlyeooo users (identification trials). Since the scores indhes

U.SEd n accept/rgject decisions, mt_h(_e combination of_blem subsets originate from different persons, we assumed the

gcsr:;?rt]chers, or in some other decision process of b'ometr,ﬁdependence of fingerprint and face matching scores, and

yTh ' h th tchi b din its oriai considered randomly paired set of scores corresponding to
| foug € matc '?g sshorfgan ethus% n ,'[S Ong't' 6000 identification trials of 3000 enrolled persons. Not th

nal form, one can Notice that during the bIomELrc sys erEorrespondence of scores to the same physical person was

operation some add|t|pnal mformz_itlon about the strength Qetained when combining scores of the same modality. Also

matghmg SCOresSyp r_mght be avallqble. For example, thenote, that some enrollee and user scores had to be discarded

previous al_Jthent|cat|on attempts might have produced a e to apparent template acquisition errors, resultind@Be5

of k matching scores,,, ... , 5.5, between same gallery identification trials and 2991 enrollees. This data can be

template7, and some set of pro_beﬂpl_, oo o We €A o didered consisting of two 2991x2991 parts as shown in
compare the current scorg, , with this set of previous Figure 1

scores and be more certain of whether the current score i
genuine or impostor.

In this paper we explore the different approaches to using ) .
such background information. In particular, we are interes ;
in utilizing the sets of matching scores related to specific U oo e

enrolled template. In contrast to most works considering

enrolled template specific decisions and combinations we e S RS
only assume the availability of impostor scores related to User j ! . o o
enrolled template, and not genuine scores. | | ;

The content of the paper is the following. First, we e e S

introduce our dataset and the terminology. This would fur- o e o
ther clarify our goals before any other discussions. Then oo e .
we present the discussion of relevant previous work. In L ;

The authors are with the Center for Unified Biomet-

rics and Sensors (CUBS), University at Buffalo, USA Fig. 1. The structure of matching scores in BSSR1 dataset.
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We follow the BSSR1 score set definitions, calling theC. Training and Testing Procedures

enrolleea person who is enrolled in the database, asdr We use the bootstrap sample testing technique [2] in our
is a person being authenticated. The enrolled template dsperiments. For each bootstrap test, we chose randontly tes
equivalent to gallery template, and user template is et@va ing training and validation sets, each of size 2x997x9@d (t
to probe or test template. Each scafg in the database is separate square matrices). Such specific size was prompted
produced by matching the template of enrolle@ith the  py the maximum number of scores related to a single user,
template of useri. When the identities of an enrollee andoggq Note, that a bootstrap sample does not contain all
the user coincide; = j, then the matching score; is the  5982x2991 scores of original set. Such configuration insplie
genuine matching score, and all other scores are imposit for each user we have 997 enrolled templates, and one
scores. The important characteristics of the BSSR1 seats thyf them genuine, and for each enrollee we have 997 users
for each enrollee there is only one genuine score (actuallynich are tested against this enrollee. Thus, the effesize
for face matchers there two genuine scores, but since We matrices of Figure 1 is N=997. 100 bootstrap tests were
pair them with fingerprint matchers, we assume the SaMiarformed for each experiment.
structure as in Figure 1), and that for each user there is only most of our algorithms relied on likelihood ratio decision
one genuine score. making and likelihood ratio combinations and the densities
of genuine or impostor scores have been estimated by Parzen
. ] . kernel method. Since each enrollee- or user-specific setre s
Two major types of score dependencies can be discerngds 1 genuine and 996 impostor scores we chose to use only
general structure of the matching score sets of Figure 1.single random impostor score for each genuine score from
First, the scores obtained using the same enrolled templaig;responding set for training and testing the score dessit

i, i1y, 8i,N- Since the same template participates ifrhe yalidation sets were used to estimate the kernel sizes fo
their calculation, it is expected that there might be somg.yre density approximations.

dependence between them. Second, the scores obtained using

the same test template of usgrs; ;,...,sy,; again we Il. PREVIOUS WORK

expect some dependence between them. The two types ofOur work is most closely connected with two general
dependencies are not necessarily the same. In section I€search directions - the user-specific decision making and
we present some analysis of these dependencies in BSSRimbinations in arbitrary biometric systems, and the score
set. normalization techniques for speaker authentication.

