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ABSTRACT
Bluetooth Low Energy (BLE) tags have become very prevalent over
the last decade for tracking applications in homes as well as busi-
nesses. These tags are used to track objects, navigate people, and
deliver contextual advertisements. However, in spite of the wide
interest in tracking BLE tags, the primary methods of tracking them
are based on signal strength (RSSI) measurements. Past work has
shown that such methods are inaccurate, and prone to multipath
and dynamic environments. As a result, localization using Wi-Fi
has moved to Channel State Information (CSI, includes both signal
strength and signal phase) based localization methods. In this paper,
we seek to investigate what are the challenges that prevent BLE
from adopting CSI based localization methods. We identify funda-
mental differences at the PHY layer between BLE and Wi-Fi, that
make it challenging to extend CSI based localization to BLE. We
present our system, BLoc, that incorporates novel, BLE-compatible
algorithms to overcome these challenges and enable an accurate,
multipath-resistant localization system. Our empirical evaluation
shows that BLoc can achieve a localization accuracy of 86 cm with
BLE tags, a 3X improvement over a state-of-the-art baseline.
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1 INTRODUCTION
The vision of the Internet of Everything has been to communicate
with and to locate everyday objects around us. The Bluetooth Low
Energy (BLE) protocol has been a massive boost towards this vision,
primarily because of two reasons: (a) BLE devices can communicate
with off-the-shelf cellphones and access points with a range of
10 m , (b) BLE can enable communication at low power budgets.
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Today, BLE devices are used to track pets [9, 33, 34], find lost objects
like keys[9, 33, 34], enable navigation in shopping malls [10], and
automate operation in factory floors [32]. In addition to promising
startups [9, 10, 33, 34], top technological companies like Google,
Apple, etc. have invested heavily in this domain through iBeacons
[4], Project Eddystone[13], etc. Powered by this push, it is estimated
that the market for BLE beacons will touch 58 billion by 2025 [15].

Localization is a key primitive enabled by the BLE tags and
is crucial for BLE adoption in several applications ranging from
asset tracking [9, 10, 33, 34] to contextual advertisements [3, 16,
24, 29]. Today, localization algorithms for BLE primarily rely on
measuring the strength of the received signal and using it as a
proxy for location [6, 40]. However, relying on signal strength
alone is problematic for three reasons: (a) The accuracy achieved by
modeling signal strength is often low (several m), (b) RSSI estimates
are not robust to multipath which commonly exists in real-world
environments, and, (c) RSSI modeling is susceptible to large errors
when the environment is dynamic [21, 42, 47].

In contrast to BLE localization systems, Wi-Fi localization has
moved towards CSI (channel state information) based algorithms,
that utilize both the signal strength and the signal phase to esti-
mate the angle or distance between the transmitter and the receiver
[21, 23, 31, 35, 38, 42]. Such systems have achieved high accuracy
(around 1 m median error), have incorporated algorithms to weed
out multipath and have consequentially been robust to dynamic
nature of environments. Enabling similar accuracy and robustness
for localization of BLE devices can significantly enhance the utility
of existing BLE tags as well as deliver new applications. For ex-
ample, one can predict whether you left the keys in the cupboard
or on the table, rather than just telling you that the keys are at
home. Alternatively, one could use them to accurately track pet
motion [28]. Similarly, higher accuracy and robustness in industrial
localization can automate processing pipelines.

