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Prolegomenon

These are the lecture notes for Amath 353: Partial Differential Equations and Waves. This
is the first year these notes are typed up, thus it is guaranteed that these notes are full of
mistakes of all kinds, both innocent and unforgivable. Please point out these mistakes to

me so they may be corrected for the benefit of your successors. If you think that a different
phrasing of something would result in better understanding, please let me know.

These lecture notes are not meant to supplant the textbook used with this course. The
main textbook is Roger Knobel’s “An introduction to the mathematical theory of waves”,

American Mathematical Society 1999, Student Mathematical Library Vol 3.

These notes are not copywrited by the author and any distribution of them is highly
encouraged, especially without express written consent of the author.
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Chapter 1

Introduction

1.1 An introduction to waves

In this course we will learn different techniques for solving partial differential equations
(PDEs), specifically with an emphasis on wave phenomena. We begin by defining, in a very
loose sense, what we mean by a wave.

Let’s start with some examples. We have students majoring in very many different fields
enrolled in this class. Waves are relevant for all of you. I will not always pick the most obvious
examples below, as you’ll have to come up with some examples on the first homework set.

� ACMS and Mathematics: The study of wave phenomena has produced some of
the biggest mathematical breakthroughs of the last decades. Waves have helped our
understanding of geometry, algebraic geometry, analysis, and just about any other area
of mathematics. And, obviously, as an ACMS major, all applications listed here are
relevant to you.

� Aeronautical and Aerospace Engineering: Radar is an important example of the
use of sound waves: waves are sent out and their reflection is observed. This is the
same process used by bats to determine where they are in the middle of the night or
in a dark cave. Sonic booms are another example we will talk about.

� Atmospheric Science: Patterns in clouds are an obvious example of waves. Spe-
cific examples are the Morning Glory phenomenon off the coast of Australia (https:
//en.wikipedia.org/wiki/Morning_Glory_cloud) and the Kevin-Helmholtz insta-
bility http://en.es-static.us/upl/2014/05/kelvin-helmhotz-clouds1.jpg.

� Biology: Dispersal of seeds by wind waves is one of the most important means of
plant regeneration.

� Computer Science and Computer Engineering: Electromagnetic waves are re-
sponsible for how we see, how we communicate (using our smart phones, for instance,
or even through old-fashioned wired communications). These signals are put in on one

1
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end, they are transmitted, and finally they are received on the other end. If we’re
dealing with digital communication, the waves we’re talking about are sequences of
zeros and ones.

� Bioresource Engineering: the movement of plant habitats as a function of a chang-
ing climate is described by a wave that moves a LOT slower than most of the ones we
describe here: a noticable change can take decades to be observable.

� (Bio) Chemistry and BioEngineering: The Belousov-Zhabotinsky reactions dis-
plays both temporal and spatial oscillations that are easily observed with the naked
eyes, see https://www.youtube.com/watch?v=IBa4kgXI4Cg. This is not your typical
chemistry 101 reaction, where the reactants react, and the final product appears.

� Mechanical Engineering: The understanding of tidal and other water waves is im-
portant for harbor and ship design, see https://www.dropbox.com/s/mlittwqaxk6j3we/
hexagons-bw.jpg?dl=0.

� Oceanography: Do I need to say tsunami? Or rogue wave? In fact, a lot of the
terminology we will introduce originates from the study of water waves. That is most
likely because water waves are so obvious to observe: at the very least we can see the
patterns we’re talking about.

� Physics: Waves in Quantum Mechanics: the electron microscope allows us to “see”
matter at an atomic scale by sending in an electron wave (a beam of electrons) which
interacts with the surface of the material we are “looking at”. By analyzing the reflected
and the transmitted wave, we can determine the nature of the surface.

� Political Science and Economics, International Studies: The propagation of
political or economical ideas can be described by a wave. As we are leading up to
an election, different candidates generate different waves of enthusiasm based on a
variety of external forces (media, advertizing, etc). These waves are also affected by
the medium in which they propagate: Iowa first, New Hampshire second, and so on.

� Psychology: A delta wave is a brain wave that occurs during what is known as
deep sleep. It is known that delta wave activity is vastly reduced in people with
schizophrenia.

What do all the phenomena mentioned above have in common? It turns out that it is
not so easy to give a precise definition of a wave that captures everything we want. We can
agree on the following.

1. A wave is the result of a disturbance propagating through a medium, with finite ve-
locity, and

2. Associated with waves are signals: the result of any kind of measurement of a wave.
The outcome could be called Amplitude, Frequency, etc.

https://www.youtube.com/watch?v=IBa4kgXI4Cg
https://www.dropbox.com/s/mlittwqaxk6j3we/hexagons-bw.jpg?dl=0
https://www.dropbox.com/s/mlittwqaxk6j3we/hexagons-bw.jpg?dl=0
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Figure 1.1: A wave of decreasing height (i.e., amplitude) traveling to the right.

Example. Ripples in a pond. Waves travel horizontally across the surface of the
pond. A signal might be the vertical displacement of the crests.

Example. Waves in traffic disturbances can be caused by an accident, a police car,
a traffic light, a car merging, etc. We will discuss this example near the end of the course.
And I apologize: this knowledge will not let you race through Seattle traffic. But it will tell
you why you are stopped. That should make you happier, in a zen-like way, no?

Example. The wave in a sports stadium.

1.2 A mathematical representation of waves

Let’s start with one-dimensional waves. These are waves that propagate in one direction
only, say the x direction. For the sake of argument, think of a signal along a string (like a
guitar or violin string) or a channel, or a queue of people.

Clearly, the wave signal will depend on where we measure it, and when we measure it.
In other words, the signal is a function of both x (space) and t (time). Thus, we are looking
for a function of two variables, u(x, t).

At a fixed time t0, we can take a snapshot of the wave signal u(x, t0). Similarly, we can
put a probe in a specific location x0 to get the time signal u(x0, t). To visualize wave signals,
we often take a series of snapshots at different fixed times t1, t2, t3, . . . . This is illustrated
in Fig. 1.1 and Fig. 1.2. Of course, we can always make a three-dimensional plot too (with
x and t as the horizontal axes, u(x, t) the vertical), or even a movie. Both those last two
options don’t work as well on a two-dimensional sheet of paper.

Example. The function

u(x, t) = f(x− vt), v > 0,
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u(x, tn)

x

u(x, 0)

u(x, 1.3)

u(x, 2.6)

u(x, 3.9)

Figure 1.2: A shock wave traveling to the left.

gives a profile f(x) that is moving to the right (because v is positive) with speed v. If v < 0,
the profile would be moving to the left, with speed |v|. Indeed, at t = 0, we have

u(x, 0) = f(x),

so this is our initial profile. At a later time t > 0, we get the same profile, but it has moved.
Suppose we wanted to track the value f(0). At any time t, this value can be found at the
position given by

x− vt = 0 ⇒ x = vt,

which is positive, and increasing linearly with time t. Specifically, the speed at which the
value f(0) moves to the right is given by

dx

dt
= v,

which verifies our claim. The same reasoning works for tracking any value of f(x)1.

Example. As an example of our example (Really? Yup, really.), we consider

u(x, t) = sech2(x− 5t).

I know you all love hyperbolic functions, so I won’t waste much time recalling what they
are. We have that

sech(x) =
1

cosh(x)
,

and

cosh(x) =
ex + e−x

2
.

1When I make such gratuitous statements, you should check them. I do not make them to sound smart.
If I did, I’d make them in Latin.
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cosh(x) sech(x) sech2(x)

Figure 1.3: The graphs for cosh(x) (left), sech(x) (middle), and sech2(x) (right).

Figure 1.3 shows what the plot of this function looks like at time t = 0. Once we know that,
we know that u(x, t) has the same plot at all time, but translated to the right by an amound
5t.

Example. The wave u(x, t) = sin(x+ t) represents a sine function at t = 0, which moves
to the left with speed 1.

Example. Consider

u(x, t) = H(x− 7t),

where H(x) is the Heaviside step function:

H(x) =

{
1 if x ≥ 0,
0 if x < 0.

Its graph is drawn in Fig. 1.4. Thus u(x, t) is a step profile, moving to the right with
velocity 7.

Visualizing functions of two variables

We have different options for visualizing functions u(x, t) of two continues variables x and
t. Which one we prefer often depends on how we are communicating our results. Check out
the visualization.mw file in the software folder.

� Animation. We show a movie of u(x, t) as t changes from an initial to a final value.
Not so great on paper (unless you have a flip book, which people sometimes do!), but
works really well in a presentation.

� Slice plots. We create a bunch of slices and we plot them together, either in 2-D or
in 3-D. Great for paper communication.
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H(x)

1

0
x

Figure 1.4: The graphs for cosh(x) (left), sech(x) (middle), and sech2(x) (right).

� Surface plots. We plot u(x, t) as a surface depending on the two variables x and
t. Also good for paper communication, provided that the three dimensions come out
well. This depends heavily on u(x, t).

� (x, t)-plots, contour plots. We plot u(x, t) as a function in the (x, t) plane, but
looked at from above. We use different colors or grey scale to indicate the height
u(x, t). Great on paper.

1.3 Partial differential equations

A partial differential equation (PDE) for a function u(x, t) is a differential equation that
relates different derivatives of u(x, t) to each other and to u(x, t). That’s the same definition
as for ordinary differential equations, but now, because u(x, t) depends on more than one
variable, some of the derivatives will be with respect to x, others will be with respect to t.

We often use shorthand:

ut :=
∂u

∂u
, ux :=

∂u

∂x
, uxt :=

∂2u

∂x∂t
,

and so on.

Example. The advection equation is given by

ut + cux = 0,

where c is a parameter. This equation is linear, since it contains no products of u with itself
or any of its derivatives, and first order in both x and t, since no derivatives of higher than
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first order appear. The equation is also homogeneous, because u = 0 is a solution, albeit2

a not very interesting one.

Example. The diffusion equation is given by

ut = σuxx,

where σ > 0 is a parameter. This equation is also linear, but is is of second order in x, first
order in t. The equation is homogeneous. Since it arises in the study of heat transport, it is
also known as the heat equation.

Example. The three-dimensional diffusion or heat equation is

ut = σ(uxx + uyy + uzz), σ > 0.

As before, the equation is linear and homogeneous. It is first order in t, and second order in
the spatial variables x, y and z.

Example. The Burgers equation is given by

ut + uux = 0.

It is first order in x and t. It is our first example of a nonlinear PDE, because of the second
term. It is still homogeneous, but for nonlinear equations that won’t buy us much.

Example. The equation
ut + uux + uxxx = g(t)

is nonlinear (evil second term), first order in t, third order in x, and nonhomogeneous if
g(t) 6≡ 0.

Example. The sine-Gordon equation3 is given by

uxt = sinu.

It is nonlinear (why?), first order in x and t. It is homogeneous.

Example. In contrast, the sadly unnamed equation

uxt = cosu,

is not homogeneous. It is nonlinear (again, why?), first order in x and t.

Let’s bring some intuition in. The quantity ut(x0, t) (where x0 is fixed) denotes the rate
of change of u as t changes, at a fixed location. In other words, we put a probe at a certain
spot, and we look at how fast the time signal changes. Similarly, ux(x, t0) (where t0 is fixed)

2That’s a funny word!
3Yes, that’a a pun, which you will recognize if you are a quantum physicist. If you are a quantum

physicist, this class may be a bit too basic for you.
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x

u

uxx < 0

uxx > 0
uxx > 0

Figure 1.5: An initial profile for the heat equation and how it will evolve.

is the rate of change of u as x changes, at a fixed time. This corresponds to taking a snapshot
of u, and looking at the slope of the curve in the picture. It follows that both ux and ut are
interpreted as velocities. Similarly, both uxx and utt can be seen as accelerations.

Example. Let u represent the temperature in a metal rod at position x, at time t. Then
u satisfies the so-called heat equation

ut = Duxx,

where D > 0 is the heat conductivity of the rod, assumed to be constant here. Suppose we
start with an initial temperature profile, as in Fig. 1.5. In those regions where uxx > 0 (in
other words, the function is concave up), the heat equation states that ut will be positive,
so u will increase in time. For those regions where the profile is concave down, the heat
equation gives that ut will be negative, i.e., u will decrease in time, as indicated in the
figure. It follows that the heat equation likes to smear out profiles to a constant value.

Example. Next, we consider u to be a solution of the transport equation

ut = ux.

We choose an initial profile u(x, 0) as in Fig. 1.6. Where u(x, 0) is increasing as a function
of x, ux > 0 and therefore ut = ux > 0, thus u is increasing in time. Similarly, if u(x, 0)
decreases as a function of x, ux < 0 and it follows that u decreases in time, as indicated by
the arrows in Fig. 1.6. It follows that the overall shape of the profile will move to the left.
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ux < 0

ux > 0

u

x

Figure 1.6: An initial profile for the transport equation and how it will evolve.
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Chapter 2

Traveling and standing waves

2.1 Traveling wave solutions of PDEs

We have already seen that functions of the form

u(x, t) = f(x− vt)

represent profiles f(x) that move to the right with velocity v is v > 0, and to the left if
v < 0.

In general, solutions of PDEs are functions of both x and t independently. Sometimes
they have solutions where x and t always show up in the special combination x−vt. We call
such solutions traveling waves. We are especially interested in the case when f(x) is not
constant, or in the case where f(x) is bounded for all values of x. Unbounded signals (i.e.,
u→ ±∞) are usually1 not relevant for applications. Then f(x−vt) represents a disturbance
moving through a medium with velocity v.

Example. Consider
u(x, t) = sin(3x− t).

This is a traveling wave moving to the right with velocity v = 1/3. Indeed,

u(x, t) = sin(3x− t)
= sin 3(x− t/3)

= f(x− vt),

so that v = 1/3 and
f(z) = sin 3z.

Example. Let’s find traveling wave solutions of the wave equation

utt = a2uxx,

1In the “always” sense.

11
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where we may assume that the constant a > 0. We let

u = f(x− vt).

Our task is to find the function f and the constant v. Let z = x− vt. We get

u(x, t) = f(z)

⇒ ux = f ′,

⇒ uxx = f ′′,

⇒ ut = −vf ′,
⇒ utt = (−v)2f ′′ = v2f ′′,

where we have used the chain rule and the fact that

∂z

∂x
= 1,

∂z

∂t
= −v.

Thus, traveling wave solutions of the PDE

utt = a2uxx

satisfy the ODE

v2f ′′ = a2f ′′

⇒ (v2 − a2)f ′′ = 0.

Either f ′′ = 0 or v2 = a2. Using the first possibility, we get

f ′′ = 0 ⇒ f(z) = Az +B,

independent of what v is. Here A and B are constants. The second possibility results in

v2 = a2 ⇒ v = ±a,

independent of what f(z) is. In summary, we have obtained the following solutions:

� A(x − vt) + B, for any value of A, B, v. These solutions are not very interesting:
in order for them to be bounded, we need A to be zero. But that leaves us with a
constant solution, which is unexciting.

� f1(x− at), for any function f1(z), and

� f2(x+ at), for any function f2(z).
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Since the equation is linear, we can superimpose the solutions to get a more general
solution:

u(x, t) = A(x− vt) +B + f1(x− at) + f2(x+ at).

Some remarks are in order.

� Usually, we would include multiplicative constants c1, c2 and c3 to get a solution of the
form

u(x, t) = c1(A(x− vt) +B) + c2f1(x− at) + c3f2(x+ at).

Since these constants can be absorbed in the forms of f1, f2, and the values of A and
B, we may omit them.

� Note that the superposition of different traveling waves is not necessarily a traveling
wave! Our superposition consists of three different parts. Two of these parts (f1(x−at)
and f2(x+ at)) even move in opposite directions.

2.2 The sine-Gordon equation

We consider a more complicated example. The sine-Gordon equation is

utt = uxx − sinu.

First we substitute u = f(z), z = x− vt into the equation. We want to find an ODE for
f(z), which we want to use to determine f(z) and perhaps also v. In this case, we get

v2f ′′ = f ′′ − sin f

⇒ (1− c2)f ′′ = sin f.

This is a messy second-order ODE. We can reduce it to a first order ODE by multiplying by
f ′, which results in an equation we may integrate once:

(1− c2)f ′f ′′ = f ′ sin f

⇒ d

dz

[
(1− c2)

f ′2

2

]
=

d

dz
[− cos f ]

⇒ (1− c2)f ′2 = A− 2 cos f,

where we have used that f ′f ′′ is the derivative of f ′2/2 and that f ′ sin f is the derivative of
− cos f . Here A is an arbitrary constant. Our new equation is a first-order ODE for f(z).
This is progress! It’s still a messy ODE, but we can actually solve this ODE using separation
of variables. Here I just give one class of solutions. You should check that these are, in fact,
solutions2.

f(z) = 4 arctan
(
ez/
√

1−c2
)
,

2You should never, ever, trust me.
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x

u(x, t)

Figure 2.1: The profile of a traveling wave solution of the sine-Gordon equation. For this
specific profile, c = 1/2 and the whole graph moves to the right with velocity 1/2.

which corresponds to A = 2, and is valid for c ∈ (0, 1).
It follows that

u(x, t) = 4 arctan
(
e(x−ct)/

√
1−c2

)
is a traveling wave solution of utt = uxx − sinu. Since this equation is nonlinear, we can’t
simply superimpose a bunch of these solutions to get new solutions. A plot of a traveling
wave solution is shown in Fig. 2.1. Note the horizontal asymptotes at 0 and 2π.