The decision making and combination algorithms utilizing Working in the first direction, Toh et al. [3] learn combi-
the matching scores can make special considerations for thation functions (multivariate polynomials) for each dlet
existence of these dependencies. In this paper, we will calerson separately (local learning), or use different dagis
the methods accounting for dependence in scores relaté¢niesholds for different enrollees (local decision). ®irthe
to a particular enrollee asnrollee-specificmethods, and number of genuine templates for each enrollee available
the methods accounting for dependence in scores relatedféd training was small (5 templates, 5*4/2 genuine scores),
a particular user asiser-specificmethods. Some methods the authors chose to randomly generated additional pseudo-
might account for both dependencies and be both enrollgenuine scores by adding noise to original genuine scores.
and user specific. Fierrez-Aguilar et al. [4] modeled the densities of genuine

In order to utlize any of the score dependencies, and impostor scores by normal distributions. The pararseter
corresponding set of matching scores should be obtainefl these distributions were adjusted for each enrolleegusin
first. For enrollee-specific methods we have to match th& set of training scores. Though such modeling delivers a
given enrolled template with few other templates (of theobustness in the parameter estimates for specific ensollee
same person or of other persons). This matching, as well #g& assumption of score distribution normality might nadho
the training of enrollee specific method, can be performeand can lead to incorrect error rate estimations [5].
off-line and thus does not have any performance hits. For The enrollee-specific weighted sum combinations were
user-specific methods we have to do the matching and asyplored in [6] and [7]. Jain and Ross [6] searched the
user-specific adjustments of the method in real time. Thuseights for each enrollee by the exhaustive search with the
we might anticipate additional processing time in this casecriteria of minimizing EER. Snelick et al. [7] assigned the

There are two general approaches to utilizing score depeneights heuristically using d-prime metric.
dencies. In one case, a predetermined transform is perfbrme All these presented methods are enrollee-specific, rather
on the matching score; ; based on obtained enrollee-than user-specific. In all cases a significant number of gen-
specific score ses; 1,...,s; v Or user-specific score setuine scores for each enrollee was available, which allowed
s1,5,--.,5n,5. The examples of such transformations are Zproper training. In the case of our work, BSSR1 database has
normalization and T-normalization. In the other case, somanly single genuine score for each enrollee, so these mgthod
statistics of score sets can be extractéd,,; or 6,s.-;, might not be applicable.
and used along with scorg ; to construct an enrollee- or  The second direction, the score normalization methods in
user-specific method. We will explore the use of second bespeaker authentication, considered some user- or entollee
score statistics in our experiments. specific techniques which might be applicable in the case of

B. Enrollee and User Specific Methods



genuine score non-availability. The T('Test’)-normatipa  both tasks, acceptance decision and combination.
and Z('Zero’)-normalization are two such methods [8], [9].
The normalization is done using the same formula: IV. DEPENDENCIES BETWEENVIATCHING SCORES