In this paper, we seek to answer a simple, yet fundamental, ques-
tion – what does it take for us to enable CSI based localization for
BLE devices? Our investigation reveals that there are three key
roadblocks that prevent CSI based localization for BLE devices:

• Phase Measurement: In Wi-Fi, the wireless channel is mea-
sured by sending known symbols simultaneously at multiple
fixed narrowband frequencies (OFDM subcarriers) and measur-
ing the corresponding received signal. In contrast, BLE uses
Gaussian Frequency Shift Keying modulation and as a result, the
information is encoded as the frequency of the signal. Specifically,
in BLE, the bits 0 and 1 correspond to two different frequencies
(say f0 and f1) within a 2 MHz band. When the transmitter wants
to transmit bit 0, the transmission frequency is shifted to f0 in
the frequency domain. Similarly, for bit 1, the transmission fre-
quency is moved to f1. Furthermore, a Gaussian filter is applied
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to the bits to ensure smooth frequency switching. Thus, the sig-
nal has continuously varying frequency, making it challenging
to measure the wireless channel in the first place.

• Bandwidth: State-of-the-art CSI based algorithms for Wi-Fi
based positioning rely on wireless channels across wideband
frequencies available in Wi-Fi to identify the direct path and
weed out the multipath [21, 23, 38]. The smallest band available
on Wi-Fi is 20 MHz wide and the largest band is 160 MHz wide.
In contrast, BLE channels are 2 MHz wide, at least one order of
magnitude narrower than Wi-Fi. Since larger bandwidths help
localization systems to separate multipath that is close to each
other, the bandwidth limitation hampers BLE’s ability to deal
with multipath.

• MultipathResolution: BLE signals reflect off various reflectors
(walls, screens, furniture, etc) in the environment. Some of these
reflections might actually be stronger than the line-of-sight path
because of obstructions. Then, how can we isolate the direct path
and ignore reflections so as to avoid large errors in localization?

We present, BLoc, a system to enable sub-meter localization for
BLE devices using a CSI-based localization method. From the per-
spective of a deployer, the system appears similar to a standard BLE
system. BLE anchors deployed in the environment measure signals
from the target device and use the signal measurements to compute
a location estimate. However, unlike current systems, BLoc uses
both the signal strength and signal phase to enable high accuracy,
reliable localization. BLoc’s solution consists of the following key
components:

• Measuring CSI: As mentioned before, the frequency of trans-
mission in BLE is constantly varying, thereby making it hard
to measure CSI. Our insight to solve this problem is fairly sim-
ple. We design bluetooth localization packets that have long
sequences of 0s, followed by long sequences of 1s. By sending a
long sequence of 0s, we can force the transmission to converge
to f0 and measure channel at f0. Similarly, by sending a long
sequence of 1s, we force the transmission to converge to f1. The
CSI measured at each of these frequencies can then be processed
in subsequent steps to get a location estimate.

• Stitching Frequency Bands: To obtain the channel informa-
tion across a wide band, we leverage the insight that BLE devices
hop across 37 frequency bands spanning a 80 MHz band to avoid
collisions with Wi-Fi transmissions. Our idea is to combine chan-
nel information across these different channels and emulate the
presence of a large frequency bandwidth. However, when the
transmitter and the receiver switch frequency bands, they also
incur a random phase offset per frequency. This random phase
offset completely jeopardizes the phase of the wireless channels
across the different frequencies. Thus, we need to compensate
for this phase offset if we want to utilize the phase of the signal
for localization. We show in section 5.1, that by using a novel
collaborative approach across multiple anchors, we can eliminate
this phase offset per channel.

• Multipath Elimination: The typical algorithm to eliminate
multipath and isolate the direct path from the transmitter to the
receiver is to select the shortest path, since the direct path travels
the least distance. The use of a wideband frequency enables us
to measure the length of the paths and this length can then be

used to find the direct path. However, when we use multiple
anchor points collaboratively to eliminate phase offsets, we need
to re-visit this notion, primarily because the distance between
the target and an anchor point is now measured relative to other
anchor points. We show that it is possible to analytically identify
the direct path in this scenario, in section 5.4. Furthermore, we
observe that multipath peaks tend to be spread out in the spatial
domain, because real-life reflectors are imperfect (and act as
scatterers as well). We use this observation to further enhance
BLoc’s multipath resolution capability.
We have built BLoc on a software radio platform, while retaining

compatibility with the BLE protocol. Our experiments reveal the
following:
• BLoc achieves a localization accuracy of 86cm in a multipath-rich
environment. In contrast, an angle-of-arrival baseline gets an
accuracy of just 2.42m.