2.3 The Korteweg-de Vries equation

In 1834, John Scott Russell, a Scottish engineer3 was on horseback, following a ship as it was
pulled by horses along one of the canals in Scotland. At some point, the ship hit something
in the water. What happened next is best told in his own words, and preferably with a
Scottish accent. More information can be found at http://www.macs.hw.ac.uk/~chris/

scott_russell.html.

“I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped - not so the mass of water in the
channel which it had put in motion; it accumulated round the prow of the vessel in a
state of violent agitation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course along the channel apparently without
change of form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original figure
some thirty feet long and a foot to a foot and a half in height. Its height gradually

3I am not making this up!

http://www.macs.hw.ac.uk/~chris/scott_russell.html
http://www.macs.hw.ac.uk/~chris/scott_russell.html
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diminished, and after a chase of one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance interview with that singular
and beautiful phenomenon which I have called the Wave of Translation”

It took 10 years for J. S. Russell to publish his results. It took another 50 for them
to become appreciated (no Twitter yet). Two Dutchmen Korteweg (PhD advisor) and de
Vries (his student) derived the equation that now bears their name, although we usually
abbreviate it the KdV equation:

ut + uux + uxxx = 0.

They derived the equation to describe long waves in shallow water, like tsunamis. But it
describes much more than this: in general it describes the propagation of long waves in a
dispersive medium4. This covers water waves, but also waves in plasmas, like the northern
lights, or like the light flickering we sometimes see in (large) LED lights.

Let’s look for traveling wave solutions of the KdV equation. Thus we let

u(x, t) = f(z), z = x− vt,
where v is the velocity of the wave. For simplicity we will look for waves traveling to the
right, thus v > 0. Further, we will limit our investigations to waves like the ones that Russell
saw, namely waves that decay to zero as x→∞ or x→ −∞. As before, we have

ux = f ′, uxxx = f ′′′, ut = −vf ′.
The KdV equation becomes

−vf ′ + ff ′ + f ′′′ = 0

⇒ d

dz

(
−vf +

1

2
f 2 + f ′′

)
= 0

⇒ −vf +
1

2
f 2 + f ′′ = A,

where A is an integration constant. Since A is constant, we may use any value of x to
evaluate the left-hand side. The most convenient values of x are ±∞, because we are
looking for solutions for which f , f ′, etc, all decay to zero there. Evaluating our expression
as ±∞ gives A = 0, so that we are left with

−vf +
1

2
f 2 + f ′′ = 0.

Multiplying this by f ′, we have

−vff ′ + 1

2
f 2f ′ + f ′f ′′ = 0

⇒ d

dz

(
−v

2
f 2 +

1

6
f 3 +

1

2
f ′2
)

= 0

⇒ −v
2
f 2 +

1

6
f 3 +

1

2
f ′2 = B,

4We’ll learn what “dispersive” means soon.
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where B is a second constant of integration. evaluating the left-hand side once again at ±∞,
we find that B = 0. Thus, we find the first-order ordinary differential equation

−v
2
f 2 +

1

6
f 3 +

1

2
f ′2 = 0.

It follows that
3f ′2 = (3v − f)f 2.

Since v > 0 (by choice), we find that f ≤ 3v. That’s good: we are looking for a bounded
solution, and it looks like we’ll find one. It remains to solve the first-order equation using
separation of variables. Ready to have a good time with integration? We have

√
3f ′

f
√

3v − f
= 1

⇒
√

3

∫
df

f
√

3v − f
= z + α,

where α is a constant of integration. We use substitution to simplify the integral. The
hardest part is the square root in the denominator. Let

g =
√

3v − f ⇒ f = 3v − g2.

It follows that df = −2gdg. We get

√
3

∫
−2gdg

(3v − g2)g
= z + α

⇒ −2
√

3

∫
dg

3c− g2
= z + α.

This integral can be done using partial fractions. This results in

ln

(√
3v + g√
3v − g

)
= −
√
v(z + α)

⇒ g =
√

3v
e−
√
v(z+α) − 1

e−
√
v(z+α) + 1

= −
√

3v tanh

√
v

2
(z + α).

Returning to f = 3v − g2, we get

f(z) = 3vsech2

√
v

2
(z + α).

It follows that

u(x, t) = 3v sech2

√
v

2
(x− vt+ α)
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x

u

3v

v

Figure 2.2: The profile of a traveling wave solution of the KdV equation. The profile moves
to the right with velocity v and has height 3v.

is a traveling wave solution of the KdV equation, for any v > 0. It is illustrated in Fig. 2.2. Its
amplitude (i.e., height) is 3v, while its velocity is v. Thus higher waves of the KdV equation
travel faster, as we observe at the beach. Further, the width of the profile is proportional to
1/
√
v, thus taller, faster waves are more narrow. Lastly, the maximum of the wave profile

occurs when x− vt+ α = 0, or at x = vt− α.

2.4 Wave fronts and pulses

A traveling wave
u(x, t) = f(x− ct)

is called a front if for a fixed t, we have

lim
x→−∞

u = k1, lim
x→∞

u = k2,

and
k1 6= k2.

In other words, our profile approaches different limit values at −∞ and +∞. The traveling
wave solution of the sine-Gordon equation is a good example. Note, however, that the
transition between the two limiting values does not have to be monotone.

If on the other hand,
k1 = k2,

then we call the solution a pulse. The profile drawn in Fig. 1.6 is an example. Thus, for
pulses, the beginning and end state are the same: the medium returns back to its original
state after a pulse passes through. On the other hand, the passing of a front forever alters
the state of the medium.

Examples of fronts.
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� Weather fronts: different meteorological signals are altered by the passing of a weather
front, such as the air pressure.

� Sonic booms: the density in the air is altered by the passing of the sonic boom. Of
course, dissipation effects eventually return it to its original value, but for quite a while,
the air density is changed. That is different from a subsonic plane passing through,
which creates a localized disturbance in the density.

� Bob Dylan, Beethoven: music was forever altered by both of them.

Examples of pulses.

� Optical flashes

� Bits

� One-hit wonders: they have no lasting effect on the musical landscape.

2.5 Wave trains and dispersion

Different types of traveling waves, other than fronts or pulses, exist.

Example. Consider

u(x, t) = 3 cos(7x− 5t) = 3 cos 7(x− 5t/7).

This is a traveling wave train of amplitude 3 and velocity 5/7. It has wave number 7 and
frequency 5.

In general, (linear) traveling wave trains are expressions of the form

u = A cos(kx− ωt+ φ),

where instead of cos we may have sin or exp(i . . .). Using one of these functional forms, the
following quantities are defined.

� A is the amplitude. This is the largest value the wave train attains. Similarly, −A is
its smallest value.

� The wave number k denotes how many oscillations occur during an interval of length
2π. Indeed, the period of the wave train is 2π/k. Since one oscillation occurs per
period, k oscillations occur over an interval of length 2π.

� The frequency ω denotes how many oscillations happen during a time interval of
length 2π. The same argument as above shows this, but we consider the temporal
dependence instead of the spatial dependence. It follows that signals with high wave
number or frequency are very oscillatory. That means that if we want to plot them
accurately, we’ll need to use many points at which to sample the function.
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� The phase shift φ simply shift the origin of space or time. That sounds very philo-
sophical5, but it really isn’t. We can rewrite the wave train signal as (using the cosine
form, for instance)

u(x, t) = A cos(k(x− x0)− ωt) or u(x, t) = A cos(kx− ω(t− t0)),

where −kx0 = φ and ωt0 = φ. Thus φ simply changes when we start measuring where
or when we start.

� The velocity of the traveling wave is v = ω/k, since we can rewrite the signal as

u(x, t) = A cos(k(x− vt) + φ),

where v = ω/k.

Often, the frequency ω and the wave number k are related. This relation is called the dis-
persion relation. Since sin and cos can be written as linear combinations of exponentials,
it suffices to consider expressions of the form

u = Aeikx−iωt.

The idea is to substitute this into the PDE and find the relationship between ω and k, if
there is one. This is easy: note that whenever we take an x derivative, we get

ux = ikAeikx−iωt = iku,

and so on for higher-order derivatives. Thus taking an x derivative simply multiplies our
solution by a factor ik. Similarly, taking a time derivative,

ut = −iωAeikx−iωt = −iωu,

and taking a time derivative results in multiplying u by −iω. Taking more time derivatives
results in more powers of −iω.

Example. Consider the wave equation

utt = a2uxx, a > 0.

We already know that this equation has traveling wave solutions that travel to the left with
velocity −a and to the right with velocity a. Plugging in

u = Aeikx−iωt,

we get

(−iω)2u = a2(ik)2u

⇒ −ω2 = −k2

⇒ ω2 = k2a2,

5That’s OK: I have a doctorate in philosophy. Really.
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from which it follows that

ω1 = ka, ω2 = −ka.

Thus there are two possible branches of the dispersion relation. They give rise to the solutions

u1 = A1e
ik(x−at),

and

u2 = A2e
ik(x+at).

Example. Consider the PDE

utt = auxx − bu, a, b > 0.

Looking for the dispersion relation, we find

(−iω)2u = a(ik)2u− bu
⇒ −ω2 = −ak2 − b
⇒ ω2 = ak2 + b

⇒ ω1,2 = ±
√
ak2 + b,

leading to the two classes of solutions

u1 = A1e
ikx−iω1t,

and

u2 = A2e
ikx−iω2t.

Example. Consider the linear free6 Schrödinger equation:

iϕt = −ϕxx.

We look for solutions of the form

ϕ = Aeikx−iωt,

to get

i(−iω)ϕ = −(ik)2ϕ

⇒ ω = k2.

6because there is no potential



2.6. DISPERSION RELATIONS FOR SYSTEMS OF PDES 21

2.6 Dispersion relations for systems of PDEs

We will examine how to do this by example. Consider the PDE system

ut = αux + vxxx

vt = βvx − uxxx.

We wish to look for wave train solutions, whose x and t dependence is of the form

eikx−iωt.

For the scalar case, the amplitude A never came into play, since for linear equations, we
could simply divide it out. That is no longer true here, since there is no reason why u and
v should have the same amplitude.

This situation is similar to what we do with systems of ODEs: if we wish to solve

ay′′ + by′ + cy = 0,

we guess
y = eλt.

On the other hand, if we want to solve the system

y′ = Ay,

where A is a matrix and y is a vector, then we guess

y = eλtv,

where v is a vector.
We do the same for our system of PDEs. We guess(

u
v

)
=

(
U
V

)
eikx−iωt.

Substituting this into the PDE, we get

−iωU = αikU + (ik)3V

−iωV = βikV − (ik)3U

⇒
(
−iω − αik ik3

ik3 −iω − βik

)(
U
V

)
= 0.

Since we are not interested in the zero solution(
U
V

)
= 0,
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we need that (
−iω − αik ik3

ik3 −iω − βik

)
is a singular matrix. Thus

det

(
−iω − αik ik3

ik3 −iω − βik

)
= 0.

This the dispersion relation, determining the frequency ω as a function of the wave number
k. The rest is algebra. We get

(−iω − αik)(−iω − βik)− k6 = 0

⇒ −ω2 + iω(αik + βik)− αβk2 − k6 = 0

⇒ −ω2 − ω(α + β)k − αβk2 − k6 = 0

⇒ ω2 + ω(α + β)k + αβk2 + k6 = 0

⇒ ω =
1

2

(
−(α + β)k ±

√
(α + β)2k2 − 4(αβk2 + k6)

)
.

Thus, there are two possibilities for ω: ω1 and ω2, corresponding to the + and − signs above.

2.7 Information from the dispersion relation

Suppose we have found and solved the dispersion relation, so that we have ω(k). What do
we get out of this? Well, of course we can conclude that the PDE has wave train solutions
whose x and t dependence if of the form

u = eikx−iωt.

Since the equation is linear, we may superimpose such solutions. But what can we say about
these solutions? What are their properties?

� Phase velocity. We may rewrite the solution as

u = eik(x−cp(k)t),

where

cp(k) =
ω(k)

k

is called the phase velocity. It is the velocity with which a single wave train travels.

� Group velocity. Another velocity matters for wave trains:

cg(k) =
dω

dk
,
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cg

cp

Figure 2.3: A wave packet consisting of two traveling wave trains. The phase speed is the
speed of waves inside the packets, whereas the envelope of the packets moves with the group
speed.

which we call the group velocity. The full importance of the group velocity is hard to
explain (see Amath569), but let’s give it a shot.

Suppose that in a given signal, the most important wave number is k0, with corre-
sponding frequency ω0 = ω(k0). We rewrite exp(ikx− iω(k)t) as

eikx−ω(k)t = eik0−iω0tei(k−k0)x−i(ω(k)−ω0)t

= eik0−iω0tei(k−k0)x−i(ω(k0)−(k−k0)ω′(k0)+O((δk)2)−ω0)t

= eik0−iω0tei(k−k0)x−i((k−k0)ω′(k0)+O((∆k)2))t

= eik0−iω0tei∆k(x−ω′(k0)t)+....

The second exponential factor acts as a slowly varying amplitude to the first one.
Indeed, the wave number ∆k and frequency ω′(k0)∆k are both small, assuming that
k is close to k0. The second, slowly-varying factor moves with the group velocity! A
wave packet is used to illustrate this in Fig. 2.3.

Thus individual waves move with the phase velocity, while wave packets move with the
group velocity. Note that it is perfectly possible for the group and phase velocity to
have opposite signs.

Although we will not show this here, the group velocity is also the velocity with which
the energy associated with a wave moves. Often we care about this much more than
we care about individual waves.

� Dispersive vs. non-dispersive waves. An equation or a system is called dispersive
if (a) the phase speed cp is real for real k, and (b) the phase speed is not constant. This
implies that wave trains with different wave numbers will move with different speeds.
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Figure 2.4: A decaying wave train (ωI < 0, left) and a growing wave train (ωI > 0, right).

But there is more! In general, the dispersion relation may be complex, even for real k.
If that happens, then for those values of k the equation is not dispersive.

Example. Consider the PDE

ut = uxx + cux.

This equation gives rise to the dispersion relation

−iω = (ik2) + cik

⇒ ω = −ik2 − ck.

In general, we can split ω(k) into its real and imaginary parts: ω = ωR + iωI , where ωR
and ωI are the real and imaginary parts of ω, respectively. It follows that our wave train
solutions are of the form

eikx−iωt = eikx−it(ωR+iωI)

= eikx−iωRt+ωI t

= eωI teikx−iωRt.

Thus, if ωI > 0, the signal will grow in time. If ωI < 0, the signal will decay in time. Both
situations are illustrated in Fig. 2.4.

If ωI < 0 and amplitudes decay, we say the PDE is dissipative. if ωI > 0 and amplitudes
grow, we call the system unstable.
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2.8 Pattern formation

Often, linear systems are obtained by ignoring nonlinear term, which are assumed to be less
important, provided the solution is small. Such small solutions can be considered distur-
bances to the zero solution. When we see instabilities in a linear PDE or a system of linear
PDES, they result in the growth of disturbances to the zero solution. In actual application
settings, this growth cannot go on forever, as there is only a finite amount of energy in the
system, for instance.

Recall that the linear system is only valid provided the solution is small. If the distur-
bances grow exponentially, the linear system will not be valid for long, and nonlinear terms
will have to be considered. Often they have the effect of arresting the growth due to linear
instabilities. The nonlinear effects that we ignored to get to the linear system may be small
initially, but they will start to matter as the solution grows.

Even so, the study of the dispersion relation often allows us to predict many aspects of the
solution of the full, nonlinear problem, even if we cannot solve that problem completely. Let’s
see how we can predict what kinds of patterns form in the so-called Kuramoto-Sivasinski
(KS) equation

ut + uux + uxx + auxxxx = 0, a > 0.

This equation arises a lot in applications. Among other things, it describes the dynamics of
flame fronts.

� We see immediately that u = 0 is a solution.

� Let’s investigate the dynamics of solutions close to this solution. Such solutions are
small, so that we may ignore the term uux. Indeed, if

u ∼ Aeikx−iωt,

with A small, then
ux ∼ ikAeikx−iωt,

and
uux ∼ ikA2e2ikx−2iωt,

which is a lot smaller than any of the linear terms, since A2 � A, for small A. Thus,
we are justified in studying the linearized KS equation:

ut + uxx + auxxxx = 0.

� We find its dispersion relation:

−iω + (ik)2 + a(ik)4 = 0

⇒ −iω − k2 + ak4 = 0

⇒ −iω = k2 − ak4,
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k

k2 − ak4

Figure 2.5: The graph of k2 − ak4 with a = 4.

so that

eikx−iωt = eikx+(k2−ak4)t.

It follows that the solution grows in t if k2− ak4 > 0 and it decays if k2− ak4 < 0. We
plot k2 − ak4 in Fig. 2.5.

If k ∈ (−1/
√
a, 1/
√
a), the growth rate is positive. Otherwise it is negative. Since the

equation is linear, the general solution is a superposition of a bunch of solutions of the
form

eikx+(k2−ak4)t.