A. Linear Score Dependence

s— 2k (1)
o Let s;1,...,s;,n denote a set of matching scores related
but the parameterg ando are calculated differently. For T- to one particular enrolleg Let /i; andg; be the sample mean
normalization,. ando are the sample mean and variance ofind sample variance of this score set. The Z-normalization
the set of user-specific impostor scores. These are thesscoperforms the following transformation of matching scores:
produced during a singleest or authentication attempt. Z-
normalization, on the other hand, uses a set of enrollee- S5 —
specific scores. Note, that sometimes Z-normalization is
defined as normalization with parametgrando calculated The following discussion holds relevant for T-normalipati
using all available training scores of all enrollees; inste as well, since it has same normalization formula witland
paper we will assume that only scores of particular enrollee derived from scores related to a particular user.
are used. The use of normalization techniques seems to beSuppose we have some score dengity) with mean of
present in many algorithms evaluated by NIST, for examd and the variance of. Also, suppose that for each enrollee
ple, in speaker recognition [10] and face recognition [11}; we are given two random parameters and o;, and the
Note, that though [11] uses term Z-normalization, the dctuacores in the enrollee-specific set are independently sampl
method seems to be based on user-specific impostor scaezording to
sets, and following definitions of this paper it should be 1
i ati S — M
rather called T-normalization. Pi(8) = Pu; 0. (8) = —n(
Instead of using all available impostor scores related to a i i
particular enrollee or user, we might consider some selecti It is easy to show that in this case the mean of scores in
of them. Thecohort method$§12], [13] introduced in speaker the enrollee-specific set ig; and the variance ig;. By
verification find a cohort - a subset of enrolled templatesalculating sample mean and variance estimaiesindg;,
close to the particular enrolled template. During matchingnd by applying Z-normalization (2) to the enrolleeelated
test template to the enrolled, the templates belonging &rores, the transformed scores will be approximately (due t
the cohort of enrolled templates can be used for normalizapproximationsu; ~ ;i; ando; ~ g;) distributed according
tions. Auckenthaler et al. [8] separated cohort normabmat to p(x).
methods into cohorts found during training (constraine®) a  Equation (3) represents a possible model of how the
cohorts dynamically formed during testing (unconstrainedependencies between matching scores in enrollee- or user-
cohorts). As we have presented in [14], different use dpecific sets originate. We can call it thieear score de-
cohorts can result in different types of normalizationsefus pendency modePreviously, Navratil and Ramaswamy [18]
specific, enrollee-specific or both). The example, adaptivdescribed the T-normalization using the propertyladal
cohort model T-normalization, combining both enrolleed an gaussianity which assumes that functiop;(z) is close
user-specific parameters for normalization is given in [15] to normal density with meam; and variances;. In our
The T- and Z-normalizations given by Equation 1 are abldescription we are not making any assumptions on the form
to deal with the linear score dependencies (section IV-Apf p;(x) except that it is generated for each specific enrollee
In order to deal with possible more complex dependenciex user by Eq. (3) using some common dengityThere is
between matching scores, we introduced second best scatgo no assumptions on distributions,gfando; (which are
model [16], which considers a pair of original score andandomly chosen for each particular enrollee or user).
second best score from a particular set of impostor scoresAccording to linear score dependency model the range of
instead of a single original matching score. In our previouscores for each enrollee or user is shiftedfynd stretched
research we investigated the use of second best modil o;. Note, that there are two types of scores in enrollee-
construction of user-specific methods for verification decior user-specific sets - genuine and impostors, and it is quite
sion [16] and for combination of biometric matchers [14].possible that they might have different dependence models.
In those works we used the term 'identification modelBut the number of genuine scores per enrollee or per user
to describe user-specific method, since the set of usds usually limited (only one genuine score in our dataset
specific scores usually is obtained in a single identificatioBSSR1), and it might not be possible to learn the dependency
trial. Second best score model was also utilized in cohomodel for genuine scores. Therefore, we will assume that the
normalization for fingerprint verification [17]. same model is applied for both types of scores; the sample
In this work we consider the verification decision andestimatesi; and ¢; can be computed using both genuine
combination algorithms based on enrollee-specific modeland impostor samples, but in this work we use only impostor
Z-normalization and second best impostor model. We discussore samples.
the difference between enrollee-specific and user-specificlf the genuine and impostor scores for each enrollee or
algorithm modification, and present their performance fouser are the result of linear score dependency model and
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Matchers i o 0S5, OSpn/a | OSN/o Matchers o o 0S5y OSpn/a | OSN/2
C 0.2300 | 0.1798 | 0.2169| 0.2310 | 0.2210 C 0.1439 | 0.1263 | 0.1485| 0.1457 | 0.1352
G 0.2860 | 0.2983| 0.2453| 0.2335 | 0.2373 G 0.1587 | -0.0352 | 0.1569 | 0.1565 | 0.1496
i 0.2917 | 0.3303 | 0.2904 | 0.2915 | 0.2496 i 0.2857 | 0.3227 | 0.2901| 0.2747 | 0.2506
ri 0.3423 | 0.3639 | 0.3349| 0.3378 | 0.3100 ri 0.3541| 0.3691 | 0.3269 | 0.3487 | 0.3191