• BLoc’s bandwidth enhancement from 2 MHz to 80 MHz band
reduces the median error from 1.6m to 86cm.

• BLoc’s novel multipath rejection algorithm improves the local-
ization accuracy by a factor of 2X, thereby proving the utility of
CSI measurements in combating multipath effect.
To summarize, in designing BLoc we make the following key

contributions.
• We present the first CSI-based BLE localization system.
• We build a new algorithm to correct phase offsets across multiple
frequency channels, without relying on channel measurements
at the target device.

• We show that BLoc can analytically identify the direct path
even when the distance information available to us is measured
relative to other anchor points.
The rest of the paper is organized as follows, in section 2 we

briefly describe the BLE protocol and how the localization based
on CSI estimates work to familiarize the topic to the readers. Fur-
ther, in section 3 we describe the deployment of the BLocsystem
does not need major firmware and any hardware changes. In the
following sections, we describe the design of BLoc’s components.
We start by describing how the CSI can be measured for BLE tags in
section 4. Then, we discuss how we can use the CSI across multiple
channel hops to localize the tag in section 5. The compatibility
with BLE protocol is discussed in section 6. the experimental setup
is described in section 7. Finally, we conclude with experimental
evaluation of BLoc in section 8. We conclude the paper with past
work in section 9.

2 PRIMER
In this section, we include some information that will be useful in
explaining BLoc’s algorithms and system design.

2.1 Bluetooth Low Energy Protocol
Bluetooth Low Energy (BLE) is specifically designed for low power
devices to communicate information over the ISM band (2.4 GHz -
2.48 GHz). While the exact specifics of the protocol are very detailed
and quite complex, we try to abstract out the details necessary for
understanding BLoc’s design. We refer the reader to [12] for a
detailed description of the BLE protocol.
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Figure 1—BLE Primer: (a) BLE uses 40 frequency bands, 2 MHz wide each, spread
over the 2.4 GHz ISM band. Of the 40 bands, 3 are designated advertisement bands
(shaded) and the other 37 are data communication bands. (b) BLE uses Gaussian
Frequency Shift Keyingmodulation where each bit corresponds to a different frequency.

The spectrum available for BLE is 80 MHz. This bandwidth is
divided into 40 frequency bands, each of which is 2 MHz wide (see
Fig. 1). BLE operates in two modes: broadcast mode and connected
mode. The broadcast mode is used by devices to advertise their
presence on the medium and contains information about the device,
its type, manufacturer, etc. The broadcast mode operates on 3 of the
40 available bands for bluetooth. Upon receiving one of the adver-
tised beacons on the broadcast bands, another device (master) can
initiate a connection to this device (slave). During the connection
establishment process, the master and the slave devices agree on
several connection parameters, one of which is the frequency hop
distance (fhop).

Once the connection is established, the master and slave hop
through the 37 non-broadcast bands, jumping by fhop bands every
time a packet is exchanged between the master and the slave. Thus,
if the first transmission happens at channel 10, and fhop = 3, then
the next transmission will be at channel 13. If fcur and fnext denote
the bands used for current and next transmissions respectively, then
fnext = fcur +fhop mod 37. Since the total number of bands is prime
(37), the transmissions will hop through all available bands before
repeating a band that has been used before. In section 5, we will
show how BLoc uses this property to its advantage to distinguish
between direct and reflected paths.

2.2 Localization
The key premise of wireless localization is to measure properties
of wireless channels (like amplitude, phase, etc.) from a transmitter
to one or more receivers and convert the measured properties to a
location estimate for the transmitter. For simplicity, let us consider a
signal with wavelength, λ, travelling in free space from a transmitter
to a receiver separated by distance d. Then, the wireless channel, h,
measured at the receiver can be modeled as1:

h =
A
d
e−ι

2π d
λ (1)

1We assume that the transmitter ans receiver do not have any hardware imperfections.