We have just concluded that any part of this superposition that has k > 1/sqrta or
k < −1/

√
a will decay. Thus after some time, these parts will not come into play

anymore. Since for all of these parts, |k| is large, the period is small. In other words,
these are highly oscillatory signals. The equation appears to get rid of them quickly.

All the contributions from the other wave numbers k grow (except from k = 0). Which
one grows the most? Let

f(k) = k2 − ak4 ⇒ f ′(k) = 2k − 4ak3 = 2k(1− 2ak2).

Thus the growth rate is maximal for k∗ = ±1/sqrt2a. All other solutions grow slower
than this one. Thus, in comparison, they decay. Indeed, if we have

y = c1e
ax + c2e

bx,
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x

u(x, t)

Figure 2.6: The set-up for the derivation of the wave equation modeling a plucked string.

with a > b > 0 (so both exponentials grow as x→∞), then

y = eax
(
c1 + c2e

(b−a)x
)
,

and the exponential in the parentheses decays! Thus, so sufficiently large x, we see
y ∼ c1e

ax.

The same conclusion holds for our case: for large enough t, we see only

eik
∗x+(k∗2)−ak∗4t and eik

∗x+(k∗2)−ak∗4t.

Thus, the equation naturally creates periodic patterns with period 2π/k∗ = 2π
√

2a,
independent of the initial conditions!

� After some t, these solutions become too big and we can no longer ignore the nonlinear
terms. But, the stage is set and the linear problem has already selected the period of
the solution!

2.9 A derivation of the wave equation

The wave equation
utt = c2uxx,

shows up in many applications. Let’s actually derive it in one setting, namely that of a
plucked string, as illustrated in Fig. 2.6

We begin with the following assumptions.

� The equilibrium position of the string is at u(x, t) = 0.

� The string has constant density ρ.

� The vibration of the string stays in the plane: there is no dependence on the transverse
variable y.



28 CHAPTER 2. TRAVELING AND STANDING WAVES

S

x

x

x+ ∆x

T

T

Figure 2.7: We apply Newton’s law to a little piece of string.

� Tension is uniform: a string extends a force only in the direction parallel to the string.
In other words, the force a piece of string exerts on neighboring pieces , keeping the
string together, is tangential to the string.

� We assume that tension is constant anywhere along the string.

� There are no other forces.

� All vibrations are small. This is a physical way of saying that, mathematically, we will
be ignoring nonlinear effects.

Next, we apply Newton’s law of motion to an itty bitty7 piece of string, lying between x
and x+ ∆x, where ∆x is very small. We have

Mass of S × Acceleration of S = Net force on S.

This is Newton’s law, perpendicular to the x axis. We could also write it parallel to the x
axis, but that would result in a perfect force balance. This would offer no information about
u(x, t), which is the vertical displacement.

First, we get an expression for the mass of S.

Mass of S = ρ× arclength

= ρ

∫ x+∆x

x

√
1 + u2

x(s, t)ds

≈ ρ

∫ x+∆x

x

(
1 +

1

2
u2
x(s, t) + . . .

)
ds

≈ ρ∆x,

7Technical term.
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where we have used that the vibrations are small, thus all nonlinear terms are ignored.
Next, the acceleration of S is simply utt(x, t), by definition. Last, we turn to the net

force. The net force is pulling on the left and right ends of S by the string parts to the
immediate left and right of S. On the left end, the tension pulls with magnitude T in the
direction of the tangent vector. This normalized tangent vector is given by

−(1, ux(x, t))√
1 + u2

x(x, t)
.

Thus the left force is

−T (1, ux(x, t))√
1 + u2

x(x, t)
≈ −T (1, ux)

(
1− 1

2
u2
x + . . .

)
≈ −T (1, ux).

It follows that the left force in the vertical direction is −Tux(x, t). We repeat these consid-
erations on the right end. The tangent vector is

(1, ux(x+ ∆x, t))√
1 + u2

x(x+ ∆x, t)
,

so that the force is

T (1, ux(x+ ∆x, t))√
1 + u2

x(x+ ∆x, t)
≈ −T (1, ux(x+ ∆x))

(
1− 1

2
u2
x(x+ ∆x, t) + . . .

)
≈ −T (1, ux(x+ ∆x, t)).

Thus, after ignoring the nonlinear terms, the right force in the vertical direction is given by
Tux(x+ ∆x, t).

Combining all of this, Newton’s law becomes

ρ∆xutt(x, t) = T (ux(x+ ∆x, t)− ux(x, t))

⇒ ρutt(x, t) = T
ux(x+ ∆x, t)− ux(x, t)

∆x
.

Taking the limit ∆x→ 0, we obtain

ρutt = Tuxx,

or
utt = c2uxx,

where

c2 =
T

ρ
,

and we have derived the wave equation! We have already seen that f(x− ct) and f(x+ ct)
are traveling wave solutions of the wave equation. It follows that their velocity is given by

±c = ±

√
T

ρ
.
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2.10 d’ Alembert’s solution of the wave equation

We want to find the general solution of the wave equation

utt = c2uxx.

We already know that this equation has traveling wave solutions f(x − ct) and g(x + ct),
for arbitrary profiles f and g. We show that any solution of the wave equation is a linear
combination of such traveling waves.

Inspired by the form of the traveling waves, we use a coordinate transformation

ξ = x− ct,
η = x+ ct.

Let us find out how the derivatives transform. First, we consider ux.

∂u

∂x
=
∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x

= uξ · 1 + uη · 1
= uξ + uη.

Next up, the second derivative uxx:

∂2u

∂x2
=

∂

∂x
(uξ + uη)

=
∂

∂ξ
(uξ + uη)

∂ξ

∂x
+

∂

∂η
(uξ + uη)

∂η

∂x

=
∂

∂ξ
(uξ + uη) · 1 +

∂

∂η
(uξ + uη) · 1

=
∂

∂ξ
(uξ + uη) +

∂

∂η
(uξ + uη)

= (uξξ + uηξ) + (uξη + uηη)

= uξξ + 2uξη + uηη,

where we have assumed that u is smooth, so that uξη = uηξ. Next, we do the same for the t
derivatives.

∂u

∂t
=
∂u

∂ξ

∂ξ

∂t
+
∂u

∂η

∂η

∂t

= uξ · (−c) + uη · c
= −cuξ + cuη.
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Next up, the second derivative utt:

∂2u

∂x2
=

∂

∂x
(−cuξ + cuη)

=
∂

∂ξ
(−cuξ + cuη)

∂ξ

∂t
+

∂

∂η
(−cuξ + cuη)

∂η

∂t

=
∂

∂ξ
(−cuξ + cuη) · (−c) +

∂

∂η
(−cuξ + cuη) · c

= −c ∂
∂ξ

(−cuξ + cuη) + c
∂

∂η
(−cuξ + cuη)

= −c(−cuξξ + cuηξ) + c(−cuξη + cuηη)

= c2uξξ − 2c2uξη + c2uηη.

Substituting the expressions for uxx and utt into the wave equation we get

utt = c2uxx

⇒ c2uξξ − 2c2uξη + c2uηη = c2(uξξ + 2uξη + uηη)

⇒ uξη = 0.

This is fantastic progress! Now we proceed to solve this equation. From uξη = 0, it
follows that (uξ)η = 0, thus uξ is independent of η: it is a function of ξ only. Thus

uξ = F (ξ),

where F is any function. We integrate once more to find

u =

∫ ξ

F (ξ)dξ + g(η),

where g is any function of η. The first term is the anti-derivative of any function of ξ, so it’s
another arbitrary function of ξ. Let’s denote it by f . Thus we have that any solution of the
wave equation can be written in the form

u = f(ξ) + g(η),

or, returning to the original variables:

u = f(x− ct) + g(x+ ct),

which proves our claim.

Example. You can easily show that u = cos t sinx solves the wave equation with c = 1.
Strange. . . . It doesn’t appear to be of the form given above. But it is, as we show now. Fun
with trig identities! From the trig addition formulas, we have

cos t sinx+ sin t cosx = sin(x+ t)

cos t sinx− sin t cosx = sin(x− t),
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from which it follows that

u(x, t) = cos t sinx =
1

2
(sin(x+ t) + sin(x− t)),

which shows that u can indeed be written as the sum of a function which depends on x+ t
only, and another one which depends on x− t only.

Next, we will solve our first initial-value problem in this course. Consider the problem

utt = c2uxx

u(x, 0) = f(x)

ut(x, 0) = g(x),

where f and g are given functions. Here f(x) represents the initial position of the string and
g(x) represents its initial velocity.

We know that u(x, t) can be written as

u(x, t) = F (x− ct) +G(x+ ct).

Our task, should we choose to accept it8, is to find F and G in terms of f and g. At t = 0,
we have u(x, t) = f(x), thus

f(x) = F (x) +G(x).

Taking a time derivative of our solution formula, we have

ut(x, t) = −cF ′(x− ct) + cG(x+ ct).

Evaluating this at t = 0, we get

g(x) = −cF ′(x) + cG′(x).

Thus we need to solve the equations{
F (x) +G(x) = f(x)

−cF ′(x) + cG′(x) = g(x)
,

for the unknown functions F and G.
From the second equation,

−F ′(x) +G′(x) =
1

c
g(x)

⇒ −F (x) +G(x) =
1

c

∫ x

0

g(s)ds+ α,

8We will. We’re awesome. We’re fearless.
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where α is an integration constant. Our system becomes{
F (x) +G(x) = f(x)
−F (x) +G(x) = 1

c

∫ x
0
g(s)ds+ α.

,

Adding these two equations, we find that

G(x) =
1

2
f(x) +

1

2c

∫ x

0

g(s)ds+
α

2
.

Subtracting the two equations gives F :

F (x) =
1

2
f(x)− 1

2c

∫ x

0

g(s)ds− α

2
.

Putting all of this together, we find that

u(x, t) =
1

2
f(x− ct)− 1

2c

∫ x−ct

0

g(s)ds− α

2
+

1

2
f(x+ ct) +

1

2c

∫ x+ct

0

g(s)ds+
α

2

=
1

2
f(x− ct) +

1

2c

∫ 0

x−ct
g(s)ds+

1

2
f(x+ ct) +

1

2c

∫ x+ct

0

g(s)ds

=
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(s)ds.

This is the d’ Alembert solution for the initial-value problem for the wave equation.
Don’t take this for granted. The wave equation is one of very few PDEs for which we

can write down the solution of the initial-value problem so explicitly!

Example. Consider the initial-value problem

utt = c2uxx

u(x, 0) = e−x
2

ut(x, 0) = 0,

then d’Alembert gives

u(x, t) =
1

2

(
e−(x−ct)2 + e−(x+ct)2

)
.

Thus the solution splits the initial condition in two parts: one goes to the left, one goes to
the right. Both propagate with speed c.

2.11 Characteristics for the wave equation

Consider the transport equation
ut + cux = 0.
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x

t

x0

Figure 2.8: The initial condition is transported along the characteristics.

Using the transformation

ξ = x− ct,
τ = t,

we see that the general solution of this problem is

u = f(x− ct),

where f(x) = u(x, 0), the initial profile. Thus, the transport equation simply moves the
initial profile to the right with speed c, where we have assumed that c > 0.

This is illustrated in Fig. 2.8. The straight lines x − ct = x0, originating at (x0, 0) are
called the characteristics. It follows that the value of u(x, t) along these characteristics is
given by

u(x, t) = f(x− ct) = f(x0).

Thus, u is constant along the characteristics: if we know u anywhere along a characteristic,
when we know it anywhere on that characteristic.

We aim to get a similar understanding for the dynamics of the wave equation

utt = c2uxx.

Recall that the d’Alembert solution gives

u(x, t) =
1

2
(u(x− ct, 0) + u(x+ ct, 0)) +

1

2c

∫ x+ct

x−ct
ut(s, 0)ds.
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t

x

t0

x0 − ct0 x0 x0 + ct0

Figure 2.9: The domain of dependence (grey) for the solution of the wave equation.

It is clear from this formula that the value of u at (x = x0, t = t0) is determined only by the
initial values for x ∈ [x0 − ct0, x0 + ct0]. This is illustrated in Fig. 2.9.

The cone given by the grey region in Fig. 2.9 is called the domain of dependence. It
indicates that the solution at place x0 and time t0 depends on all values in that cone, but
on no values outside of it.

If we consider the special situation where

ut(0, t) = 0,

in other words, the string starts with an initial profile, but is released without any initial
velocity, then d’Alembert giveth

u(x, t) =
1

2
(u(x− ct, 0) + u(x+ ct, 0)),

which shows that u depends only on the initial condition on the boundary of the domain
of dependence. These two boundary lines are called the characteristics for the wave
equation. Thus, the characteristics determine the domains of dependence.

By turning all of the above around, we can answer the question of which (x, t) points
have a given point (x0, t0) in their domain of dependence. This is known as the domain of
influence. It is illustrated in Fig. 2.10. The domain of influence is also bordered by the
characteristics, but now on the lower side.

The domain of influence shows that information in the wave equation travels at a finite
speed c: it takes a definite time for the effect from x0 to be felt at any other x.

Example. Sometimes the characteristics may be used to examine the solution of an
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x

(x0, t0)

Figure 2.10: The domain of influence (grey) of the point (x0, t0) for the wave equation.

initial-value problem. Consider the problem

utt = 4uxx

u(x, 0) =

{
1 if x ∈ [0, 1]
0 if x 6∈ [0, 1]

ut(x, 0) = 0.

Here the speed of propagation is 2:

c2 = 4 ⇒ c = 2.

We have the set-up illustrated in Fig. 2.11.

From this characteristic plot we can immediately read off the values of u(x, t), for any
x and t. For instance, we can plot the solution u(x, t) at different instances of t, by taking
horizontal slices of the characteristic plot above. This is illustrated in Fig. 2.12.

2.12 The wave equation on the semi-infinite domain

Fixed end

Let’s consider a string of semi-infinite extent, fixed at the left end, as drawn in Fig. 2.13.

The condition u(0, t) = 0 for all t is our first example of a boundary condition: a
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1 00

Figure 2.11: The different solution regions for the example problem. The values in blue are
values of u(x, t) in that region. The characteristics drawn have slope 1/2.

condition on the function we are looking for, given at the end of our physical domain.

Thus, we want to solve the boundary-value problem
utt = c2uxx, x ∈ (0,∞)

u(0, t) = 0, for all t > 0
u(x, 0) = f(x), x ∈ (0,∞)
ut(x, 0) = g(x), x ∈ (0,∞)

,

where f(x) and g(x) are given functions. We will solve this using d’Alembert’s solution and
the insight we gained from using characteristics. From d’Alembert,

u(x, y) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(s)ds.

This formula can only be valid if x− ct > 0. Otherwise, we’d be asking to evaluate f(x) at
arguments that are negative, but we have been given f(x) only for positive arguments. A
conundrum! Thus the solution ceases to be valid when

x− ct < 0 ⇒ t > x/c.

This region is illustrated in Fig. 2.14.
This is not surprising: the shaded region in Fig. 2.14 would be a part of the domain

of influence of negative x values, but we have no information there. So, what happens?
Boundary condition to the rescue: we have not used the condition u(0, t) = 0 for all t. We
will do so now.

In the shaded region, we still have that

u(x, t) = F1(x− ct) +G(x+ ct),
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Figure 2.12: The different stages of the solution. As before, values of u are in blue.

since all solutions of the wave equation are of this form. Using the boundary condition, we
have

0 = F1(−ct) +G(ct)

⇒ F1(z) = −G(−z),

so that

u(x, t) = −G(−x+ ct) +G(x+ ct).

Using the initial conditions, we find that

G(z) =
1

2
f(z) +

1

2c

∫ z

0

g(s)ds,

as before. Note that to determine G(x+ ct), it is fine to use the initial conditions, since the
information in G(x+ ct) comes only from positive values of x. Alternatively, we can impose
the continuity of our solution at x = ct, finding the same result for G(x). Either way, it
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u

x

u(0, t) = 0, for all t.

Figure 2.13: The wave equation string, on the half line x > 0 with fixed end u(0, t) = 0, for
all t.

follows that

u(x, t) =
1

2
f(x+ ct) +

1

2c

∫ x+ct

0

g(s)ds− 1

2
f(−x+ ct)− 1

2c

∫ −x+ct

0

g(s)ds

=
1

2
(f(x+ ct)− f(ct− x)) +

1

2c

∫ ct+x

ct−x
g(s)ds,

which is valid for t > x/c, while we still have that

u(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(s)ds,

for t ≤ x/c.
Let’s examine the characteristics to make sense out of this, see Fig. 2.15. At x = 0,

the region of dependence would usually come partially from x < 0, but that is not allowed
now. Rather, all the information comes from x > 0, and from the boundary itself. We can
pretend there is an x < 0 region, as long as we always satisfy u(0, t) = 0, for all t. This is
easily done: let us extend u for x < 0 to be the opposite of u for the corresponding positive
value −x. In other words, the overall u(x, t) is odd, as a function of x: u(−x, t) = −u(x, t):

û(x, t) =

{
u(x, t), x ≥ 0
−u(−x, t) x ≤ 0

,

then clearly û(0, t) = 0. Also, the function behaves as if it switches sign every time it hits the
boundary, as the derivative will be even9. Indeed, when the value from point (a) in Fig. 2.15
hits the boundary, it meets the value from (b), which has the opposite value. This opposite
value continues on for x > 0. Thus, in effect, the value flips at the boundary.

