## Review Problems for the Midterm 2

1. Solve the diffusion equation on half-line and express the answer in terms of the error function:

$$
\begin{aligned}
& u_{t}=k u_{x x}, x \geq 0 \\
& u(0, t)=1 \\
& u(x, 0)= \begin{cases}0, & 0 \leq x \leq 1 \\
1, & x>1\end{cases}
\end{aligned}
$$

2. Solve the diffusion equation on the line $(-\infty<x<\infty)$ and express the answer in terms of the error function:

$$
\begin{aligned}
& u_{t}=k u_{x x} \\
& u(x, 0)= \begin{cases}-1, & x<0 \\
1, & x>0\end{cases}
\end{aligned}
$$

3. Solve the wave equation on half-line $(x \geq 0)$ :

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \\
& u(x, 0)=\sin x \\
& u_{t}(x, 0)=c \cos x \\
& u(0, t)=t
\end{aligned}
$$

4. Solve the wave equation with source on half-line $(x \geq 0)$ :

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=\sin \sqrt{3}(x-c t) \\
& u(x, 0)=u_{t}(x, 0)=0 \\
& u(0, t)=0
\end{aligned}
$$

5. Expand a function $f(x)$ in:
6. Fourier sine series on $0<x<l$,
7. Fourier cosine series on $0<x<l$.

$$
\begin{aligned}
& f(x)=1, \\
& f(x)=x, \\
& f(x)=x^{2}
\end{aligned}
$$

6. Solve the heat equation on an interval $0 \leq x \leq 2$

$$
\begin{aligned}
& u_{t}=u_{x x} \\
& u(x, 0)=\sin \pi x+\sin 4 \pi x \\
& u(0, t)=u(2, t)=0
\end{aligned}
$$

7. Solve the heat equation on the interval $(0 \leq x \leq 1)$ :

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& u(x, 0)=1 \\
& u_{x}(0, t)=u_{x}(1, t)=0
\end{aligned}
$$

Hint: You may also guess what the solution will be from physical intuition 8. Solve the wave equation on the interval $(0 \leq x \leq \pi)$ :

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \\
& u(x, 0)=x \\
& u_{t}(x, 0)=1 \\
& u(0, t)=u_{x}(\pi, t)=0
\end{aligned}
$$

9. Solve the wave equation on the interval $(0 \leq x \leq 1)$ :

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0 \\
& u(x, 0)=x(1-x) \\
& u_{t}(x, 0)=0 \\
& u(0, t)=u(1, t)=0
\end{aligned}
$$