Anchor Point

BLE Tag

θ

l

l sin(θ)

d

(

0  1  2  3
Figure 2—AntennaArrayPrimer:Antenna arrays compare the phase of the received
signal at multiple antennas (separated by distance l) to identify the angle of the arrival
of the signal.

Here, A is the attenuation constant and ι =
√
−1. When the signal

is travelling along multiple paths, the wireless channel obtained is
just the sum of the channel along each of these paths:

h =
N∑
i

Ai
di

e−ι
2π di
λ (2)

where N is the number of paths and di is the length of the i − th
path.
RSSI-based Localization: In RSSI-based localization, the system
measures |h|, i.e. the absolute value of the wireless channel. As can
be seen in Eq. 1, for a single path, the absolute value of the channel
directly depends on the distance. However, when there are multiple
paths (Eq. 2), the absolute value of the channel is determined by
how the channels along different paths combine. They can com-
bine in-phase (making the channel amplitude high) or out-of-phase
(completely canceling each other out), creating huge variations in
amplitude for small changes in positions. Thus, RSSI based sys-
tems tend to suffer in the presence of multipath. Some RSSI-based
systems try fingerprinting-based approaches wherein the RSSI at
different locations is manually measured and these measurements
are used to guide the predictions. However, any changes in the
multipath characteristics of the environment (like moving furni-
ture around) will require the system to do fingerprinting again,
involving massive efforts.
Measuring Angles: When both the signal strength and the phase
of the channel are available, a set of channel measurements at
multiple antennas can be used to measure the angle of arrival of
the signal. Consider a linear antenna array with N antennas, as
shown in Fig. 2. The target is placed at an angle θ with respect
to the antenna array. Assume that antenna i measures channel hi .
Observe that the distance from the target to antenna i is larger
than the distance from the target to antenna 0 by il sinθ , where l
is the separation between adjacent antennas. Thus, the channel to
antenna i incurs an additional phase of −2π il sin θλ based on Eq. 1,

i.e. hi = h0e−ι
2π il sinθ

λ . This transform can be reversed to identify
the likelihood of transmission from each direction.

Pa(θ ) = |
N∑
i=1

hieι
2π il sinθ

λ | (3)
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Figure 3—System Overview: 2-4 Anchors deployed in the environment measure
phase and amplitude of the target tag’s signal received at multiple antennas. These
channels are then processed to give information about distance and angle, which is
further mapped over 2D space to identify the location of the target devices.

where Pa(θ ) gives the likelihood of the signal received from direc-
tion θ . Even if there are multiple paths (direct and reflected), the
signal along different directions can be separated out based on the
direction that the signals arrive from. For a detailed description,
see [21, 42].
Measuring Distances: Measurement of distance between a trans-
mitter and a receiver is done by using multiple frequencies. Assume
that we measure the channels at K different frequencies such that
fi = f0 + iδ f . Then, using Eq. 1, the channel measured on frequency
fi , hfi = h0e−ι

2π i(f0+δ fd)
c , where c is the speed of light. As you can see,

the phase of the channels is a linear function of distance. Thus by
comparing phases of the channels measured at multiple frequencies,
the distance between a transmitter and a receiver can be estimated.
Similar to Eq. 3, given channel measurements at different frequen-
cies, we can compute the likelihood of the signal coming from each
distance, Pt (d) as (for details, see [35]):

Pt (d) = |
K∑
i=1

hieι
2π iδ fd

c | (4)

Finally, both multiple antennas and multiple frequencies can be
combined to obtain a 2-d function, P (θ , d), that can compute the
likelihood the signal coming from direction θ and distance d:

P (θ , d) = |
K∑
i=1

hike
ι 2π il sinθ f0

c eι
2π kδ fd

c | (5)

where hik is the wireless channel measured on antenna i and fre-
quency k. Note that, in the joint case, d is the distance measured
from antenna 0.

