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Abstract— The matching scores in biometric systems are
usually calculated using one enrolled (gallery) template and one
test (probe, user) template. In this paper we investigate the de-
pendencies existing between scores related to the same enrolled
biometric template or to the same user biometric template. We
discuss linear score dependency models which are handled by
the Z- or T-normalization, and sample statistics based models.
We show that different models might better account for score
dependence in different matches. The dependency models might
also be different for enrollee or for user specific score sets.
Finally, we investigate the application of two such models,
Z-normalization and second best score model, to construct
enrollee specific verification system decision and combination
algorithms. The experiments are performed on NIST BSSR1
biometric score dataset.

I. I NTRODUCTION

The biometric matching scores is usually calculated
as a distance between two templates, one enrolled in the
biometric database and the other originating from the person
currently being authenticated. The former might be called a
gallery template,Tg , and the latter a test or probe template,
Tp: , sg,p = s(Tg, Tp). The matching score is subsequently
used in accept/reject decisions, in the combination of biomet-
ric matchers, or in some other decision process of biometric
system.

Though the matching scores can be used in its origi-
nal form, one can notice that during the biometric system
operation some additional information about the strength of
matching scoresg,p might be available. For example, the
previous authentication attempts might have produced a set
of k matching scoressg,p1

, . . . , sg,pk
between same gallery

templateTg and some set of probesTp1
, . . . , Tpk

. We can
compare the current scoresg,p with this set of previous
scores and be more certain of whether the current score is
genuine or impostor.

In this paper we explore the different approaches to using
such background information. In particular, we are interested
in utilizing the sets of matching scores related to specific
enrolled template. In contrast to most works considering
enrolled template specific decisions and combinations we
only assume the availability of impostor scores related to
enrolled template, and not genuine scores.

The content of the paper is the following. First, we
introduce our dataset and the terminology. This would fur-
ther clarify our goals before any other discussions. Then
we present the discussion of relevant previous work. In

The authors are with the Center for Unified Biomet-
rics and Sensors (CUBS), University at Buffalo, USA
tulyakov@cubs.buffalo.edu

section IV we analyze the possible dependences between
matching scores and apply this analysis to our dataset. In the
section V we present the results of experiments on accepting
verification results using enrollee-specific methods, and in
the section VI we present the results of enrollee-specific
combinations.

II. D EFINITIONS AND EXPERIMENTAL SETUP

A. Dataset

In this work we used the biometric matching score set
BSSR1 distributed by NIST[1]. This set contains matching
scores for a fingerprint matcher and two face matchers ’C’
and ’G’. Fingerprint matching scores are given for left index
’li’ finger matches and right index ’ri’ finger matches. For
experiments in acceptance decisions in verification system
each of the four matchers was considered separately. For
experiments in combinations, we considered all 6 possible
2-matcher combinations.

We used the bigger subsets of the database involving
6000 users (identification trials). Since the scores in these
subsets originate from different persons, we assumed the
independence of fingerprint and face matching scores, and
considered randomly paired set of scores corresponding to
6000 identification trials of 3000 enrolled persons. Note that
correspondence of scores to the same physical person was
retained when combining scores of the same modality. Also
note, that some enrollee and user scores had to be discarded
due to apparent template acquisition errors, resulting in 5982
identification trials and 2991 enrollees. This data can be
considered consisting of two 2991x2991 parts as shown in
Figure 1.

Fig. 1. The structure of matching scores in BSSR1 dataset.



We follow the BSSR1 score set definitions, calling the
enrolleea person who is enrolled in the database, anduser
is a person being authenticated. The enrolled template is
equivalent to gallery template, and user template is equivalent
to probe or test template. Each scoresi,j in the database is
produced by matching the template of enrolleei with the
template of userj. When the identities of an enrollee and
the user coincide,i = j, then the matching scoresii is the
genuine matching score, and all other scores are impostor
scores. The important characteristics of the BSSR1 set is that
for each enrollee there is only one genuine score (actually,
for face matchers there two genuine scores, but since we
pair them with fingerprint matchers, we assume the same
structure as in Figure 1), and that for each user there is only
one genuine score.

B. Enrollee and User Specific Methods

Two major types of score dependencies can be discerned
general structure of the matching score sets of Figure 1.
First, the scores obtained using the same enrolled template
i, si,1, . . . , si,N . Since the same template participates in
their calculation, it is expected that there might be some
dependence between them. Second, the scores obtained using
the same test template of userj, s1,j , . . . , sN,j ; again we
expect some dependence between them. The two types of
dependencies are not necessarily the same. In section IV-C
we present some analysis of these dependencies in BSSR1
set.