9Recall that the derivative of an even function is odd and the derivative of an odd function is even. Whoa!
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x

t

t = x/c

0

Figure 2.14: Our original d’Alembert solution is not valid in the shaded region, which
corresponds to t > x/c.

Free end

We consider the boundary-value problem
utt = c2uxx, x ∈ (0,∞)

ux(0, t) = 0, for all t > 0
u(x, 0) = f(x), x ∈ (0,∞)
ut(x, 0) = g(x), x ∈ (0,∞)

,

Thus, according to the boundary condition, the string is horizontal at the boundary, for all
time. We proceed as before. By d’Alembert,

u(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(s)ds.

By the same reasoning as for the fixed-end case, this is only valid when x − ct > 0, and
another solution form has to be found in the shaded region of Fig. 2.14. Again this is
expected: in the shaded region, part of the solution would come from x < 0, but we have no
information there.

As always, we have that in the shaded region10

u(x, t) = F2(x− ct) +G(x+ ct),

10Because we’re solving the wave equation.
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t

Figure 2.15: The characteristics for the wave equation on the half line, including the
“phantom” characteristics for x < 0.

where G(z) is determined as before (once again: the information in G(z) comes only from
positive x values):

G(z) =
1

2
f(z) +

1

2c

∫ z

0

g(s)ds.

Thus

u(x, t) = F2(x− ct) +
1

2
f(x+ ct) +

1

2c

∫ x+ct

0

g(s)ds.

In order to impose the boundary condition, we calculate

ux(x, t) = F ′2(x− ct) +
1

2
f ′(x+ ct) +

1

2c
g(x+ ct).

Evaluating this at x = 0, we get

0 = F ′2(−ct) +
1

2
f ′(ct) +

1

2c
g(ct)

⇒ F ′2(−ct) = −1

2
f ′(ct)− 1

2c
g(ct).

Equating −ct = z, we get

F ′2(z) = −1

2
f ′(−z)− 1

2c
g(−z)

⇒ F2(z) =
1

2
f(−z) +

1

2c

∫ −z
0

g(s)ds,

by the fundamental theorem of calculus. Thus

F2(x− ct) =
1

2
f(ct− x)− 1

2c

∫ 0

ct−x
g(s)ds,
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so that for t > x/c,

u(x, t) =
1

2
(f(x+ ct) + f(ct− x)) +

1

2c

∫ ct−x

0

g(s)ds+
1

2c

∫ ct+x

0

g(s)ds.

If we let g(x) ≡ 0, we can understand this result, using the characteristics, see Fig. 2.15.
In order to satisfy the boundary condition, we extend u(x, 0) to negative values to be an
even function. Then its derivative will be odd, and its value at 0 will be 0. We see that at
(x, t), there are two contributions:

� One from (ct+ x, 0) and one from (x− ct, 0).

� The first one is f(x+ ct)/2, the second is given by f(ct− x)/2, by our result above.

2.13 Standing wave solutions of the wave equation

Standing waves are different from traveling waves in that they stay where they are, but their
profile may change over time.

Example. The wave profile

u(x, t) = 2 cos t sinx

represents a standing wave. It looks like 2 sinx at all time t, but multiplied by a time-
dependent amplitude cos t. It is illustrated in Fig. 2.16. It is clear11 that standing waves can
often be written as linear combinations of traveling waves. Here we have

u(x, t) = sin(x− t) + sin(x+ t),

but this is not always the case.
To look for traveling wave solutions of the wave equation

utt = c2uxx,

we let

u(x, t) = T (t)X(x).

Thus X(x) represents the spatial profile, while T (t) gives the temporal part of the profile,
its time-dependent amplitude. We get

T ′′(t)X(x) = c2T (t)X ′′(x)

⇒ T ′′

T
= c2X

′′

X
.

11As clear as some trig identities.
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Figure 2.16: The standing wave profile u = 2 cos t sinx, for different values of t.

Note that the left-hand side depends on t only, while the right-hand side is a function of
only x. It follows that both sides have to be constant. Indeed, if we take an x derivative of
the equation, we get

0 = c2

(
X ′′

X

)′
,

since the left-hand side does not depend on x. Thus c2X ′′/X is constant. The same argument,
but by taking a derivative with respect to t, gives that T ′′/T is constant too. Thus we have

T ′′

T
= c2X

′′

X
= λ,

where λ is a constant. We get two ordinary differential equations:{
T ′′ = λT,
X ′′ = λ

c2
X.

Here the first equation is an ODE in t, while the second one depends on x.
As you know, we get different kinds of solutions, depending on the sign of λ. Let us

investigate all possibilities.

� λ = 0. we get T ′′ = 0 and X ′′ = 0. It follows that T = A+Bt and X = C+Dx. Thus

u = (C +Dx)(A+Bt).

In particular, we want D = 0 and B = 0, if x ∈ R, since we want bounded solutions.
On the other hand, if x is restricted to a smaller domain, the solution with D 6= 0 6= B
may be perfectly acceptable.
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� λ > 0. We write λ = r2, where r > 0. We have to solve{
T ′′ = r2T,

X ′′ = r2

c2
X,

from which it follows that12

T = Aert +Be−rt,

and

X = Cerx/c +De−rx/c,

resulting in

u = (Aert +Be−rt)(Cerx/c +Be−rx/c).

� λ < 0. For the last case, we write λ = −r2, with r > 0. We have to solve{
T ′′ = −r2T,

X ′′ = − r2

c2
X,

from which it follows that

T = A cos(rt+B sin(rt),

and

X = C cos(rx/c) +D sin(rx/c),

resulting in

u = (A cos(rt+B sin(rt))(C cos(rx/c) +D sin(rx/c)).

All of these result in standing wave solutions of the wave equation. Next, we impose
some boundary conditions.

Standing waves on a finite string

All the profiles above solve the wave equation. If we impose boundary conditions, many of
them are rules out and only some remain. As an important example, let’s consider the wave
equation on a finite interval with fixed ends, like a guitar string of length L. We have, for
x ∈ (0, L), t > 0,

utt = c2uxx,

u(0, t) = 0,

u(L, t) = 0.

12Or, you could use hyperbolic functions. Always fun!
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We have that
u(x, t) = X(x)T (t),

for standing waves. We want u(0, t) = 0, which implies that

X(0)T (t) = 0.

Since we don’t want that T (t) = 013, we need that X(0) = 0. Similarly, we need that
X(L) = 0. We already know the allowed forms for X(x):

X(x) = C +Dx,

or X(x) = Cerx/c +De−rx/c,

or X(x) = C cos(rx/c) +D sin(rx/c).

We now impose the conditions

X(0) = 0, X(L = 0),

on these possibilities.

� With X = C +Dx, we get

X(0) = 0 = C,

X(L) = 0 = C +DL,

from which it follows that both C and D are zero, so that X = 0. Not interesting.

� Next, we consider X = Cerx/c +De−rx/c. Imposing X(0) = 0, we get

C +D = 0 ⇒ D = −C.

This allows us to rewrite X(x) as

X(x) = C(erx/c − e−rx/c) = 2C sinh(rx/c).

Next, we impose X(L) = 0. We get

0 = 2C sinh(rL/c).

Clearly14, we don’t want C = 0, since this would result in u(x, t) = 0. That is not
exciting. If we want excitement, we have to impose

sinh(rL/c) = 0.

Unfortunately, the sinh function is zero only when it’s argument is zero, which would
imply r = 0, since L 6= 0 (otherwise we’d have no string. But r = 0 is not allowed for
this case, since r = 0 implies λ = 0, which was the previous case. Bummer. All that
work and no solutions. What is this? A course on how not to find solutions to PDEs?
Patience, my young apprentices. . .

13Resulting in only the extremely boring u = 0 solution. . .
14The most hated word in a math text, with the possible exception of “obviously”.
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� Inevitably, we end up with all our money on the last case15. Imposing X(0) = 0, with

X(x) = C cos(rx/c) +D sin(rx/c),

we get
C = 0.

Not a good start! We’ve just thrown out half of our last remaining non-zero solutions.
This leaves us with

X(x) = D sin(rx/c).

Next we impose X(L) = 0. We obtain

D sin(rL/c) = 0.

Since we don’t want D = 0, we need sin(rL/c) = 0, which is satisfied if

rL

c
= nπ,

where n is any integer. Since r is not allowed to be zero, we have to exclude n = 0.
Further, since we may assume that r > 0, we need only consider n ∈ Z+

0 , the set of
strictly positive integers: n ∈ {1, 2, 3, 4, . . .}. Thus we have found

Xn(x) = sin
nπx

L
, n = 1, 2, . . .

We can ignore the constant multiplication factor D, since it can be absorbed into the
multiplying function T (t), which we still have to determine. We have endowed X(x)
with an index n, to distinguish the different solutions we have found.

In summary, we find that the only standing wave solutions of the wave equation that
satisfies the boundary conditions for a fixed finite-length string are given by

un(x, t) = (A cos

(
nπct

L

)
+B sin

(
nπct

L

)
) sin

(nπx
L

)
,

for all n = 1, 2, . . ..

Modes of vibration

We call un the n-th mode of vibration of the string. The wave number of the n-th mode is
nπ/L. Over the domain x ∈ (0, L), the solution has exactly n − 1 zeros16 Note that all of
the Xn are sin functions, with increasing wave number as n increased. In other words, for

15This statement is in no way an endorsement of any gambling activity. The University of Washington
and its employees do not encourage gambling in any way or form. Except for solving PDEs.

16You should convince yourself of this statement. If you have extra time, convince your neighbor too.
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larger n, Xn has a smaller period. For increasing n we are simply cramming more periods
in the interval [0, L].

We briefly revisit the x-problem we solved:

c2X ′′ = λX,

X(0) = 0,

X(L) = 0.

This is called a Sturm-Liouville problem for X(x). The constant λ is called the eigen-
value, X(x) the eigenfunction corresponding to λ.

The method we have used to solve for the modes of the wave equation is called Sepa-
ration of Variables, because we looked for that solutions that are multiples of functions
that depend on x and t separately.

In the next chapter, we look at how we can construct very general solutions from linear
superpositions of these standing wave solutions.
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Chapter 3

Fourier series and solutions of partial
differential equations on a finite
interval

3.1 Superposition of standing waves

Since the wave equation is linear and homogeneous, we should be able to superimpose dif-
ferent solutions, in order to get new solutions.

Consider the problem

utt = c2uxx, x ∈ (0, L), t > 0,

u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0.

We show explicitly that
v = α1u1(u, t) + α2u2(x, t)

solves this problem, provided that u1 and u2 do. Here α1 and α2 are constants.
First, we check that v satisfies the PDE:

(α1u1 + α2u2)tt = α1u1tt + α2u2tt

= α1c
2u1xx + α2c

2u2xx

= c2(α1u1xx + α2u2xx)

= c2(α1u1 + α2u2)xx.

It follows that vtt = c2vxx.
Next we verify that v satisfies the boundary conditions. We have

v(0, t) = α1u1(0, t) + α2u2(0, t) = α1 · 0 + α2 · 0 = 0,

and
v(L, t) = α1u1(L, t) + α2u2(L, t) = α1 · 0 + α2 · 0 = 0.

49
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This proves what we had to show.

Example. But, be careful: this does not work for nonhomogeneous problems, even if
the nonhomogeneous part is in the boundary conditions. For instance, consider

utt = c2uxx, x ∈ (0, L), t > 0,

u(0, t) = 0, t > 0,

u(L, t) = 1, t > 0.

As you repeat the calculation above for this problem, you encounter a problem with the
second boundary condition. Bummer!

The above implies we can add our standing wave solutionsto get new, more general
solutions of the wave equation. Let

u(x, t) =
N∑
n=1

un(x, t)

=
N∑
n=1

[
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

)]
sin
(nπx
L

)
.

This is a superposition of a finite-number of standing waves. Any constant choice of An and
Bn gives a new solution. Thus u(x, t) depends on 2N parameters. The idea would be to pick
these parameters An and Bn so we can satisfy the initial conditions, if any are given.

Example. Consider the initial-value problem

utt = uxx, 0 < x < 1, t > 0,

u(0, t) = 0, t > 0,

u(1, t) = 0 t > 0,

u(x, 0) = 0, 0 < x < 1,

ut(x, 0) = 2 sin(πx)− 3 sin(4πx), 0 < x < 1.

Let

u(x, t) =
N∑
n=1

[An cos (nπt) +Bn sin (nπt)] sin (nπx) .

At this point, we have satisfied the PDE and the boundary conditions. From the initial
conditions, we get

u(x, 0) = 0 =
N∑
n=1

An sin(nπx),
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and

ut(x, 0) =
N∑
n=1

[(−An)nπ sin(nπt) +Bnnπ cos(nπt) sin(nπx)]|t=0

=
N∑
n=1

Bnnπ sin(nπx)

= 2 sin πx− 3 sin 4πx.

The first equation is easily satisfied by choosing

An = 0,

for all n. Next, we can choose N = 4, so that the second equation becomes

B1π sinπx+B22π sin 2πx+B33π sin 3πx+B44π sin 4πx = 2 sin πx− 3 sin 4πx,

which is solved by choosing

B1 =
2

π
, B2 = 0, B3 = 0, B4 =

−3

4π
.

This solves the given initial-value problem.

This whole thing feels like a cheat, right? Those were very special initial conditions! Can
we do something in general? For starters, can we show that the above is the unique solution
to the problem? The answers to these questions will be “Yes!” and “Yes!”1.

Let’s kick this up a notch©. How about if we include all standing wave solutions we
know? Can we let N →∞? We would have

u(x, t) =
∞∑
n=1

[
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

)]
sin
(nπx
L

)
.

Does this make sense? Perhaps. If An, Bn → 0 sufficiently fast, we might get a convergent
series. Such a convergent series is called a Fourier series. The big trick is to see whether
we can find An and Bn such that we can satisfy general initial conditions, not just the really
special ones we used above. Perhaps this is possible.

Example. Suppose the initial condition is given as

u(x, 0) = sinπx− 1

9
sin 3πx+

1

25
sin 5x− . . .

=
∞∑
n=1

(−1)n+1

(2n− 1)2
sin(2n− 1)πx,

and ut(x, 0) = 0. Clearly, we would need

A1 = 1, A2 = 0, A3 = −1

9
, A4 = 0, A5 =

1

25
, . . .

Can we do this for more general initial conditions?

1Yes, with exclamation points.
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3.2 Fourier series

Here is the concrete question we will answer: given f(x), c ∈ [−L,L], we wish to write f(x)
as a linear combination of sines and cosines, where all of these have period 2L. Thus, we’d
want the terms in our linear combination to contain

sin
(nπx
L

)
and cos

(nπx
L

)
,

for n = 0, 1, 2, . . .2. Before we proceed, here are some identities we need that will be very
helpful: ∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx = Lδnm,∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx = Lδnm,∫ L

−L
sin
(nπx
L

)
cos
(mπx

L

)
dx = 0,

where δnm is the Kronecker delta:

δnm =

{
1, n = m,
0, n 6= m.

These are easy to prove. Let’s look at the first one3. Recall the following trig identities:

sinα sin β − cosα cos β = − cos(α + β)

sinα sin β + cosα cos β = cos(α− β)

⇒ sinα sin β =
−cos(α + β) + cos(α− β)

2
.

This allows for an easy evaluation of the integrals. Assuming that n 6= m, we get∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx =

1

2

∫ L

−L

[
− cos

(
(n+m)πx

L

)
+ cos

(
(n−m)πx

L

)]
dx

=
1

2

−sin
(

(n+m)πx
L

)
(n+m)π/L

L
−L

+
1

2

sin
(

(n−m)πx
L

)
(n−m)π/L

L
−L

=
1

2

(
−sin(n+m)π + sin(n+m)π

(n+m)π/L

)
+

1

2

(
sin(n−m)π + sin(n−m)π

(n−m)π/L

)
= 0.

2Fourier was declared crazy by his contemporaries for wanting to answer this question, even though he
was successful!

3You know the drill: you should look at the other two.
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On the other hand, if n = m, then∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx =

∫ L

−L
sin2

(nπx
L

)
dx

=
1

2

∫ L

−L

(
1− cos

(
2nπx

L

))
dx

= L,

since the integral of the second term is zero. Combining these two results, we get the desired
identity: ∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx = Lδnm.

The others are proven in a similar way.
Back to our main business: we wish to find an and bn such that

f(x) = A+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
.

Let’s start by taking the average of this expression:

1

2L

∫ L

−L
f(x)dx = A+

1

2L

∫ L

−L
dx

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
.

Since the average of all the sines and cosines is zero, we get

A =
1

2L

∫ L

−L
f(x)dx.

Next, let m = 1, 2, . . .. Then

f(x) sin
(mπx

L

)
= A sin

(nπx
L

)
+
∞∑
n=1

an cos
(nπx
L

)
sin
(mπx

L

)
+
∞∑
n=1

bn sin
(nπx
L

)
sin
(mπx

L

)
.