3 SYSTEM OVERVIEW
In designing BLoc, we strive to achieve the following 3 objectives:
• BLE Compatibility:BLoc should not make any changes to the
BLE protocol.

• No change to user devices: We intend BLoc to work with off-
the-shelf target devices. BLE tags have seen wide spread de-
ployments as trackers for pets, objects, factory instruments, etc.
Therefore, BLoc should be backwards compatible and be able to
work with off-the-shelf target devices. Thus, we cannot require

BLE tags to have more capabilities (for example, the ability to
measure and report phase) than today’s deployed tags.

• Sub-meter Accuracy:We aim to achieve sub-meter localization
accuracy for BLE targets. High localization accuracy for BLE can
enable several novel applications. For instance, one can identify
the exact location of lost objects, not just that they are at the
shopping mall. It can also enable tracking of objects on factory
floors, tracking of people in shops (down to the aisle and shelf)
for local advertisements, etc.
An overview of BLoc’s deployment setting is shown in Fig. 3. As

shown in the figure, BLoc’s anchor points, similar to BLE beacons,
are deployed in the environment. The BLE tag connects to one of
these anchor points (we call the connected anchor point the master)
while the other anchor points passively listen for communication
between the tag and the anchor. By listening to this conversation,
they measure the CSI (both amplitude and phase) for both the
transmissions (from tag to the anchor and anchor to the tag). Then,
all the anchor points communicate to a central server to estimate
the location of the tag.

4 MEASURING PHASE INFORMATION FOR
BLE

As mentioned before, the first step for localization of BLE tags is to
extract the phase information of the signal. The phase information
can then be used for identifying the angle of arrival of the signal
(using multiple antennas) and/or the distance between the tag and
the anchor (using multiple frequency channels). Since the measure-
ment of phase happens at the PHY layer and is intricately related
to the PHY protocol, we start by describing the relevant details of
the PHY protocol.

2 4 6 8 10
Bit Index

-2

-1

0

1

2

B
it

Filtered Bits
Original Bits

(a)

2 4 6 8 10
Bit Index

-2

-1

0

1

2
B

it
Filtered Bits
Original Bits

(b)

Figure 4—GFSK: (a) Gaussian filter applied to random BLE data leads to smooth
changes in bits, but consequentially means that the frequency of the transmission is
never static. (b) BLoc batches together long sequence of bits to ensure that a stable
frequency is reached to obtain meaningful phase and amplitude measurements.

BLE uses Gaussian frequency shift keying (GFSK) modulation
for transmitting data. In traditional frequency shift keying (FSK)
protocols, each symbol corresponds to a frequency. For example,
when using just two symbols (say, bit 1 and bit 0), there are two
frequencies (say, f1 and f0) that correspond to the symbols. Thus, if
the transmitter wants to transmit bit 1, it transmits at frequency
f1 and if the transmitter wants to transmit bit 0, it transmits at
frequency f0. However, to avoid frequent jumps in frequency (and
out-of-band noise), BLE uses a Gaussian Filter on the bits. As a
result, the bits are smoothed versions of 0 and 1 and hence, the
frequency transitions are continuous. This issue is highlighted in
Fig. 4(a), wherein the bit variation becomes continuous as a result
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of the Gaussian filter. This continuous variation in bits (and hence
frequency) implies that the frequency of transmission is never stable
and prevents accurate channel measurements.