The decision making and combination algorithms utilizing
the matching scores can make special considerations for the
existence of these dependencies. In this paper, we will call
the methods accounting for dependence in scores related
to a particular enrollee asenrollee-specificmethods, and
the methods accounting for dependence in scores related to
a particular user asuser-specificmethods. Some methods
might account for both dependencies and be both enrollee
and user specific.

In order to utilize any of the score dependencies, a
corresponding set of matching scores should be obtained
first. For enrollee-specific methods we have to match the
given enrolled template with few other templates (of the
same person or of other persons). This matching, as well as
the training of enrollee specific method, can be performed
off-line and thus does not have any performance hits. For
user-specific methods we have to do the matching and any
user-specific adjustments of the method in real time. Thus
we might anticipate additional processing time in this case.

There are two general approaches to utilizing score depen-
dencies. In one case, a predetermined transform is performed
on the matching scoresi,j based on obtained enrollee-
specific score setsi,1, . . . , si,N or user-specific score set
s1,j , . . . , sN,j . The examples of such transformations are Z-
normalization and T-normalization. In the other case, some
statistics of score sets can be extracted,θenr,i or θuser,j ,
and used along with scoresi,j to construct an enrollee- or
user-specific method. We will explore the use of second best
score statistics in our experiments.

C. Training and Testing Procedures

We use the bootstrap sample testing technique [2] in our
experiments. For each bootstrap test, we chose randomly test-
ing, training and validation sets, each of size 2x997x997 (two
separate square matrices). Such specific size was prompted
by the maximum number of scores related to a single user,
2991. Note, that a bootstrap sample does not contain all
5982x2991 scores of original set. Such configuration implies
that for each user we have 997 enrolled templates, and one
of them genuine, and for each enrollee we have 997 users
which are tested against this enrollee. Thus, the effectivesize
of matrices of Figure 1 is N=997. 100 bootstrap tests were
performed for each experiment.

Most of our algorithms relied on likelihood ratio decision
making and likelihood ratio combinations and the densities
of genuine or impostor scores have been estimated by Parzen
kernel method. Since each enrollee- or user-specific score set
has 1 genuine and 996 impostor scores we chose to use only
a single random impostor score for each genuine score from
corresponding set for training and testing the score densities.
The validation sets were used to estimate the kernel sizes for
score density approximations.

III. PREVIOUS WORK

Our work is most closely connected with two general
research directions - the user-specific decision making and
combinations in arbitrary biometric systems, and the score
normalization techniques for speaker authentication.

Working in the first direction, Toh et al. [3] learn combi-
nation functions (multivariate polynomials) for each enrolled
person separately (local learning), or use different decision
thresholds for different enrollees (local decision). Since the
number of genuine templates for each enrollee available
for training was small (5 templates, 5*4/2 genuine scores),
the authors chose to randomly generated additional pseudo-
genuine scores by adding noise to original genuine scores.

Fierrez-Aguilar et al. [4] modeled the densities of genuine
and impostor scores by normal distributions. The parameters
of these distributions were adjusted for each enrollee using
a set of training scores. Though such modeling delivers a
robustness in the parameter estimates for specific enrollees,
the assumption of score distribution normality might not hold
and can lead to incorrect error rate estimations [5].

The enrollee-specific weighted sum combinations were
explored in [6] and [7]. Jain and Ross [6] searched the
weights for each enrollee by the exhaustive search with the
criteria of minimizing EER. Snelick et al. [7] assigned the
weights heuristically using d-prime metric.

All these presented methods are enrollee-specific, rather
than user-specific. In all cases a significant number of gen-
uine scores for each enrollee was available, which allowed
proper training. In the case of our work, BSSR1 database has
only single genuine score for each enrollee, so these methods
might not be applicable.