Once again, we integrate:∫ L

−L
f(x) sin

(mπx
L

)
dx = A

∫ L

−L
sin
(mπx

L

)
dx+ +

∞∑
n=1

an

∫ L

−L
cos
(nπx
L

)
sin
(mπx

L

)
dx

+
∞∑
n=1

bn

∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx

=
∞∑
n=1

bn

∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx.
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The only nonzero terms occur for n = m, so that

bm =
1

L

∫ L

−L
f(x) sin

(mπx
L

)
dx, m = 1, 2, . . . .

Similarly, we get

am =
1

L

∫ L

−L
f(x) cos

(mπx
L

)
dx, m = 1, 2, . . . .

Note that A = a0/2, so that we may write

f(x) =
a0

2
+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

with

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, n = 0, 1, 2, . . . ,

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, n = 1, 2, . . . .

This series for f(x) using trig functions is called its Fourier series. It arises not only in
wave and PDE problems, but also in image processing, data analysis, etc.

Example. Consider
f(x) = x2, x ∈ [−1, 1],

as plotted in Fig. 3.1. For this example, L = 1, and we get

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

=

∫ 1

−1

x2 cos(nπx)dx

=
4nπ(−1)n

n3π3

=
4(−1)n

n2π2
,

where we have used integration by parts a few times4. Next,

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx =

∫ 1

−1

x2 sin(nπx)dx = 0,

4Per the Constitution, you should check this.
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x

f(x)

Figure 3.1: The function f(x) = x2 over its domain of definition x ∈ [−L,L].

since the integrand is an odd function. It follows that for x ∈ [−1, 1],

x2 =
a0

2
+
∞∑
n=1

an cosnπx

=
1

3
+

4

π2

∞∑
n=1

(−1)n

n2
cosnπx.

This example immediately leads to some special cases and remarks.

Remarks.

� When we construct the Fourier series for f(x) = x2, for x ∈ [−1, 1], we are in fact
constructing the Fourier series for the periodic extension of f(x), consisting of the
periodic repetition of the function between [−1, 1], as plotted in Fig. 3.2.

� If f(x) is even then bn = 0, and

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

=
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx,

and

f(x) =
a0

2
+
∞∑
n=1

an cos
(nπx
L

)
.
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x

f(x)

Figure 3.2: The periodic extension function of the function f(x) = x2.

This is called the Fourier cosine series.

� If f(x) is odd then an = 0, and

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

=
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx,

and

f(x) =
∞∑
n=1

bn sin
(nπx
L

)
.

This is called the Fourier sine series.

Next, we will start to use Fourier series to solve PDEs.

3.3 Fourier series solutions of the wave equation

Let’s return to the problem of a finite string with fixed ends:

utt = c2uxx, x ∈ (0, L), t > 0,

u(x, 0) = f(x), x ∈ (0, L),

ut(x, 0) = g(x), x ∈ (0, L),

u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0.
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We already know that

u(x, t) = A+
∞∑
n=1

sin
(nπx
L

)(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
,

is the most general solution of the wave equation that satisfies the boundary conditions,
found using separation of variables. It remains to impose the initial conditions. First, by
letting t = 0, we get

f(x) = A+
∞∑
n=1

an sin
(nπx
L

)
.

Next, we take a derivative of u(x, t) with respect to t, and we let t = 0. This results in

g(x) =
∞∑
n=1

bn
nπc

L
sin
(nπx
L

)
.

Because of the boundary conditions (fixed end), we use an odd extension of f(x). Using the
Fourier sine series, we get

A = 0,

and

an =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx,

for n = 1, 2, . . .. Similarly, we use an odd extension for g(x), since the above indicates we
wish to use a Fourier sine series. We get

bn
nπc

L
=

2

L

∫ L

0

g(x) sin
(nπx
L

)
dx,

⇒ bn =
2

nπc

∫ L

0

g(x) sin
(nπx
L

)
dx.

also for n = 1, 2, . . ..
This completely determines the solution of the wave equation problem with the given

initial data.

Let’s consider a different problem, namely that with two free ends.

utt = c2uxx, x ∈ (0, L), t > 0,

u(x, 0) = f(x), x ∈ (0, L),

ut(x, 0) = g(x), x ∈ (0, L),

ux(0, t) = 0, t > 0,

ux(L, t) = 0, t > 0.



58 CHAPTER 3. FOURIER SERIES

We begin by using separation of variables to find the standing wave solutions. Let

u(x, t) = X(x)T (t).

Then
T ′′

c2T
=
X ′′

X
= λ,

so that λ has to be constant. It follows that

X ′′ = λX.

Note that the boundary conditions imply that X ′(0) = 0 = X ′(L). We consider three
different cases.

� λ = 0. We have
X ′′ = 0 ⇒ X = D,

where we have already used the boundary conditions. This case results in a constant
(as a function of x) standing wave, given by

u0(x, t) = A0 +B0t,

where we have equated D = 1, since we can absorb the constant in the values of A0

and B0.

� λ > 0. We set λ = r2, where r > 0. Then

X(x) = c1 cosh(rx) + c2 sinh(rx).

To impose the boundary conditions, we need

X ′(x) = c1r sinh(rx) + c2 cosh(rx).

From X ′(0) = 0, it follows that
0 = c2.

Next, from X ′(L) = 0, we are left with

0 = c1r sinh(rL),

which requires c1 = 0, so that the exponential case does not result in any solutions.

� λ < 0. Now we let λ = −r2, again with r > 0. We know we get solutions of the form

X(x) = c1 cos(rx) + c2 sin(rx).

For the boundary conditions, we need

X ′(x) = −c1r sin(rx) + c2r cos(rx).
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From X ′(0) = 0 we get
c2r = 0 ⇒ c2 = 0.

Next, using X ′(L) = 0, we get

−c1r sin(rL) = 0.

Since we wish to avoid c1 = 0, we impose that

r =
nπ

L
,

so that
Xn(x) = cos

(nπx
L

)
,

for n = 1, 2, 3, . . .. We get the standing wave solutions

un(x, t) = cos
(nπx
L

)(
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

))
Using superposition, we get that the most general solution satisfying the boundary
conditions is given by

u(x, t) = A0 +B0t+
∞∑
n=1

cos
(nπx
L

)(
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

))
.

It remains to impose the initial conditions, so as to determine the constants An and
Bn. First, we plug in x = 0. We get

f(x) = A0 +
∞∑
n=1

An cos
(nπx
L

)
.

Using an even extension of f(x), we get

An =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx, n = 1, 2, . . . ,

and

A0 =
1

L

∫ L

0

f(x)dx,

using the formulae for the Fourier cosine series. Lastly, to impose the second initial
condition, we take a derivative with respect to t, and we let t = 0. We get

g(x) = B0 +
∞∑
n=1

Bn
nπc

L
cos
(nπx
L

)
.
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Using an even extension for g(x), we get that

B0 =
1

L

∫ L

0

g(x)dx,

and

nπc

L
Bn =

2

L

∫ L

0

g(x) cos
(nπx
L

)
dx

⇒ Bn =
2

nπc

∫ L

0

g(x) cos
(nπx
L

)
dx.

Note that in a practical problem, you might have to impose that the average of the
initial velocity g(x) is zero. If this is not the case, your solution to the string-with-
free-ends problem will have a component that is linearly growing!

3.4 The heat equation

Consider the problem

ut = σuxx, x ∈ (0, L), t > 0,

u(x, 0) = f(x), x ∈ (0, L),

u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0.

Here σ > 0 is the heat conductivity coefficient. The heat equation describes heat flow in a
medium with heat conductivity σ. We will consider only the one-dimensional heat equation.

As for the wave equation, we begin by looking for solutions of the form

u(x, t) = X(x)T (t).

We get

XT ′ = σX ′′T

⇒ T ′

σT
=
X ′′

X
= λ.

Here λ is a separation constant, using the same argument we used for the wave equation:
since the left-hand side depends only on t, and the right-hand side depends only on x, they
must both be constant. It follows that X(x) satisfies the following problem:

X ′′ − λX = 0,

X(0) = 0,

X(L) = 0.
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This is the same exact problem for X as we had for the wave equation with fixed ends
(Dirichlet boundary conditions). As a consequence, we know we get solutions only for
λ = −r2 < 0, and

Xn(x) = sin
(nπx
L

)
, n = 1, 2, . . . ,

and

λn = −n
2π2

L2
.

It follows that Tn satisfies the ordinary differential equation

T ′n
σTn

=
n2π2

L2
⇒ Tn = e−σn

2π2t/L2

.

We could have included a multiplicative constant, but this is not necessary, as the next step
is to take a linear superposition of the solutions un(x, t) = Xn(x)Tn(t) we have just found:

un(x, t) = e−σn
2π2t/L2

sin
(nπx
L

)
.

The superposition results in the general solution

u =
∞∑
n=1

cne
−σn2π2t/L2

sin
(nπx
L

)
.

It remains to impose the initial condition. At t = 0, we get

f(x) =
∞∑
n=1

cn sin
(nπx
L

)
,

since all the exponentials become 1, when evaluated at t = 0. Using an odd extension of
f(x), we get that

cn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx, n = 1, 2, . . . .

Thus, we have solved the initial-value problem for the heat equation with prescribed zero
temperature at the ends5.

3.5 Laplace’s equation

Consider the problem

uxx + uyy = 0, x ∈ (0, L), y ∈ (0,M).

This is Laplace’s equation, posed on a rectangle. You could imagine getting to Laplace’s
equation by wanting to find time-independent (or stationary) solutions of the multi-dimensional

5That was quick! We’re getting to be good at this.
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ux(0, y) = 0

u(x, 0) = f(x)

ux(L, y) = 0

u(x,M) = 0

L

M

x

y

0

Figure 3.3: The domain for Laplace’s equation on the rectangle.

wave equation utt = c2(uxx+uyy) or of the multi-dimensional heat equation ut = σ(uxx+uyy).
We impose boundary conditions as follows, see Fig. 3.3:

u(x, 0) = f(x),

ux(0, y) = 0,

ux(L, y) = 0,

u(x,M) = 0.

First, we look for separated solutions:

u(x, y) = X(x)Y (y),

and we get

X ′′Y +XY ′′ = 0 ⇒ X ′′

X
= −Y

′′

Y
= λ.

As before, λ is a constant, since X ′′/X and −Y ′′/Y are dependent on x and y separately.
We have that

X ′′ − λX = 0,

X ′(0) = 0,

X ′(L) = 0.

As usual, we consider different cases for λ.

� λ > 0. You should check that this does not result in any solutions for X(x).
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� λ = 0. This results in the solution X0(x) = 1. Similarly, Y0(y) = A + By. Imposing
Y (M) = 0, we find 0 = A + BM , so that A = −BM . Thus Y0(y) = B(y − M).
This gives rise to the constant solution u0(x, y) = y −M , where we have omitted the
multiplicative constant6.

� λ < 0. As before, we get

X = c1 cos(rx) + c2 sin(rx).

To impose the boundary conditions, we need

X ′ = −c1r sin(rx) + c2r cos(rx).

From the first boundary condition, we get

0 = c2r ⇒ c2 = 0.

The second boundary condition gives

0 = −c1r sin(rL) ⇒ r =
nπ

L
.

This gives rise to

Xn(x) = cos
(nπx
L

)
, n = 1, 2, . . . .

Next, we have to solve for Yn(y). We have

Y ′′n −
n2π2

L2
Yn = 0

⇒ Yn = An cosh
(nπ
L

(y −M)
)

+Bn sinh
(nπ
L

(y −M)
)
,

where we have opted to write the solution using hyperbolic functions of a shifted
argument. Imposing the boundary condition yn(M) = 0, we find that

An = 0.

It follows that
Yn(y) = Bn sinh

(nπ
L

(y −M)
)
.

The linear superposition of all solutions is7

u(x, y) = B0(y −M) +
∞∑
n=1

Bn sinh
(nπ
L

(y −M)
)

cos
(nπx
L

)
.

6For now. Don’t worry. It’ll come back.
7It’s back!
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Imposing the one remaining boundary condition, we get

u(x, 0) = f(x) = −MB0 −
∞∑
n=1

Bn sinh

(
nπM

L

)
cos
(nπx
L

)
.

the rest is some simple Fourier series stuff, using an even extension8 of f(x)!

� For n = 0,

−MB0 =
1

L

∫ L

0

f(x)dx

⇒ B0 = − 1

ML

∫ L

0

f(x)dx.

� For n = 1, 2, . . .,

−Bn sinh

(
nπM

L

)
=

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx

⇒ Bn = − 2

L sinh
(
nπM
L

) ∫ L

0

f(x) cos
(nπx
L

)
dx.

This completely determines the solution of the Laplace problem on the rectangle.

3.6 Laplace’s equation on the disc

Consider the problem (see Fig. 3.4)

uxx + uyy = 0, x2 + y2 < R2,

u(x, y) = f(x, y), x2 + y2 = R2.

It is clear that we should reformulate this problem in polar coordinates. Let

v(r, θ) = u(x, y).

Then9

ux =
∂u

∂x
=
∂v

∂r

∂r

∂x
+
∂v

∂θ

∂θ

∂x
.

From
r2 = x2 + y2,

8Because the right-hand side is a cosine series.
9You can see the chain rules coming a mile away!
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x2 + y2 = R2

x

y

Figure 3.4: The domain for Laplace’s equation on the disc.

it follows that

2r
∂r

∂x
= 2x ⇒ ∂r

∂x
=
x

r
.

similarly, from

tan θ =
y

x
,

we get

sec2 θ
∂θ

∂x
= − y

x2
⇒ r2

x2

∂θ

∂x
= − y

x2
⇒ ∂θ

∂x
= − y

r2
.

Thus

ux = vr
x

r
− vθ

y

r2

= vr cos θ − vθ
sin θ

r
.

Next, we apply this same process to get uxx = (ux)x: in other words, we repeat the above,
but with v replaced by the expression we found for ux. This gives

uxx =

(
vr cos θ − vθ

sin θ

r

)
r

cos θ −
(
vr cos θ − vθ

sin θ

r

)
θ

sin θ

r

=

(
vrr cos θ − vrθ

sin θ

r
+ vθ

sin θ

r2

)
cos θ−

(
vrθ cos θ − vr sin θ − vθθ

sin θ

r
− vθ

cos θ

r

)
θ

sin θ

r

= vrr cos2 θ − 2vrθ
sin θ cos θ

r
+ 2vθ

sin θ cos θ

r2
+ vr

sin2 θ

r
+ vθθ

sin2 θ

r2
.
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Similarly, we find

uyy = vrr sin2 θ + 2vrθ
sin θ cos θ

r
− 2vθ

sin θ cos θ

r2
+ vr

sin2 θ

r
+ vθθ

cos2 θ

r2
.

Adding these expressions, we get amazing simplifications10:

uxx + uyy = 0 ⇒ vrr +
vr
r

+
vθθ
r2

= 0.

We can reformulate our original problem in polar coordinates:

vrr +
vr
r

+
vθθ
r2

= 0,

v(R, θ) = f(θ), θ ∈ [0, 2π),

since the boundary condition is given on the circle of radius R.

As usual, we apply separation of variables to look for solutions of the form

v(r, θ) = S(r)T (θ).

We get

S ′′T +
S ′T

r
+
T ′′S

r2
= 0

⇒ r2S
′′

S
+
rS ′

S
+
T ′′

T
= 0

⇒ r2S
′′

S
+
rS ′

S
= −T

′′

T
= λ,

where λ is a separation constant. Indeed, in this last line, the left-hand side is a function of
r only, while −T ′′/T depends only on θ. Thus both are constant.

Since the equation for T is the simplest, we solve it first.

� If λ = 0, then

T ′′ = 0 ⇒ T = a+ bθ.

We want v(r, θ) to be single-valued as a function of both r and θ. This implies that T
should be a periodic function of θ, with period 2π. Thus, b = 0. This leaves us with

T0 = 1,

ignoring the multiplicative constant a.

10Always a good sign.
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� If λ = α2 > 0, with r > 0, we get

T = a cosαθ + b sinαθ.

Requiring that T is periodic with period 2π, we find that

α = n,

an integer. Then λn = n2. This gives

Tn = an cosnθ + bn sinnθ.

� If λ = −α2 < 0, we find no 2π-periodic solutions11.

Next, we solve for S(r).

� With λ0 = 0, then

r2S ′′0 + rS ′0 = 0

⇒ rS ′′0 + S ′0 = 0

⇒ (rS ′0)′ = 0

⇒ rS ′0 = c1

⇒ S0 = c1 ln r + c2.

This is infinite as r → 0, which we do not want to allow12. Thus we require c1 = 0, so
that

S0 = 1,

where we, once again, have ignored the multiplicative constant. Thus,

v0(r, θ) = S0(r)T0(θ) = 1.

� Next, we examine λn = n2, n = 1, 2, . . .. We have

r2S ′′n + rS ′n − n2Sn = 0.

This is an Euler or equivariant ordinary differential equation. Thus we look for
solutions of the form

S = rp.

We get

p(p− 1) + p− n2 = 0

⇒ p2 = n2

⇒ p = ±n.
11Don’t make me say it. OK, fine: you should check this.
12Nothing goes to infinity on our watch!
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This gives

Sn = cnr
n + dnr

−n.