TABLE | TABLE Il
CORRELATIONS BETWEEN GENUINE SCORE AND THE STATISTICS OF CORRELATIONS BETWEEN GENUINE SCORE AND THE STATISTICS OF
ENROLLEE-SPECIFIC IMPOSTOR SETS USER-SPECIFIC IMPOSTOR SETS
Matchers || 4 | 6 | OS1 | OSnyy | OSnyo Matchers|| & | 6 | OS1 | OSn/a | OSn/2
C - | - | 00427] -0.0556 | 0.0223 C - | - | 0.0417| -0.0369 | 0.0228
G - | - 104949] 02352 | 0.2727 G - | - | 0.0805| 0.1664 | 0.2052
l - | - 100336 -0.0121 | -0.0330 i - | - | 0.0315| -0.0524 | 0.0004
ri - | - ] 0.0458| -0.0107 | -0.0547 M ~ | - [ 0.0104| -0.0105 | -0.0310
TABLE I TABLE IV

CORRELATIONS BETWEEN GENUINE SCORE AND THE STATISTICS OF
ENROLLEE-SPECIFIC IMPOSTOR SETS AFTEE-NORMALIZATION WAS

CORRELATIONS BETWEEN GENUINE SCORE AND THE STATISTICS OF
USER-SPECIFIC IMPOSTOR SETS AFTEA-NORMALIZATION WAS
PERFORMED PERFORMED

have distributions relatively high dependencies. This implies that accouyfim

Poeni(5) = Poons o (8) = ip , (5 - M,) these dependencies might benefit any system utilizing these
gemt et g " oy @) matchers. The interesting feature about these tables is the

Pimi(5) = Dimpone 0 (8) = ip;, (S - Mq:) difference in the correlation coefficients for face matsher
P P i oY oy Whereas statistics of impostor scores give almost the same

then after the corresponding Z- or T-normalization genuingorrelatiqns with genuine scores for matchers 'li" and 'r’
and impostor scores will be independently and identicalljfréspective of wh.ether enrollee or user relate_d scoreg wer
distributed according t@, .., (¢) andpsm, (z). It is not nec- USed, the correlations for face matchers are higher when the
essary that linear score dependence model exactly descrifgéatistics are calculated from enrollee-specific scorem th
the dependencies of scores in identification trials and tHB€ Statistics from user-specific sets. This implies theeei
actual dependencies might be more complex. In order the calc_ulat|0n of matc_hmg_ scores for face matchers 'C’
check whether the linear dependence models adequat@fd ‘G’ is non-symmetric with regards to enrolled and test
describe existing dependences in matching scores, we d&fplates, or that some type of enrollee- or user-specific
perform statistical tests on score dependence after Z- or 60re normalization was already performed.
normalization. In order to see whether the linear score dependence model
(Equation 3) holds for considered biometric matchers, we
B. Score Dependencies in BSSR1 Set looked at the same correlations after corresponding Z- or T-
We conducted a series of experiments trying to describermalization has been performed. Tables Il and 1V show
the existing score dependencies in BSSR1 set. The utilizéhae results of these experiments. If linear score deperdenc
technique was to measure the correlations between som@del was true, then correspondingly normalized scores
variables in either enrollee-specific or user-specific scomwould have been independent, and the correlations between
sets. In particular, we were interested in the correlatiorgenuine and the statistics of the impostor sets would have
between genuine and impostor scores. If we knew how tHeeen near 0. The correlations are indeed near O for all
genuine score relates to impostor scores for the same earolmatchers except 'G’ for enrollee-specific score sets. This
or the same user, we would know how to properly assign th@eans that linear score dependence model is not sufficient in
confidence of a match. this case, and in order to properly construct enrolleeifipec
Instead of using a genuine and a single random impogiethods for matcher ‘G’ we need to use something different
tor score for correlations, we used a genuine score aifichm Z-normalization.
some statistics of the corresponding impostor score setsin order to investigate this further, we compared the
for calculating correlations. Tables I- IV show the resultsffects of Z-normalization and T-normalization on all our
of these experiments. The particular statistics employed matchers. Both normalization algorithm resulted in idesdti
our experiments argz and & - sample mean and variance,performance improvement for both fingerprint match score
and order statistics - best impostor scard; , N/4-th best sets 'li’ and 'ri’ (we omitted the performance graph). This
impostor score) Sy, and score media.Sy ;. again confirms that fingerprint matcher used in producing
Tables | and 11l show correlations for original matchingthese sets gives symmetric recognition results with réspec
scores. We can notice that generally all matchers exhilid enrolled and test fingerprints. But face matchers showed