The second direction, the score normalization methods in
speaker authentication, considered some user- or enrollee-
specific techniques which might be applicable in the case of



genuine score non-availability. The T(’Test’)-normalization
and Z(’Zero’)-normalization are two such methods [8], [9].
The normalization is done using the same formula:

s →

s − µ

σ
(1)

but the parametersµ andσ are calculated differently. For T-
normalization,µ andσ are the sample mean and variance of
the set of user-specific impostor scores. These are the scores
produced during a singletest or authentication attempt. Z-
normalization, on the other hand, uses a set of enrollee-
specific scores. Note, that sometimes Z-normalization is
defined as normalization with parametersµ andσ calculated
using all available training scores of all enrollees; in these
paper we will assume that only scores of particular enrollee
are used. The use of normalization techniques seems to be
present in many algorithms evaluated by NIST, for exam-
ple, in speaker recognition [10] and face recognition [11].
Note, that though [11] uses term Z-normalization, the actual
method seems to be based on user-specific impostor score
sets, and following definitions of this paper it should be
rather called T-normalization.

Instead of using all available impostor scores related to a
particular enrollee or user, we might consider some selection
of them. Thecohort methods[12], [13] introduced in speaker
verification find a cohort - a subset of enrolled templates
close to the particular enrolled template. During matching
test template to the enrolled, the templates belonging to
the cohort of enrolled templates can be used for normaliza-
tions. Auckenthaler et al. [8] separated cohort normalization
methods into cohorts found during training (constrained) and
cohorts dynamically formed during testing (unconstrained
cohorts). As we have presented in [14], different use of
cohorts can result in different types of normalizations (user-
specific, enrollee-specific or both). The example, adaptive
cohort model T-normalization, combining both enrollee- and
user-specific parameters for normalization is given in [15].

The T- and Z-normalizations given by Equation 1 are able
to deal with the linear score dependencies (section IV-A).
In order to deal with possible more complex dependencies
between matching scores, we introduced second best score
model [16], which considers a pair of original score and
second best score from a particular set of impostor scores
instead of a single original matching score. In our previous
research we investigated the use of second best model
construction of user-specific methods for verification deci-
sion [16] and for combination of biometric matchers [14].
In those works we used the term ’identification model’
to describe user-specific method, since the set of user-
specific scores usually is obtained in a single identification
trial. Second best score model was also utilized in cohort
normalization for fingerprint verification [17].

In this work we consider the verification decision and
combination algorithms based on enrollee-specific models:
Z-normalization and second best impostor model. We discuss
the difference between enrollee-specific and user-specific
algorithm modification, and present their performance for

both tasks, acceptance decision and combination.

IV. D EPENDENCIES BETWEENMATCHING SCORES

A. Linear Score Dependence

Let si,1, . . . , si,N denote a set of matching scores related
to one particular enrolleei. Let µ̂i andσ̂i be the sample mean
and sample variance of this score set. The Z-normalization
performs the following transformation of matching scores:

si,j →

si,j − µ̂i

σ̂i
(2)

The following discussion holds relevant for T-normalization
as well, since it has same normalization formula withµ and
σ derived from scores related to a particular user.

Suppose we have some score densityp(x) with mean of
0 and the variance of1. Also, suppose that for each enrollee
i we are given two random parametersµi and σi, and the
scores in the enrollee-specific set are independently sampled
according to

pi(s) = pµi,σi
(s) =

1

σi
p(

s − µi

σi
) (3)

It is easy to show that in this case the mean of scores in
the enrollee-specific set isµi and the variance isσi. By
calculating sample mean and variance estimates,µ̂i and σ̂i,
and by applying Z-normalization (2) to the enrolleei related
scores, the transformed scores will be approximately (due to
approximationsµi ≈ µ̂i andσi ≈ σ̂i) distributed according
to p(x).

Equation (3) represents a possible model of how the
dependencies between matching scores in enrollee- or user-
specific sets originate. We can call it thelinear score de-
pendency model. Previously, Navratil and Ramaswamy [18]
described the T-normalization using the property oflocal
gaussianity, which assumes that functionpi(x) is close
to normal density with meanµi and varianceσi. In our
description we are not making any assumptions on the form
of pi(x) except that it is generated for each specific enrollee
or user by Eq. (3) using some common densityp. There is
also no assumptions on distributions ofµi andσi (which are
randomly chosen for each particular enrollee or user).

According to linear score dependency model the range of
scores for each enrollee or user is shifted byµi and stretched
by σi. Note, that there are two types of scores in enrollee-
or user-specific sets - genuine and impostors, and it is quite
possible that they might have different dependence models.
But the number of genuine scores per enrollee or per user
is usually limited (only one genuine score in our dataset
BSSR1), and it might not be possible to learn the dependency
model for genuine scores. Therefore, we will assume that the
same model is applied for both types of scores; the sample
estimatesµ̂i and σ̂i can be computed using both genuine
and impostor samples, but in this work we use only impostor
score samples.