Since n > 0, the second term →∞ as r → 0. Thus we require dn = 0. Thus

Sn = rn,

up to a multiplicative constant.

The general solution is a linear superposition of all solutions we have found:

v(r, θ) =
a0

2
+
∞∑
n=1

rn(an cosnθ + bn sinnθ).

Having found the general solution, we impose the boundary condition

v(R, θ) = f(θ).

This results in

f(θ) =
a0

2
+
∞∑
n=1

Rn(an cosnθ + bn sinnθ).

Using the Fourier series formulae, we find that

an =
1

πRn

∫ 2π

0

f(θ) cosnθdθ,

for n = 0, 1, . . ., and

bn =
1

πRn

∫ 2π

0

f(θ) sinnθdθ,

for n = 1, 2, . . .. This completely determines the solution to the Laplace equation posed on
the inside of a circle.



Chapter 4

The method of characteristics

4.1 Conservation laws

Let’s go back to wave behavior. We’ll go beyond the wave equation.

Derivation of a general scalar conservation law

A conservation law tells us the way in which a particular quantity can change. The simplest
examples you know are that in conservative systems, energy is conserved.

Suppose we have a one-dimensional setting, for convenience we call it the x-axis. Suppose
the quantity Q changes with our dynamics.

Example. Q could represent

� the number of cars in a traffic flow problem,

� the number of particles in molecular chemistry problem,

� the energy of a physical system,

� the number of people in a social dynamics problem.

Let u(x, t) denote the density of Q. In other words, Q in S is given by

Q =

∫ b

a

u(x, t)dx.

x = a x = b

xS

Figure 4.1: A one-dimensional domain, setting up for the derivation of a conservation law.

69
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The quantity Q in S can change in two ways:

1. Q could enter or leave S through a or b, and

2. Q is created or destroyed in S.

It follows that the rate of change of Q, dQ/dt, is given by the rate at which Q enters or
leaves at x = a, plus the rate at which Q enters or leaves at x = b, plus the rate at which Q
is created or destroyed in S. In equations,

d

dt

∫ b

a

u(x, t)dx = φ(a, t)− φ(b, t) +

∫ b

a

f(x, t)dx,

where φ(x, t) is the rate at which Q moves past x at time t. If φ(x, t) > 0, then the flow is
in the positive x direction, otherwise it is in the negative x direction. Thus, the net rate at
which Q enters through the ends of S is

φ(a, t)− φ(b, t).

The − sign for the second term is a consequence of our flow convention: if the flow of Q
through x = b is to the right, it is leaving S, thus it results in a decrease.

Lastly, if Q is created or destroyed in S, this happens with a source or sink function
f(x, t), resulting in an amount of Q that is added equal to∫ b

a

f(x, t)dx.

Our rate-of-change equation becomes

d

dt

∫ b

a

u(x, t)dx = φ(a, t)− φ(b, t) +

∫ b

a

f(x, t)dx.

Suppose that u and φ have continuous derivatives, then∫ b

a

ut(x, t)dx = −
∫ b

a

φx(x, t)dx+

∫ b

a

f(x, t)dx

⇒
∫ b

a

(ut + φx − f)dx = 0.

Since this is true for all a and b, we get that

ut + φx = f.

This is called the differential form of the conservation law.
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Constitutive relations

Even if we consider f(x, t) as given, we still have one partial differential equation for two
quantities u and φ. A constitutitve relation relates u and φ. In many cases such a relation
gives φ as a function of u. Then φ = φ(u), and we get

ut + φ′(u)ux = f.

Example. The inviscid Burgers equation

ut + uux = 0,

is a conservation law with f = 0, φ = u2/2. However, there are more possibilities. The same
equation can be written as

uut + u2ux = 0 ⇒
(

1

2
u2

)
t

+

(
1

3
u3

)
x

= 0.

If we let

v =
1

2
u2,

then
u = (2v)1/2,

and

φ =
u3

3
=

1

3
(2v)3/2,

and the Burgers equation can be rewritten as

vt +

(
1

3
(2v)3/2

)
x

= 0.

Which form of the equation we choose will matter in the following lectures. In practice, it
is of course dictated by the application we are working on.

4.2 Examples of conservation laws

Diffusion

Consider the undesirable scenario of a pollutant spreading in stagnant water in a horizontal
pipe, see Fig. 4.2. Let u(x, t) denote the concentration of pollutant (in mass/length). Then

ut + φx = f

is our conservation law. Assume that we have no magical pollutant eating piranhas in the
pipe, and no pollutant is destroyed or created, then f = 0. Next, we need to relate the flux
function φ to the concentration u.
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x

Figure 4.2: Diffusion of a pollutant in stagnant water.

Lots of pollutant

Less
Less

x

(a) (b)

Figure 4.3: Initial concentration of a pollutant in stagnant water.

Suppose we have an initial concentration u0(x) shown below in Fig. 4.3. We expect that
pollutant will flow from areas where there is a lot to areas where there is less. If ux is
positive, as in (a), then φ should be negative so that pollutant flows to the left. If, at (b),
ux is negative, then φ should be positive and u will flow to the right. The simplest way to
make this happen is Fick’s Law:

φ(x, t) = −Dux(x, t),

where D > 0 is the diffusion constant.

Putting all of this together, we get

ut + φx = 0

⇒ ut + (−Dux)x = 0

⇒ ut = Duxx,

the heat or diffusion equation!

Traffic flow

This goes back to studies by Whitham and Lighthill in the 50s. We approximate the number
of cars per unit length by a continuous function u(x, t). Assuming there are no exits or
entrances, we get

f = 0,
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so that our conservation law becomes

ut + φx = 0.

As before, we have to determine a relation between φ and u.

φ = cars/time unit

= Rate at which cars are passing x at t

= u× v,

where u is the car density and v is the velocity. Thus, we need to relate the velocity v to u,
and we will be done. Clearly1, if u is high then v will be low, and if u is near zero, v should
be maximal, the speed limit. The simplest way to do this is

v = v1 − au,

where v1 is the speed limit and a is a positive constant. As u→ v1/a, v → 0, thus v1/a = u1

is the maximal density possible. We can rewrite the velocity as

v = v1

(
1− u

u1

)
,

for u ∈ [0, u1]. Our constitutive relation becomes

φ = uv = v1u

(
1− u

u1

)
= v1

(
u− u2

u1

)
.

This last form is less instructional, but it is easier to take a derivative. The conservation law
becomes

ut + φx = 0

⇒ ut + v1

(
ux −

2uux
u1

)
= 0

⇒ ut + v1

(
1− 2u

u1

)
ux = 0.

4.3 The method of characteristics

We will use the method of characteristics to solve conservation laws of the form

ut + φx = f,

u(x, 0) = u0(x),

1That word again!
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x(t)

x

t

x0

Figure 4.4: A characteristic curve in the (x, t) plane.

where −∞ < x <∞, t > 0, unless otherwise stated.
Let’s start with the simplest equation of this form, the advection equation. Suppose

that φ = cu, then we have, with f = 0,

ut + cux = 0,

u(x, 0) = u0(x).

The method of characteristics looks for special curves in the (x, t) plane along which our
PDE becomes an ODE. In other words, we wish to find x(t) in the (x, t) plane such that we
only have to solve ODEs along this curve, see Fig. 4.4.

Along these curves u(x, t) becomes a function of t only. Then

d

dt
u(x(t), t) = ux

dx

dt
+ ut.

We compare this expression with the PDE we wish to solve

ut + cux = 0.

We see that if we pick the curves (called the characteristic curves or characteristics)
such that

dx

dt
= c,

then our PDE simply becomes
du

dt
(x(t), t) = 0.

Thus u is constant along characteristic curves in this case. The value of the constant is of
course determined by the initial conditions.
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Thus, we have to solve

du

dt
= 0, along curves for which

dx

dt
= c, so that

u(x, 0) = u0(x),

the given initial condition. We get

dx

dt
= 0 ⇒ x = ct+ x0,

where x0 is the starting point of the characteristic curve at t = 0. Next, from

du

dt
= 0 ⇒ u = A(x0),

a constant, which could be different, depending on which characteristic we are solving for u.
We know that at t = 0

u(x(t), t)|t=0 = u(x(0), 0) = u(x0, 0) = u0(x0).

We also have that
x0 = x− ct,

and thus
u = u0(x− xt),

which is the general solution to our advection equation. It shows that the advection equation
simply moves the initial condition to the right with velocity c, see Fig. 4.5.

Example. Consider

ut + 4ux = 0,

u(x, 0) = arctan(x).

We have to solve
du

dt
= 0,

along curves for which
dx

dt
= 4 ⇒ x = 4t+ x0.

It follows that
u = arctan(x0) = arctan(x− 4t).

Next, we consider the case of a nonhomogeneous advection equation. We have

ut + cux = f(x, t).
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x

t

slope 1/c

x0

t = x−x0
c

Figure 4.5: The characteristics for the advection equation.

Proceeding as before, we look for curves x(t) so that we get ODEs. Along these curves,

d

dt
u(x(t), t) = ut + ux

dx

dt
.

Thus we solve

dx

dt
= c,

x(0) = x0.

The characteristics are the solutions of this system. Along the characteristics, we have to
solve

du

dt
= f(x(t), t),

which is easily solved by simply integrating both sides.

Example. Consider the nonhomogeneous problem

ut + 4ux = 1,

u(x, 0) = arctan(x).

We have to solve
dx

dt
= 4 ⇒ x = 4t+ x0.

Along these straight-line characteristics, we solve

du

dt
= 1 ⇒ u = t+ A,
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where A is a constant of integration. Evaluating this at t = 0, we get

u(x0, 0) = A = arctan(x0).

It follows that
u = t+ arctan(x− 4t).

General linear conservation laws

A general linear conservation law is of the form

ut + c(x, t)ux = f(x, t),

where we assume we have initial conditions

u(x, 0) = u0(x).

As before, we have to solve the ODEs

du

dt
= f(x, t), along curves determined by

dx

dt
= c(x, t), x(0) = x0.

The second equation is an ODE for x(t), but in general it may be hard to solve. Once it is
solved, the first equation gives us u as a function of t, along these characteristics. Note that
in this case, the characteristics are typically not straight lines.

Example. Consider the initial-value problem

ut + xux = 0,

u(x, 0) =
1

1 + x4
.

We solve for the characteristics first. We have

dx

dt
= x

⇒ d

dt
ln |x| = 1

⇒ ln

∣∣∣∣ xx0

∣∣∣∣ = t

⇒ x = x0e
t.

Next, since
du

dt
= 0,
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x

t

Figure 4.6: The characteristics for different values of x0 with c(x, t) = x.

along the characteristics, with initial condition

u(x, 0) =
1

1 + x4
.

We get

u = A,

a constant. Imposing the initial condition at t = 0,

u(x0, 0) =
1

1 + x4
0

= A.

It follows that

u =
1

1 + x4e−4t
,

where we have used that x0 = x exp(−t). The characteristics are not straight lines in this
case. They are shown in Fig. 4.6.

Nonlinear conservation laws

Suppose that φ = φ(u), then our conservation law ut + φx = f becomes

ut + φ′(u)ux = f.

Define

c(u) := φ′(u).
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Our PDE is rewritten as

ut + c(u)ux = f.

It follows that we have to solve

du

dt
= f, u(x0, 0) = u0(x0),

along curves determined by
dx

dt
= c(u), x(0) = x0.

In general this is a coupled, messy system of ODEs. We can make some more progress if
f ≡ 0. Then the first ODE becomes

du

dt
= 0 ⇒ u = u0(x0).

Thus this equation tells us that u is constant along characteristics, even though at this point
we do not yet know what these characteristics are. We can substitute this result into our
ODE for the characteristics:

dx

dt
= c(u0(x0)).

Since the right-hand side is constant, we get

x = x0 + tc(u0(x0)).

It follows that the characteristics are all straight lines, but with varying slopes depending
on x0, as illustrated in Fig. 4.7

The slope depends not only on where (x0) we start, but also on what the initial condition
u0 is there. In order to get the full solution to the problem, we need to solve the characteristic
equation x = x0 + tc(u0(x0)) for x0 as a function of x and t. More often than not, this is
not possible. In most cases, we have to be satisfied with an implicit representation of the
solution.

Example. Let φ = u2/2. Then c(u) = u, and we consider the initial-value problem

ut + uux = 0,

u(x, 0) =

{
0, x ≤ 0,

e−1/x, x > 0.

The characteristics are given by

x = x0, x0 ≤ 0,

x = x0 + te−1/x0 , x0 > 0.
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x

t

slope= 1
c(u0(x0))

x0

Figure 4.7: The characteristics for different values of x0 with different slopes 1/c(u0(x0)).

There is no way for us2 to solve this3 for x0 as a function of x and t. However, we can obtain
a perfectly fine implicit solution:

u(x, t) =

{
0, x ≤ 0,

e−1/x0 , x > 0,

where x0 is defined by the equation

x = x0 + te−1/x0 .

A plot of the characteristics is shown in Fig. 4.8.

4.4 Breaking and gradient catastrophes

We have seen that the characteristics for the equation

ut + c(u)ux = 0, u(x, 0) = u0(x),

are all straight lines, with slope 1/c(u0(x0)), where x0 is the starting point of the character-
istic at t = 0.

Even though the characteristics are just straight lines, things4 can get very interesting.
Let’s see what can happen.

2Or anyone!
3Other than numerically.
4Technical term.



4.4. BREAKING AND GRADIENT CATASTROPHES 81

x

t

Figure 4.8: The characteristics for the problem with the piecewise defined initial condition.

u0(x)

x

Figure 4.9: The initial profile u0(x).

1. The characteristics are parallel. Our solution is implicitly given by

x = x0 + tc(u0(x0)),

u = u0(x0).

Suppose that we start with a profile as shown in Fig. 4.9.

Following the initial condition along the characteristics, we see that the initial values
simply translate as we go forward in time, see Fig. 4.10. Indeed, if c(u0(x0)) = c, a
constant, then x0 = x− ct, and

u = u0(x− ct).

2. The characteristics are spreading out. Starting from an arctan-like profile, we get
the situation depicted in Fig. 4.11. Now the values of the solution get spread out, as
the values follow the characteristics. Thus, spreading characteristics lead to smoother
solutions.
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u0(x)

x

u0(x− ct)

t

Figure 4.10: Moving the initial condition along the parallel characteristics.

3. The characteristics are crossing, as in Fig. 4.12. If the characteristics cross, then
the values of u0(x) between two crossing characteristics starting at a and b get squeezed
together as t increases. Thus the solution becomes locally steeper, since rise/run→ 0,
since run→ 0 as t approaches the time at which the characteristics cross. At that time,
the solution becomes infinitely steep (i.e., it has a vertical tangent), which implies
that the differential form of the conservation law is no longer valid. Indeed,
to derive the differential form, we assumed that all derivatives of u existed and were
continuous. If one or all of these derivatives→∞, we have to revisit the integral form
of the conservation law. Up to the time where we first get the vertical tangent, the
differential form works well. Past that time, we have a problem. As is seen in Fig. 4.12,
the crossing characteristics give rise to a wedge-like region where any point has multiple
characteristics passing through it. Outside of this wedge, we can immediately see what
the value of u is by tracing back the unique characteristic going through the point. The
value of the initial condition on that characteristic is the value of the solution. For
points in the wedge, this does not work, as it is unclear what characteristic to follow
back.

The formation of the solution with a vertical tangent is called a gradient catastro-
phe5.

Let’s do a few examples.

Example. Consider the problem

ut + uux = 0,

5Wow. Sounds serious. It is.
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Figure 4.11: Moving the initial condition along the spreading characteristics.

u(x, 0) = arctan(x).

The implicit solution to this problem is given by

u(x, t) = arctan(x0),

x = x0 + tc(u0(x0))

= x0 + tu0(x0)

= x0 + t arctan(x0).

We cannot solve this last equation for x0 as a function of x and t, and an implicit solution
is the best we can do. However, we can plot the characteristics. We have

t =
x− x0

arctan(x0)
.

These characteristics, for varying x0 are plotted in Fig. 4.11. We see that the characteristics
are spreading out, and the initial profile of a front-like arctan becomes less steep as time
progresses, since the characteristics in the region of the front are fanning out.

Example. Consider the problem

ut + uux = 0,

u(x, 0) = − arctan(x).
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x

t

u0(x)

u(x, t = 0.8)

Figure 4.12: Moving the initial condition along the crossing characteristics.

This is almost the same problem as above, but the sign of the initial condition is flipped.
The implicit solution to this problem is given by

u(x, t) = − arctan(x0),

x = x0 + tc(u0(x0))

= x0 + tu0(x0)

= x0 − t arctan(x0).

As before, we cannot solve this last equation for x0 as a function of x and t, and an implicit
solution is the best we can do. However, we can plot the characteristics. We have

t =
−x+ x0

arctan(x0)
.

These characteristics, for varying x0 are plotted in Fig. 4.13 (left). We see that the charac-
teristics are crossing, with an apparent gradient catastrophe occurring at t = 16. A wedge
region where the characteristics cross is formed. A few time slices of solution profiles are
shown in the right panel of Fig. 4.13. We note that the front profile becomes steeper as we
approach the gradient catastrophe time, referred to as the breaking time.