be genuine. The second best score statistics works for user-
S B specific models even if the scores in user-specific sets are
T independent, see [16] for detailed analysis.
"\ The situation is different for second best score statistics
computed in enrollee-specific sets. Though we might have
a knowledge on whether the previously collected matching
scores for a particular enrolléare impostor or genuine, this
does not give us any information about whether the current
score is genuine or impostor. For example, the previously
(@) C (b) G . ; .
collected set of scores might already include some genuine
Fig. 2. ROC curves for verification decisions of single matshetilizing  gcore. but we can not use this information and say that it
enrollee-specific models. . - . .
is definite that current score is impostor; in real system any
enrolled person might be authenticated arbitrary number of

different effects from Z- and T-normalizations, and Figare times (including zero). In order to simulate the work of a
presents the results. For 'C’ matcher both normalizationi$al system, we actually disregard the only genuine score
were successful with Z-normalization showing little bette@vailable for each enrollee from calculating the statisbé

results. For ‘G’ matcher T-normalization gave slightlyteet €nrollee specific scores. Thus, instead of defining secosid be
results than the use of original scores, and Z-normalimatic>core statistics as the best score besides current one which

was showing mostly the decrease in performance. we used in user-specific score sets, for enrollee specifie sco
o sets we define second best score statisiies; as thebest
C. Statistics of Impostor Score Sets impostorbesides current scoreg ;. Note, that calculation of

Instead of applying pre-defined normalization formula irsbs; ; in user specific score sets did include genuine score,
Z- and T-normalizations, we can try to simply pass thand this is a major difference between two statistics.
involved sample statistic8.,,,; Or 0, ; t0 the algorithm
utilizing the matching scoreg(will consist of i and & for
these normalizations). In this case the enrollee- or user-
specific normalization is done implicitly by the external In the experiments of these section we used enrollee-
algorithm. Generally, this will make the task of trainingspecific normalization and score statistics for enhandmeg t
external algorithm more difficult, and our preliminary riésu algorithm of accepting decisions in verification systems.
showed that increased training complexity almost negates tThe results of the experiments are shown in Figure 3. The
positive effect from adding statistics in case of Z- and Ttraditional approach is to simply compare matching score to
normalizations. the threshold to accept or reject the verification attempe T

But by using adequate statistics we might be able td-normalization approach also use thresholds the scous, b
get the good results. In [14] we investigated the use dhe scores are Z-normalized. In order to uée; ; model we
second best score for matcher combinations in verificatigperform the following score transformation [16]:
systems, where the second best score is defined as the best - o

. . pgen(sz,]; Sbsz,j)
score among all matching scores related to a particular user S4,§ — ——————>= (5)
(the scores the same identification trial) besides cugent Pimp (s, 5bsi.)
considered one. Most experiments showed that using secofid we explained in [16], by treating the pdis; ;, sbs; ;) as
best score resulted in better combination than combinatian input to the classification algorithm, Equation 5 debver
operated on original scores. Moreover, the performanagptimal Bayesian classification decision. Thereforespi; ;
improvements from T-normalization and second best modehrries any useful information complementary 4o, and
complemented each other, and using both led to superithre learning of densitie®,., and p;.,, has sufficiently
performance. In this paper, we are trying to perform similasmall errors, we can expect the improvement to the decision
experiments with Z-normalization and second best scomdgorithm relying exclusively ors; ;. As Figure 3 shows,
statistics derived from the set of enrollee-specific scores the performance improves from usings; ; compared to