If the genuine and impostor scores for each enrollee or
user are the result of linear score dependency model and



Matchers µ̂ σ̂ OS1 OSN/4 OSN/2

C 0.2300 0.1798 0.2169 0.2310 0.2210
G 0.2860 0.2983 0.2453 0.2335 0.2373
li 0.2917 0.3303 0.2904 0.2915 0.2496
ri 0.3423 0.3639 0.3349 0.3378 0.3100

TABLE I

CORRELATIONS BETWEEN GENUINE SCORE AND THE STATISTICS OF

ENROLLEE-SPECIFIC IMPOSTOR SETS.

Matchers µ̂ σ̂ OS1 OSN/4 OSN/2

C - - 0.0427 -0.0556 0.0223
G - - 0.4949 -0.2352 0.2727
li - - 0.0336 -0.0121 -0.0330
ri - - 0.0458 -0.0107 -0.0547

TABLE II

CORRELATIONS BETWEEN GENUINE SCORE AND THE STATISTICS OF

ENROLLEE-SPECIFIC IMPOSTOR SETS AFTERZ-NORMALIZATION WAS

PERFORMED.

have distributions

pgen,i(s) = pgen,µi,σi
(s) =

1

σi
pgen(

s − µi

σi
)

pimp,i(s) = pimp,µi,σi
(s) =

1

σi
pimp(

s − µi

σi
)

(4)

then after the corresponding Z- or T-normalization genuine
and impostor scores will be independently and identically
distributed according topgen(x) andpimp(x). It is not nec-
essary that linear score dependence model exactly describes
the dependencies of scores in identification trials and the
actual dependencies might be more complex. In order to
check whether the linear dependence models adequately
describe existing dependences in matching scores, we can
perform statistical tests on score dependence after Z- or T-
normalization.

B. Score Dependencies in BSSR1 Set

We conducted a series of experiments trying to describe
the existing score dependencies in BSSR1 set. The utilized
technique was to measure the correlations between some
variables in either enrollee-specific or user-specific score
sets. In particular, we were interested in the correlations
between genuine and impostor scores. If we knew how the
genuine score relates to impostor scores for the same enrollee
or the same user, we would know how to properly assign the
confidence of a match.

Instead of using a genuine and a single random impos-
tor score for correlations, we used a genuine score and
some statistics of the corresponding impostor score sets
for calculating correlations. Tables I- IV show the results
of these experiments. The particular statistics employed in
our experiments are:̂µ and σ̂ - sample mean and variance,
and order statistics - best impostor scoreOS1 , N/4-th best
impostor scoreOSN/4 and score medianOSN/2.

Tables I and III show correlations for original matching
scores. We can notice that generally all matchers exhibit

Matchers µ̂ σ̂ OS1 OSN/4 OSN/2

C 0.1439 0.1263 0.1485 0.1457 0.1352
G 0.1587 -0.0352 0.1569 0.1565 0.1496
li 0.2857 0.3227 0.2901 0.2747 0.2506
ri 0.3541 0.3691 0.3269 0.3487 0.3191

TABLE III

CORRELATIONS BETWEEN GENUINE SCORE AND THE STATISTICS OF

USER-SPECIFIC IMPOSTOR SETS.

Matchers µ̂ σ̂ OS1 OSN/4 OSN/2

C - - 0.0417 -0.0369 0.0228
G - - 0.0805 0.1664 0.2052
li - - 0.0315 -0.0524 0.0004
ri - - 0.0104 -0.0105 -0.0310

TABLE IV

CORRELATIONS BETWEEN GENUINE SCORE AND THE STATISTICS OF

USER-SPECIFIC IMPOSTOR SETS AFTERT-NORMALIZATION WAS

PERFORMED.

relatively high dependencies. This implies that accounting for
these dependencies might benefit any system utilizing these
matchers. The interesting feature about these tables is the
difference in the correlation coefficients for face matchers.
Whereas statistics of impostor scores give almost the same
correlations with genuine scores for matchers ’li’ and ’ri’
irrespective of whether enrollee or user related scores were
used, the correlations for face matchers are higher when the
statistics are calculated from enrollee-specific scores than
the statistics from user-specific sets. This implies that either
the calculation of matching scores for face matchers ’C’
and ’G’ is non-symmetric with regards to enrolled and test
templates, or that some type of enrollee- or user-specific
score normalization was already performed.