As discussed, if the characteristics cross, we will get ux, ut →∞, as t→ tb, the so-called
breaking time. Now what? The PDE is no longer and we need to rethink what we are doing.

6We’ll check whether this is correct soon.
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x

t

x

u(x, 0)

u(x, 0.4)

u(x, 0.8)

u(x, 1)

Figure 4.13: Crossing characteristics and the solution profiles that go with them.

We know that the slope of the characteristics is the inverse of the velocity:

slope =
1

c(u0(x0))
.

Let’s look at the effect this has on different profiles. Let’s assume, as in our examples that
c(u) is an increasing function of u. In other words, higher values of u will move with higher
velocities. Suppose we start with an initial profile u0(x) that resembles an increasing front,
as in Fig. 4.14. Since higher values of u travel faster, the top part of the profile will move
more ahead of the bottom part, and the overall effect is that of the spreading out of the
solution, i.e., the solution becomes less steep. As shown in the figure, this corresponds to
two characteristics where the right one has a lesser slope 1/c2 than the left one 1/c1, leading
to the characteristics fanning out. Thus the values of u in between u1 and u2 are being
spread out over a larger x interval.

On the other hand, if we start with a downward front, we obtain the situation depicted
in Fig. 4.15. Now the higher velocities of the higher values of u lead to the steepening of the
profile. The characteristics cross, and the values of u between u1 and u2 are condensed in an
x interval that shrinks to a point at the crossing of the characteristics, leading to a profile
that is infinitely steep: the solution becomes steeper as the interval length decreases, until
it becomes vertical.

It might be tempting to guess that the solution behaves as illustrated in Fig. 4.16. This
is incorrect! The evolution from the first panel to the second one is correct. But at the
second panel, the solution has a vertical tangent, and we cannot rely on the characteristics
or anything else coming from the PDE anymore. Since the PDE is no longer valid, we cannot
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x

u0(x)

c2 > c1

c1

1
c1

1
c2
< 1

c1

x

t

u1
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Figure 4.14: The effect of spreading characteristics

use it to move from the second to the last panel. Of course, the solution u(x, t) is supposed
to be a single-valued function of x and t. In the third panel, there exists an entire interval
of x values for which the solution is tripple valued. Woe!

Before we figure out what happens after a shock (a profile with vertical tangent) forms,
we should first determine when a shock forms. Thus, we want to determine the so-called
breaking time tb ≥ 0.

Example. We revisit the example we plotted the characteristics and the solution profiles
for in Fig. 4.12. The problem is given by

ut + uux = 0,

u(x, 0) = e−x
2

.

The characteristics plotted in Fig. 4.12 are given by

x = x0 + te−x
2
0 ⇒ t = (x− x0)ex

2
0 .

The plot seems to indicate that tb ≈ 1.2. How can we find this value?
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Figure 4.15: The effect of crossing characteristics

The breaking time tb

The breaking time tb is the first time for which ux or ut become infinite. Let us calculate ux
and ut. We have

u = u0(x0),

⇒ ut = u′0(x0)
∂x0

∂t
, and

⇒ ux = u′0(x0)
∂x0

∂x
,

where we have used the chain rule, since x0 depends implicitly on x and t. Assuming that
u0(x0) is a nice profile (i.e., no vertical tangents), we see that we need to determine when
∂x0/∂x and/or ∂x0/∂t are infinite. We have

x = x0 + tc(u0(x0)).

Taking an x derivative, we get

1 =
∂x0

∂x
+ tc′(u0(x0))u′0(x0)

∂x0

∂x
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xx

x

Figure 4.16: The incorrect evolution of the spatial steepening profile

⇒ ∂x0

∂x
=

1

1 + tc′(u0(x0))u′0(x0)
.

On the other hand, if we take a t derivative:

0 =
∂x0

∂t
+ c(u0(x0)) + tc′(u0(x0))u′0(x0)

∂x0

∂t

⇒ ∂x0

∂x
=

−c(u0(x0))

1 + tc′(u0(x0))u′0(x0)
.

In order for one of these expressions to be infinite, their denominator needs to be zero. They
have the same denominator, as you might expect. Thus we need

1 + tc′(u0(x0))u′0(x0) = 0

⇒ t =
−1

c′(u0(x0))u′0(x0)
.

We want to find the smallest such time, as long as it is positive. Thus

tb = min
x0

−1

c′(u0(x0))u′0(x0)
≥ 0.

The x0 for which the minimum value tb is attained gives the characteristic along which the
gradient catastrophe will happen.

Example. Revisiting the example above, we have

c(u0(x0)) = u0(x0) ⇒ c′ = 1,
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and
u0(x) = e−x

2

.

The expression for the breaking time becomes

tb = min
x0

−1

−2x0e−x
2
0

= min
x0

1

2x0e−x
2
0

.

Thus, we can find this minimum by maximizing the function

F (x) = 2xe−x
2

.

We have

F ′ = 2e−x
2 − 4x2e−x

2

= 2e−x
2

(1− 2x2),

which is zero for

x =
±√

2
.

Further,
F (1/

√
2) =

√
2e−1/2 > 0, F (−1/

√
2) = −

√
2e−1/2 < 0.

We discard the second possibility, since it leads to a negative breaking time. Thus

tb =

√
e

2
≈ 1.16,

which occurs along the characteristic that starts at

x0 =
1√
2
≈ 0.707,

which is in excellent agreement with Fig. 4.12.

You should use this method to find the breaking time in the example with u0(x) =
− arctan(x).

4.5 Shock waves

When we derived the differential form of the conservation law, we assumed that our functions
had continuous derivatives. If they do not, we have to work with the integral form. In other
words, once a gradient catastrophe happens and the derivatives of the solution → ∞, the
differential form of the equation ceases to be valid and we turn to the integral form. In this
section, having determined the breaking time, we figure out how to move beyond it.
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Again, let us consider

ut + c(u)ux = 0,

u(x, 0) = u0(x),

with implicit solution given by

u(x, t) = u0(x0),

x = x0 + tc(u0(x0)).

As discussed, this solution is valid as long as the derivatives ux and ut are finite, i.e., up
until t = tb. For t > tb, we have to return to the integral form, which is

d

dt

∫ b

a

u(x, t)dx = φ(a, t)− φ(b, t),

where we have equated f ≡ 0, and

φx = c(u)ux ⇒ φ =

∫
c(u)du.

Once the derivative becomes infinite, we should expect the solution to develop a discontinuity,
known as a shock. In other words, u(x, t) will have different values u− (before) and u+ (after)
the shock, where the derivative is vertical. At either side of the shock, the solution satisfies
the PDE, but the PDE cannot capture the shock itself.

Suppose we have a wedge-like region of the (x, t) plane where the characteristics cross,
as in Fig. 4.17. The idea is to insert a path in the (x, t) plane along which the shock will
propagate. Up until the shock path, our previous solution is valid, and we continue to follow
the characteristics, as before, until they hit the shock. Such a shock path x = xs(t) is
inserted in red in Fig. 4.17. Once we have inserted the shock path, we can merrily continue
the characteristics until the hit the shock, even into the wedge region!

So, how do we find how the shock moves? The integral form is given by

d

dt

∫ b

a

u(x, t)dx = φ(a, t)− φ(b, t).

Suppose a shock exists at x = xs(t), in between x = a and x = b. Then

d

dt

(∫ xs

a

u(x, t)dx+

∫ b

xs

u(x, t)dx

)
= φ(a, t)− φ(b, t).

Now we use the Leibniz rule7, which is really just a big ol’ chainrule. Since xs depends on t,
we get ∫ xs

a

ut(x, t)dx+ u(x−s , t)
dxs
dt

+

∫ b

xs

ut(x, t)dx− u(x+
s , t)

dxs
dt

= φ(a, t)− φ(b, t),

7Recall, d
dt

∫ b(t)

a(t)
f(x, t)dx =

∫ b(t)

a(t)
ft(x, t)dx + f(b(t), t)b′(t)− f(a(t), t)a′(t)
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x

t

tb

xbx0b

x = xs(t)

Figure 4.17: The wedge region where characteristics cross, with a shock curve inserted.

where

u− := u(x−s , t) = lim
x→x−s

u(x, t),

u+ := u(x+
s , t) = lim

x→x+s
u(x, t),

are the limits as x approaches xs from the left and right, respectively.
Next, since a and b are completely arbitrary in this process, we now let a → x−s and

b → x+
s . This eliminates the integrals above, since they are integrals of bounded functions

over an interval that shrinks to zero. We are left with

u−x′s − u+x′s = φ− − φ+

⇒ dxs
dt

=
φ− − φ+

u− − u+
:=

∆φ

∆u
.

This is known as the Rankine-Hugoniot condition. It dictates the speed at which the
shock moves. Note that for the PDE

ut + uux = 0,

we have that φ = u2/2, so that

x′s =
φ− − φ+

u− − u+
=

1
2
u−

2 − u+2

u− − u+
=

1

2
(u− + u+),
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x

t

Figure 4.18: The characteristics before a shock path is inserted.

and the shock speed is simply the average value of the solution to the left and right of it.
Let’s see how the Rankine-Hugoniot condition works.

Example. Consider the problem

ut + uux = 0,

u(x, 0) = u0(x) =

{
1, x ≤ 0,
0, x > 0.

The implicit solution is given by

u(x, t) = u0(x0),

x = x0 + tu0(x0).

For x0 > 0, this becomes u = 0 and x = x0, while for x0 ≤ 0, we get u = 1 and x = x0 + t.
These characteristics are drawn in Fig. 4.18.

We see there is a triangular region where the characteristics cross. We wish to insert a
shock path there, starting at (x, t) = (0, 0). According to Rankine-Hugoniot,

dxs
dt

=
∆φ

∆u
.

Here φ = u2/2. Further, on the left-side of the shock, we will have u− = 1, thus φ− = 1/2.
On the right side of the shock, u+ = 0, so that φ+ = 0. Thus

dxs
dt

=
1

2
⇒ xs =

1

2
t+ α,
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x

t

u = 1 u = 0

Figure 4.19: The characteristics with the shock path is inserted.

where α is an integration constant. Since xs = 0 at t = 0, we see that α = 0. Thus the
shock path is given by

xs =
t

2
.

We insert this path in the (x, t) plane, which results in Fig. 4.19, where we have continued
the characteristics up to the shock line, but not beyond. The solution for our problem is
given by

u(x, t) =

{
1, x < t/2,
0, x > t/2.

Example. We consider a second example, from traffic flow. Recall that we the traffic
flow model is governed by

ut + φx = 0,

with

φ = v1u

(
1− u

u1

)
.

Let’s assume that the speed limit v1 = 45 miles/hour. Similarly, we work with a maximal
density of cars of u1 = 300 cars/mile. Thus

φ = 45

(
u− u2

300

)
.

As an initial condition, we have a traffic moving to the right with a velocity of v =
30miles/hour, running into a traffic jam at location x = 0. This is plotted in Fig. 4.20.
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u0(x)

x

300 (stopped)

v = 30miles/hour, density= 100 cars/mile

0

Figure 4.20: The initial condition for the traffic jam problem.

Indeed, if v = 30miles/hour, then

v = 30 = v1

(
1− u

u1

)
⇒ u = 100.

Thus,

u0(x) =

{
100, x < 0,
300, x ≥ 0.

The implicit solution is given by

x = x0 + tc(u0(x0)),

u = u0(x0).

Here
c(u) = φ′(u) = 45

(
1− u

150

)
.

The characteristics and the solution are different, depending on whether x0 < 0 or x0 > 0.

� For x0 < 0, u0(x0) = 100, so that c(u0(x0)) = c(100) = 15. Thus the characteristics
are given by

x = x0 + 15t,

i.e., lines of slope 1/15 in the (x, t) plane. Along these lines, the value of the solution
is u = 100.

� For x0 > 0, u0(x0) = 300, so that c(u0(x0)) = −45. Thus the characteristics are

x = x0 − 45t,

lines of slope −1/45 in the (x, t) plane. Along these lines, the value of the solution is
u = 300.
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x

t

Figure 4.21: The characteristics for the traffic jam problem, without the insertion of a shock
path.

Once again, there is a (very large) triangular region where characteristics cross. We use
the Rankine-Hugoniot condition, because it’s what the cool kids do. We have

dxs
dt

=
∆φ

∆u
.

On the left-side of the shock, we will have u− = 100, thus φ− = 3000. On the right side of
the shock, u+ = 300, so that φ+ = 0. Thus

x′s =
3000

−200
= −15 ⇒ xs = −15t,

where we have used that the shock starts at xs = 0 at t = 0. The characteristics with this
shock line inserted are shown in Fig. 4.22.

Finally, our solution is given by

u(x, t) =

{
300, x > −15t,
100, x < −15t.

Furthermore, we learn that the traffic jam backs up at a rate of 15 miles/hour.

4.6 Shock waves and the viscosity method

So far, we have calculated where and when shocks form, and when they form, we have
examined how they move, using the Rankine-Hugoniot condition.
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x

t

u = 300

u = 100

Figure 4.22: The characteristics for the traffic jam problem, with the insertion of a shock
path.

In real applications, a shock never forms. Instead, we get a solution with a very steep,
but not vertical profile. The presence of extra physical effects precludes the formation of
actual shocks.

As an example, we consider once again traffic flow. How shall we update our model to
take into account extra effects which presumably will prevent shock formation?

We have

ut + φx = 0.

So far, we have used φ = uv, with

v = v1

(
1− u

u1

)
as our velocity profile. We have assumed that drivers adjuct their speed based on the car
density they observe where they are. Let’s give drivers a bit more credit8. Let’s assume that
drivers can adjust their speed based on what they observe ahead of them.

For instance, suppose that drivers observe that the traffic is becoming more dense. In
other words, ux > 0. It would seem natural that they would decrease their speed. Further,
if u is very small, any chance appears huge and might have a big effect. Similarly, if u
is large, and change is not very important, this it is the relative change that matters: we
wish to modify our equation for v as a function of u with a term −rux/u. Here ux/u is the
relative density change, and r is a positive proportionality constant. The − sign ensures that
the velocity increases as the density increases. Notice that the opposite happens if we see

8You can let me know in 30 years whether we should or not.
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the density is lighter ahead: the drivers will start to speed up. Thus, our new velocity law
becomes

v = v1

(
1− u

u1

)
− rux

u
.

It follows that

φ = uv = v1

(
u− u2

u1

)
− rux

⇒ φxv1

(
1− 2u

u1

)
ux − ruxx.

Our PDE becomes

ut + φx = 0 ⇒ ut + v1

(
1− 2u

u1

)
ux = ruxx.

We impose the boundary condition

lim
x→∞

u(x, t) = u1,

lim
x→−∞

u(x, t) = u0 < u1.

In other words, we have gridlock on the right, and some lower-density moving traffic moving
into the gridlock. In addition, we have

lim
x→∞

ux(x, t) = 0,

lim
x→−∞

u(x, t) = 0.

Traveling wave solutions

If we look for solutions of the form

u(x, t) = f(x− ct),

we get

−cf ′ + v1

(
1− 2f

u1

)
f ′ = rf ′′

⇒ −cf + v1f −
v1

u1

f 2 = rf ′ + k.

At this point, we can find c and k, using the boundary conditions. Evaluating the above at
+∞, we get

−cu1 + v1u1 − v1u1 − r · 0 + k ⇒ k = −cu1.
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u = u0 = 100

u = u1 = 300

x

u(x, t)

c = −v1u0/u1

Figure 4.23: The traveling-wave solution for the traffic flow problem with smart drivers.
Here u1 = 300, u0 = 100, v1 = 45. Different values of r are used, ranging from 20 to 5.

From an evaluation at −∞, we get

−cu0 + v1u0 −
v1u

2
0

u1

= r · 0 + k ⇒ c = −v1
u0

u1

.

Solving the ODE, we get9

u(x, t) = u1 +
u0 − u1

1 + exp
(
v1(u1−u0)

ru1
(x+ v1u0t/u1)

) .
This solution is drawn in Fig. 4.23, for different values of r. Note that as r → 0,

u(x, t) =

{
u1, x− ct > 0,
u0, x− ct < 0.

Thus, the solution becomes steeper and steeper as r → 0, ultimately resulting in the shock
solution as r → 0.

Unfortunately, we cannot devote more time to the viscosity method at this point. This
example gives a flavor, but it also indicates that the way to introduce extra effects which
might arrest shock formation is very problem dependent.

4.7 Rarefaction waves

We have now seen how to follow the solution along characteristics as long as these don’t
cross. Next, we have learned what to do when they do cross: a shock is formed, and we

9Come on, you know the drill. Check this. I’ll wait. Done already? OK. Let’s move on.
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x

u(x, 0) = u0(x)

1

0

0

Figure 4.24: The initial condition u0(x) for the rarefaction example.

know how to propagate it. We know everything!

Example. Consider the problem

ut + uux = 0,

u(x, 0) = u0(x) =

{
0, x < 0,
1, x > 0.

The initial condition is shown in Fig. 4.24.

x

t

Figure 4.25: The characteristics with the empty region.
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x

u(x, 0) = u0(x)

1

0 −ε

ε

Figure 4.26: A new, improved, smooth initial condition.