Note, that when we obtain a set of user-specific matchingriginal scores in all cases.
scores, we do not have knowledge whether some particularWe have also tried to use both models: first perform Z-
scores are genuine or impostor. But we have a definitgormalization, and then use second best score model of
knowledge (assuming closed set identification system) thEguation 5. The observed performance was generally worse
there is only one genuine score and all other scores attean the performance of a single Z-normalization except for
impostors. The second best score model effectively usilizenatcher 'G’ where Z-normalization fails. The combination
this knowledge: for a currently considered score if secondf both models somewhat improves the performance of
best score (best score besides current) is very high, thfs hioriginal scores of matcher 'G’, but it is not as good as using
score is likely to be genuine and currently considered sisoresecond best score model alone for smaller FAR values. The
therefore impostor. Reverse is also true: if second besescabsence of additional performance improvement is confirmed
is low relative to current, then this score is very likely toby the score dependency analysis of section IV-B: for all

V. EXPERIMENTS INACCEPTANCEDECISIONS OF
VERIFICATION SYSTEMS
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Fig. 3. ROC curves for verification decisions of single matshtilizing
enrollee-specific models.

matchers except 'G’ the linear model adequately describesmm""“\
score dependence and Z-normalization might be sufficient t
significantly reduce it.

VI. EXPERIMENTS IN THE COMBINATION OF MATCHERS © ri“:& c 0 ri & G
IN VERIFICATION SYSTEMS
. . . . ... Fig. 4. ROC curves for likelihood ratio combinations utitigi enrollee-
In the experiments of this section we tried to utilizespecific models.
enrollee-specific normalization and score statistics ia th
combinations of biometric matchers in verification systems
The results of the experiments are shown in Figure 4. Thscores, and then using second best score model likelihood
presented experiments resemble those presented in [14], ofatio combination of above formula.
instead of user-specific combinations we considered &woll  The results of combinations experiments somewhat reflect
specific combinations here. the results we obtained for decision thresholding of single
We used the likelihood ratio combination method in ordematchers: 1. both Z-normalization and second best score
to compare the usefulness of enrollee-specific informatiomodel deliver better performance than original system& wit
This is theoretically optimal combination method for verthe exception of combinations involving matcher 'G’, 2.
ification system [5] and consists in assigning a combinefbr matcher ‘G’ the use of second best score model is
score a value of the ratio between genuine and impostpeneficial, 3. for all matchers except ‘G’ the Z-normaligati

score densities: L has better results than second best score model. Thestsresul
S — Pgen(s”, %) (6) are different than the results we obtained in [14], where we
Pimp(s', s?) considered user-specific combinations - the second best sco

™ is the verification matching score assigned by thgmdel is less beneficial here. The difference seems to be due
to the different knowledge these statistics use as we exqalai
in section IV-C.

wheres
matcherm (we omitted indexes and; from score notation).
The likelihood ratio with Z-normalization will operate by
the same formula, only using Z-normalized scos&s The
likelihood ratio method using second best score model will
consider the joint densities of scores and second best scordn this paper we investigated the use of enrollee-specific
statistics: Z-normalization and enrollee-specific second best scare st
B Pyen(s!, sbs(s1), 52, sbs(s2)) , tistics_ in _the .acc.eptanc'e degifsior_1 thresholding and matche
= (s sha(sD). 52 sba(s?)) (1) combination in biometric verification systems. We analyzed
Pimpl5° U the difference of these enrollee-specific methods with pre-
The use of Z-normalization and second best score modébusly investigated user-specific methods. The major con-
at the same time implies first Z-normalization of combinedalusion derived in these paper is that the dependencies of

VII. CONCLUSION

S



matching scores in enrollee specific score sets and uge4]
specific score sets might be different. As a result, the agltim
methods utilizing either enrollee-specific informatioruger- [15]
specific information might also differ, even if the same
matcher is considered.

In terms of the complexity types of combinations [19][16]
the combinations considered here belong to medium | type.
Most of our previous research with regards to matchingn
score dependencies addressed combinations of medium- 1l
type. Though some of the previously developed ideas, like
using score set statistics, are directly applicable to ovadi [18]
| type combinations, current results shows that the choice o
particular statistics might be different in two cases.

The enrollee-specific decision and combination algorithmé®!
we presented here are somewhat new for general biometric
systems. Though the speaker recognition community exten-
sively uses some techniques (like Z-normalization), most
enrollee-specific algorithms developed for general bicimet
systems require significant number of genuine scores avail-
able for training for each enrollee. In our case, we construc
enrollee-specific algorithms using only impostor scores| a
thus we are able to perform our experiments on NIST BSSR1
dataset.
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