In order to see whether the linear score dependence model
(Equation 3) holds for considered biometric matchers, we
looked at the same correlations after corresponding Z- or T-
normalization has been performed. Tables II and IV show
the results of these experiments. If linear score dependence
model was true, then correspondingly normalized scores
would have been independent, and the correlations between
genuine and the statistics of the impostor sets would have
been near 0. The correlations are indeed near 0 for all
matchers except ’G’ for enrollee-specific score sets. This
means that linear score dependence model is not sufficient in
this case, and in order to properly construct enrollee-specific
methods for matcher ’G’ we need to use something different
from Z-normalization.

In order to investigate this further, we compared the
effects of Z-normalization and T-normalization on all our
matchers. Both normalization algorithm resulted in identical
performance improvement for both fingerprint match score
sets ’li’ and ’ri’ (we omitted the performance graph). This
again confirms that fingerprint matcher used in producing
these sets gives symmetric recognition results with respect
to enrolled and test fingerprints. But face matchers showed
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Fig. 2. ROC curves for verification decisions of single matchers utilizing
enrollee-specific models.

different effects from Z- and T-normalizations, and Figure2
presents the results. For ’C’ matcher both normalizations
were successful with Z-normalization showing little better
results. For ’G’ matcher T-normalization gave slightly better
results than the use of original scores, and Z-normalization
was showing mostly the decrease in performance.

C. Statistics of Impostor Score Sets

Instead of applying pre-defined normalization formula in
Z- and T-normalizations, we can try to simply pass the
involved sample statisticsθenr,i or θuser,j to the algorithm
utilizing the matching score (θ will consist of µ̂ and σ̂ for
these normalizations). In this case the enrollee- or user-
specific normalization is done implicitly by the external
algorithm. Generally, this will make the task of training
external algorithm more difficult, and our preliminary results
showed that increased training complexity almost negates the
positive effect from adding statistics in case of Z- and T-
normalizations.

But by using adequate statistics we might be able to
get the good results. In [14] we investigated the use of
second best score for matcher combinations in verification
systems, where the second best score is defined as the best
score among all matching scores related to a particular user
(the scores the same identification trial) besides currently
considered one. Most experiments showed that using second
best score resulted in better combination than combination
operated on original scores. Moreover, the performance
improvements from T-normalization and second best model
complemented each other, and using both led to superior
performance. In this paper, we are trying to perform similar
experiments with Z-normalization and second best score
statistics derived from the set of enrollee-specific scores.

Note, that when we obtain a set of user-specific matching
scores, we do not have knowledge whether some particular
scores are genuine or impostor. But we have a definite
knowledge (assuming closed set identification system) that
there is only one genuine score and all other scores are
impostors. The second best score model effectively utilizes
this knowledge: for a currently considered score if second
best score (best score besides current) is very high, this high
score is likely to be genuine and currently considered scoreis
therefore impostor. Reverse is also true: if second best score
is low relative to current, then this score is very likely to

be genuine. The second best score statistics works for user-
specific models even if the scores in user-specific sets are
independent, see [16] for detailed analysis.

The situation is different for second best score statistics
computed in enrollee-specific sets. Though we might have
a knowledge on whether the previously collected matching
scores for a particular enrolleei are impostor or genuine, this
does not give us any information about whether the current
score is genuine or impostor. For example, the previously
collected set of scores might already include some genuine
score, but we can not use this information and say that it
is definite that current score is impostor; in real system any
enrolled person might be authenticated arbitrary number of
times (including zero). In order to simulate the work of a
real system, we actually disregard the only genuine score
available for each enrollee from calculating the statistics of
enrollee specific scores. Thus, instead of defining second best
score statistics as the best score besides current one which
we used in user-specific score sets, for enrollee specific score
sets we define second best score statisticssbsi,j as thebest
impostorbesides current scoresi,j . Note, that calculation of
sbsi,j in user specific score sets did include genuine score,
and this is a major difference between two statistics.