The characteristics are given by

x = x0 + u0(x0)t,

which give two different cases:

x0 < 0 : x = x0,

x0 > 0 : x = x0 + t.

These characteristics are shown in Fig. 4.25. We face the immediate question what the value
of the solution is in the red region without characteristics.

To answer this question, we revisit the same problem, but now with an initial condition
that is smooth as opposed to discontinuous. Such an initial condition is drawn in Fig. 4.26.
It is zero outside of |x| > ε, but it changes smoothly from zero to one in |x| < ε. The new
initial condition is constructed so that it limits to the discontinuous one, u0(x), as ε→ 0.

This gives rise to a new characteristics picture, shown in Fig. 4.27. The characteristics
are given by

t =
x− x0

u0(x0)
,

and it is clear that for x0 between −ε and ε, the characteristics will start at x0 and have a
slope that varies smoothly from 0 for x0 = −ε to 1 for x0 = ε.

In the limit as ε→ 0, we get a fan of characteristics, all starting at (0, 0), but with slope
ranging from∞ (on the left) to 1 on the right. This seems like a reasonable way to fill in the
empty region: we assume an initial profile with high steepness that is smooth, and we let
the steepness →∞. The limiting characteristic plane is shown in Fig. 4.28. We call the red
region in Fig. 4.25 the rarefaction region and the characteristics that fill it the rarefaction
fan.
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x

Figure 4.27: The characteristics corresponding to the smooth initial condition.

Now that we have determined the rarefaction characteristics, what is the solution u(x, t)
there? We know that u(x, t) should be constant along characteristics. Since these are of the
form

x = ωt,

it follows that
u(x, t) = u(ωt, t).

Since u(x, t) is supposed to be constant along these characteristics, it follows that this last
quantity has to be independent of t. Thus

u(x, t) = g(ω) = g(x/t).

Now we have to find the function g(ω). Using the PDE ut + uux = 0, we get

ut = g′(ω)
∂ω

∂t
= − x

t2
g′(ω),

ux = g′(ω)
∂ω

∂x
=

1

t
g′(ω).

Thus

− x
t2
g′(ω) + g(ω)

1

t
g′(ω) = 0

⇒ −x
t
g′(ω) + g(ω)g′(ω) = 0

⇒ −ωg′(ω) + g(ω)g′(ω) = 0

⇒ g′(ω)(g(ω)− ω) = 0.
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x

t

Figure 4.28: The characteristics with the rarefaction fan in place.

There are two possibilities:

1. g′(ω) = 0 ⇒ g(ω) =constant. This would mean that u(x, t) is still discontinuous,
leading to a shock. But the characteristics do not cross for t > 0. Thus this doesn’t
work. We may ignore this possibility.

2. g(x) = ω, so that

u(x, t) =
x

t
,

in the rarefaction region.

In summary, our rarefaction problem has the solution

u(x, t) =


0, x < 0,

x/t, 0 < x < t,
1, x > t.

A few time slices of the solution are shown in Fig. 4.29. The time slices make sense: due
to the fanning out of the characteristics in the rarefaction region, the values of u get spread
out over a larger region, as t increases.
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u(x, 0)

u(x, 1)

u(x, 3)

Figure 4.29: Different time slices of the solution.

4.8 Rarefaction and shock waves combined

Consider the problem

ut + uux = 0,

u(x, 0) = u0(x) =

{
1, x ∈ (0, 1),
0, x 6∈ (0, 1).

The initial condition u0(x) for this problem is shown in Fig. 4.30. The characteristics are
given by

x = x0 + tu0(x0),

or,

x0 ∈ (0, 1) : x = x0,

x0 6∈ (0, 1) : x = x0 + t.
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x

u0(x)

0

0

0

1

Figure 4.30: Different time slices of the solution.

The characteristics, as given above, are drawn in Fig. 4.31.
Regions A, B, and C present no problems. However, we see there are two immediate

problems, already at t = 0, in regions D and E. In D, no characteristics are present, and
a rarefaction fan is needed, while in E, a shock needs to be inserted. And we have no clue
what’s going to happen in region F! But, that’s a concern for another page. Right now, one
thing at a time: let’s make sure we can move beyond the initial condition, by solving our
problems at t = 0.

1. In region D, we insert characteristics x = ωt, ω ∈ (0, 1), as in the previous section.
Along these characteristics,

u(x, t) = g(ω).

Substitution in the PDE gives, as before, g(ω) = ω, so that

u(x, t) = ω =
x

t
,

in region D.

2. In region E, we use the Rankine-Hugoniot condition to insert a shock path. The shock
will receive the value u− = 1 from the left (the characteristics from region B) and the
value u+ = 0 from the right (the characteristics from region C). Thus

x′s =
1

2
(u− + u+) =

1

2
⇒ xs =

1

2
t+ 1,

where the integration constant has been chosen to ensure that the shock line starts at
x0 = 1.

The characteristic plane with shock and fan inserted is shown in Fig. 4.32. We have
resolved all problems at t = 0 and we can move the initial condition forward in time. The
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Figure 4.31: The characteristics, pre rarefaction, pre shock.

solution is perfectly well defined in regions A, B, c, D, and we have a beautiful shock moving
along shock path E. But, we’re not quite done yet! At (x, t) = (2, 2), the shock line xs
(in red) hits the first characteristic (in bold black) of the rarefaction fan in region B. This
implies that the left and right values we used in the Rankine-Hugoniot condition will have
to be altered. Past t = 2, the value of u+ (coming in from the right) remains at 0, following
the characteristics in region C. However, the value u− will no longer be 1, as now the values
come from the rarefaction fan. Thus

u− =
xs
t
,

where we have imposed that x = xs on the shock line. The problem determining our new
shock path is

dxs
dt

=
1

2
(u− + u+) =

xs
2t
,

xs(2) = 2,

where the last equation simply state that the new shock path is a continuation of the old
one. We get

dxs
xs

=
1

2

dt

t

⇒ lnxs =
1

2
ln t+ c

⇒ lnxs = ln
√
Ct,
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Figure 4.32: The new and improved characteristics, now with shock and fan.

where c and C are constants, related by c = ln(C)/2. Applying the initial condition, we get

ln 2 = ln
√

2C ⇒ C = 2,

and our new shock path becomes

xs =
√

2t ⇒ t =
1

2
x2
s.

This is an upward parabola starting at (x, t) = (2, 2). Note that at this point

dt

dxs
= xs = 2,

so that the shock line starts of tangent to our original shock path.
The complete characteristic plane is drawn in Fig. 4.33, where all problems have been

resolved. Region D contains a rarefaction fan, and we have a two-stage shock, following a
straight line along E, and a parabolic path along F.

There are six different solution regions.

1. In x < 0, t > 0 the solution is u = 0. This is region A in Fig. 4.33.

2. In t < x < t/2 + 1, t > 0, the solution is u = 1. This corresponds to region B in
Fig. 4.33.

3. If x > t/2 + 1, t ∈ (0, 2), then u = 0. This corresponds to the part of region C below
the red straight-line shock path in Fig. 4.33.
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D
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x
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Figure 4.33: The newer and more improved characteristics, now with complete shock and
fan.

4. If x ∈ (0, t), t ∈ (0, 2), then u = x/t. This corresponds to the lower part of region D
in Fig. 4.33, to the left of the black line.

5. Similarly, if x ∈ (0,
√

2t), t > 2, then u = x/t, corresponding to the upper part of
region D in Fig. 4.33, to the left of the blue path.

6. Lastly, if x >
√

2t and t > 2, then u = 2, corresponding to the part of region C, below
the blue path.

The solution profiles at t = 0, t = 1, t = 2 and t = 3 are shown in Fig. 4.34. As t→∞,
we have that the shock speed x′s = (

√
2t)′ = 1/

√
2t → 0, and the shock slows down as we

proceed.
Note that

ut + uux = 0

⇒ d

dt

∫ ∞
−∞

udx+

∫ ∞
−∞

uuxdx = 0

⇒ d

dt

∫ ∞
−∞

udx+
1

2
u2

∣∣∣∣∞
−∞

= 0

⇒ d

dt

∫ ∞
−∞

udx = 0

⇒
∫ ∞
−∞

u(x, t)dx = 1.

The last line comes from the fact that the area underneath the solution is 1 initially, while
the line before it says that this area is conserved. We have also used that limx→±∞ u = 0. We
easily verify this: at t = 1, the area is the area of a trapezoid. It is equal to 1×(1/2+3/2)/2 =
1. Next, at t = 2, we need the area of a triangle, equal to 2× 1/2 = 1. Lastly, at t = 3, we
still have a triangle, with area

√
6×

√
2/3/2 = 1. It also follows from this argument that as
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u = 0 u = 0

u = 0 u = 0

u = 0u = 0

u = 0 u = 0

u = 1

u = 1
x = 0 x = 1

x = 0

x = 0

x = 0

x = 1 x = 3/2

x = 2

x =
√

6

t = 0

t = 1

t = 2

t = 3

x′s = 1/2

x′2 = 1/2

x′s = 1/2

x′s = 1/
√

6

u = 1

u =
√

2/3

u = x

u = x/2

u = x/3

Figure 4.34: Three different solution profiles, at t = 0, t = 1, t = 2 and t = 3.

we march on, the top of the triangle is lowered, while its base grows so that its area remains
unchanged.

A warning

Let’s reconsider the example on page 92. We have

ut + uux = 0,

u(x, 0) =

{
1, x < 0,
0, x > 0.

Previously, we used φ = u2/2. With u− = 1, u+ = 0, φ− = 1/2, φ+ = 0, the Rankine-
Hugoniot condition gives

x′s =
1

2
,
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which we used to determine a perfectly fine shock. This condition is based on the conservation
of u.

However, consider the same problem, but written as

uut + u2ux = 0,

u(x, 0) =

{
1, x < 0,
0, x > 0.

Now, the PDE is written
ρt + Φx = 0,

with ρ = u2/2 and Φ = u3/3. The Rankine-Hugoniot condition becomes

x′s =
∆Φ

∆ρ
=

1
3
u−

3 − 1
3
u+3

1
2
u−2 − 1

2
u+2 =

2

3
,

and we find a different, but still equally fine shock. Thus, the same PDE can give rise to
two (or many more) conclusions about the shock velocity. How do we choose? Which one is
correct?

It turns out the answer is we don’t choose. We are lowly mathematicians, who solve
problems given to us by our experimentalist friends10. The application we’re dealing with
dictates which quantity is conserved, which implies how we should write the PDE. One
we know this, we can propagate the shock. But simply knowing the PDE is not enough
information to work with the shock, as the PDE breaks down once we have a shock.

4.9 Weak solution of PDEs

Classical solutions of conservation laws

When we are faced with solving a PDE with initial and boundary conditions, we usually
want to find a solution that satisfies the equation everywhere in our domain of interest.
This implies that everywhere in this domain of interest, the solution should have as many
continuous derivatives as appear in the equation. Such a solution is referred to as a classical
solution.

What we have been doing recently does not result in classical solutions: we have often had
solutions that are piecewise defined, and that have corners (i.e., discontinuous derivatives)
or even shocks (discontinuous function). So, apart from at a few points, such solutions
satisfy the equation, just not everywhere. And we know this. After all, we returned to the
integral form (the conservation law form) of the PDE to get such solutions. We refer to such
piecewise defined solutions as weak solutions.

The notion of a weak solution allows us to get away with just a bit more: weak solutions
(at least so far) satisfy the equation almost everywhere. In this lecture, we look at a different

10Everyone should have at least one experimentalist friend. Get yours today!
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Figure 4.35: The test function T (x).

way to characterize weak solutions of the PDE, through the so-called weak formulation of
the PDE.

The weak form of the conservation law. Test functions

Consider the function

T (x) =

{
e−x

2/(1−x2), |x| < 1,
0, |x| ≥ 0.

This function is plotted in Fig. 4.35.
Let’s investigate this function at x = 1. Clearly, as x → 1 from the right, T (x) and all

of its derivatives are zero at x = 1. How about the left limits?

lim
x<1

T (x) = e lim
x<1

e−1/(1−x2).

The denominator in the exponent is always positive and approaches zero. Thus −1/(1 −
x2)→ −∞ and

lim
x<1

T (x) = 0.

Next, we calculate the derivative of T (x) for |x| < 111:

T ′(x) =
−2x

(x2 − 1)
e−x

2/(1−x2).

Taking the limit as x → 1 from the left, it is clear that the exponential will dominate and
once again,

lim
x<1

T ′(x) = 0.

The same argument holds for all derivatives: at all orders, we get the same exponential12

and some rational function of x. Thus

lim
x<1

T (n)(x) = 0, for n ≥ 0.

11No, this is not 111. Rather, it’s the obligatory reminder that you should check this.
12Exponentials do that, you know.
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Remark. As a side note, this implies that the Taylor series of T (x) around x = 1 is
given by

T (x) =
∞∑
n=0

(x− 1)2T
(n)(1)

n!
≡ 0.

Quite a weird result!

We call T (x) a test function or, sometimes, a Schwarz function. It is a function that is
infinitely differentiable but has compact support. This means that it is nonzero only in
a finite region. By shifting x and rescaling, we can control where the support of the test
function is located and how large it is.

Similarly, consider

T (x, t) =

{
e−(x2+t2)/(1−(x2+t2)), x2 + t2 < 1,

0, x2 + y2 ≥ 0.

This is a test function in the (x, t) plane. Basically, it looks like a hat with compact support.

Suppose we wish to solve

ut + φx = 0,

u(x, 0) = u0(x),

for x ∈ R, t¿0. Let T (x, t) be a test function. Then T (x, t)u(x, t) is zero at every point
outside the circle x2 + y2 = 1, so we have isolated a small part of u(x, t). Then

T (x, t)ut + T (x, t)φx = 0

⇒
∫ ∞

0

∫ ∞
−∞

(T (x, t)ut + T (x, t)φx) dx dt = 0

⇒
∫ ∞

0

dt

∫ ∞
−∞

dx (T (x, t)ut + T (x, t)φx) = 0.

Here the last line is just a less confusing version of the previous line.
Now we integrate by parts13.∫ ∞

−∞
dx

(
u(x, t)T (x, t)|t=∞t=0 −

∫ ∞
0

dtu(x, t)Tt(x, t)

)
+∫ ∞

0

dt

(
φ(x, t)T (x, t)|x=∞

x=−∞ −
∫ ∞
−∞

dxφ(x, t)Tx(x, t)

)
= 0

⇒
∫ ∞
−∞

dx

(
0− u0(x)T (x, 0)−

∫ ∞
0

u(x, t)Tt(x, t)

)
+

13Secret: integration by parts is the main weapon of a good applied mathematician.
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∫ ∞
0

dt

(
0−

∫ ∞
−∞

dxφ(x, t)Tx(x, t)

)
= 0

⇒ −
∫ ∞
−∞

u0(x)T (x, 0)−
∫ ∞

0

dt

∫ ∞
−∞

dx (u(x, t)Tt(x, t) + φ(x, t)Tx(x, t)) = 0.

This is known as the weak form of the PDE. It involves derivatives only of the test function,
and just the value of u and φ, which are defined everywhere, even for weak solutions. We
should remark that the weak form of the equation gives us back the PDE, provided that
the solutions are classical solutions. In that case, we can start from the weak form, use
integration by parts and get the PDE.

There are many reasons for wanting to work with the weak form of an equation. Here
are two.

1. Larger function spaces. The modern theory of PDEs likes to talk about solutions
is specific function spaces. Examples are C(R), the space of continuous functions,
defined for all x ∈ R, C1(R), the space of differentiable functions on R, etc. Clearly,
C1(R) ⊂ C(R), and so on. In general, we like to solve PDEs in the largest function
space possible: a larger space implies fewer conditions on the solution, so the solution
is more general. Since the weak form of the PDE has fewer conditions on the solution
u(x, t), by only needing its value, and not its derivatives, it allows us to work in larger
function spaces.

2. Numerical solutions. An important example here is the finite element method:
we approximate functions using basis elements, like piecewise constant functions, or
piecewise linear functions, etc. Thus, we’re giving up on classical solutions when we
do this. This is not a problem at all for the weak formulation. Thus finite element
methods are applied to the weak formulation, not to the PDE itself.


	Introduction
	An introduction to waves
	A mathematical representation of waves
	Partial differential equations

	Traveling and standing waves
	Traveling wave solutions of PDEs
	The sine-Gordon equation
	The Korteweg-de Vries equation
	Wave fronts and pulses
	Wave trains and dispersion
	Dispersion relations for systems of PDEs
	Information from the dispersion relation
	Pattern formation
	A derivation of the wave equation
	d' Alembert's solution of the wave equation
	Characteristics for the wave equation
	The wave equation on the semi-infinite domain
	Standing wave solutions of the wave equation

	Fourier series
	Superposition of standing waves
	Fourier series
	Fourier series solutions of the wave equation
	The heat equation
	Laplace's equation
	Laplace's equation on the disc

	The method of characteristics
	Conservation laws
	Examples of conservation laws
	The method of characteristics
	Breaking and gradient catastrophes
	Shock waves
	Shock waves and the viscosity method
	Rarefaction waves
	Rarefaction and shock waves combined
	Weak solution of PDEs