V. EXPERIMENTS IN ACCEPTANCEDECISIONS OF

VERIFICATION SYSTEMS

In the experiments of these section we used enrollee-
specific normalization and score statistics for enhancing the
algorithm of accepting decisions in verification systems.
The results of the experiments are shown in Figure 3. The
traditional approach is to simply compare matching score to
the threshold to accept or reject the verification attempt. The
Z-normalization approach also use thresholds the scores, but
the scores are Z-normalized. In order to usesbsi,j model we
perform the following score transformation [16]:

si,j →

pgen(si,j , sbsi,j)

pimp(si,j , sbsi,j)
(5)

As we explained in [16], by treating the pair(si,j , sbsi,j) as
an input to the classification algorithm, Equation 5 delivers
optimal Bayesian classification decision. Therefore, ifsbsi,j

carries any useful information complementary tosi,j and
the learning of densitiespgen and pimp has sufficiently
small errors, we can expect the improvement to the decision
algorithm relying exclusively onsi,j . As Figure 3 shows,
the performance improves from usingsbsi,j compared to
original scores in all cases.

We have also tried to use both models: first perform Z-
normalization, and then use second best score model of
Equation 5. The observed performance was generally worse
than the performance of a single Z-normalization except for
matcher ’G’ where Z-normalization fails. The combination
of both models somewhat improves the performance of
original scores of matcher ’G’, but it is not as good as using
second best score model alone for smaller FAR values. The
absence of additional performance improvement is confirmed
by the score dependency analysis of section IV-B: for all
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Fig. 3. ROC curves for verification decisions of single matchers utilizing
enrollee-specific models.

matchers except ’G’ the linear model adequately describes
score dependence and Z-normalization might be sufficient to
significantly reduce it.

VI. EXPERIMENTS IN THECOMBINATION OF MATCHERS

IN VERIFICATION SYSTEMS

In the experiments of this section we tried to utilize
enrollee-specific normalization and score statistics in the
combinations of biometric matchers in verification systems.
The results of the experiments are shown in Figure 4. The
presented experiments resemble those presented in [14], only
instead of user-specific combinations we considered enrollee
specific combinations here.

We used the likelihood ratio combination method in order
to compare the usefulness of enrollee-specific information.
This is theoretically optimal combination method for ver-
ification system [5] and consists in assigning a combined
score a value of the ratio between genuine and impostor
score densities:

S =
pgen(s1, s2)

pimp(s1, s2)
(6)

wheresm is the verification matching score assigned by the
matcherm (we omitted indexesi andj from score notation).
The likelihood ratio with Z-normalization will operate by
the same formula, only using Z-normalized scoressm. The
likelihood ratio method using second best score model will
consider the joint densities of scores and second best score
statistics:

S =
pgen(s1, sbs(s1), s2, sbs(s2))

pimp(s1, sbs(s1), s2, sbs(s2))
(7)

The use of Z-normalization and second best score model
at the same time implies first Z-normalization of combined
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Fig. 4. ROC curves for likelihood ratio combinations utilizing enrollee-
specific models.

scores, and then using second best score model likelihood
ratio combination of above formula.

The results of combinations experiments somewhat reflect
the results we obtained for decision thresholding of single
matchers: 1. both Z-normalization and second best score
model deliver better performance than original systems with
the exception of combinations involving matcher ’G’, 2.
for matcher ’G’ the use of second best score model is
beneficial, 3. for all matchers except ’G’ the Z-normalization
has better results than second best score model. These results
are different than the results we obtained in [14], where we
considered user-specific combinations - the second best score
model is less beneficial here. The difference seems to be due
to the different knowledge these statistics use as we explained
in section IV-C.

VII. C ONCLUSION

In this paper we investigated the use of enrollee-specific
Z-normalization and enrollee-specific second best score sta-
tistics in the acceptance decision thresholding and matcher
combination in biometric verification systems. We analyzed
the difference of these enrollee-specific methods with pre-
viously investigated user-specific methods. The major con-
clusion derived in these paper is that the dependencies of



matching scores in enrollee specific score sets and user
specific score sets might be different. As a result, the optimal
methods utilizing either enrollee-specific information oruser-
specific information might also differ, even if the same
matcher is considered.

In terms of the complexity types of combinations [19]
the combinations considered here belong to medium I type.
Most of our previous research with regards to matching
score dependencies addressed combinations of medium II
type. Though some of the previously developed ideas, like
using score set statistics, are directly applicable to medium
I type combinations, current results shows that the choice of
particular statistics might be different in two cases.

The enrollee-specific decision and combination algorithms
we presented here are somewhat new for general biometric
systems. Though the speaker recognition community exten-
sively uses some techniques (like Z-normalization), most
enrollee-specific algorithms developed for general biometric
systems require significant number of genuine scores avail-
able for training for each enrollee. In our case, we construct
enrollee-specific algorithms using only impostor scores, and
thus we are able to perform our experiments on NIST BSSR1
dataset.
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