To overcome this problem, we leverage a simple technique. We
construct BLE data packets with long sequences of bit 0 followed
by long sequences of bit 1. Because we send long sequences of
bit 0, the frequency value settles at f0 and we can then measure
the wireless channel at f0, h0. The wireless channel can simply
be measured by taking the ratio of the received symbol to the
transmitted symbol. If the transmitted symbol is x0 and it is received
as y0 at the receiver, the channel h0 at frequency f0 can be measured
as: h0 =

y0
x0 . Similarly, we can measure the channel h1 at frequency

f1 by transmitting a sequence of one-bits. We demonstrate this
graphically in Fig. 4(b). As shown in the figure, sequences of 5
zero-bits followed by 5 one-bits lead to almost constant frequency
for significant chunks of time. These stable transmissions can then
be used to measure the phase of the channel at these frequencies.

5 FROM CSI TO LOCATION
Now that we have obtained the complex-valued wireless channel
for a BLE band, we present BLoc’s algorithm to infer the location
of the device. Before we dig into the details, let us establish some
standard notation. We denote the complex-valued channel, mea-
sured at anchor i, antenna j and frequency band f by hfij . Note that,
BLE allows multiple frequency bands. As mentioned before, we
can measure two channel values for each band. We combine the
two values into a single value per band by averaging the channel
amplitude and channel phase separately and combining them into
a single channel value. This channel value is assumed to be the
wireless channel at the center frequency of the band. Furthermore,
we denote the amplitude and phase of hfij by |h

f
ij | and ∠h

f
ij respec-

tively. Finally, we have a total of I anchors, J antennas per anchor
and f ∈ {fk |k = 1…K }.

5.1 Combining Frequency Bands
The key benefit of using channel phase for localization is the addi-
tional ability to resolve multipath. By using channel phase, one can
identify the delay of individual paths (both direct and reflected) and
hence, pick out the shortest paths to be the direct paths. However,
the ability to separate out different paths depends on the available
bandwidth. If the closest separation between paths is δd, then the
frequency bandwidth, BW required to identify them is given by:

BW ≥
c
δd

(6)

where c is the speed of light. Thus, for BLE’s effective bandwidth
of 1 MHz2, the corresponding distance is 300m. This is larger than
all distances in indoor settings and hence, any paths that are closer
to each other than 300m cannot be distinguished from each other.
Clearly, this bandwidth is not sufficient to resolve indoor multipath.

To solve this problem, we make the observation that while BLE
has effective bandwidth of 1MHz, it has frequency hopping built
in. It changes the frequency of transmission after every packet.
Specifically, if the current frequency band is k1 (with frequency fk1,

2While each band in BLE is 2MHz, the separation between the two data bits is just
1MHz.

AP   �풊 (Slave)

AP 0 (Master) BLE TagRESPONSE

PACKET

OVERHEAR

OVERHEAR

0  1   ...  J

0  
1

J

...

Figure 5—Removing Phase Offsets: BLoc measures channels for the two-way com-
munication at the slave anchor’s (AP i’s) first antenna (j=0), ĥfij , from the BLE tag to

the master anchor(AP0), Ĥ f
ij and the master anchor to the target, ĥf00 . It then combines

these measurements as shown in Eq. 10 to remove phase offsets.

then for the next packet, the transmission will happen in frequency
band, k1 + khop mod 37, where khop is the parameter specific to
a connection and 37 is the total number of BLE frequency bands
possible. Since 37 is a prime number, k1 + khop is guaranteed to
go through all frequency bands for all values of khop . Thus, if we
can measure and combine the wireless channel information across
multiple frequency bands, we can span a total of 80MHz (the total
span of the BLE frequency bands, see Fig. 1(a)).

So, to achieve a large bandwidth and improve the multipath res-
olution, BLoc measures channel data on all BLE frequency bands.
Thus, we can measure channels on multiple antennas per anchor
and on different frequency bands. Can we just use these measured
wireless channels and plug them in Eq. 5 to obtain the likelihood
of the signal coming from different angles and distances? Unfortu-
nately, this is not as straightforward. The prime reason for this is the
lack of phase synchronization between the transmitter and receiver.
Every BLE device has a local oscillator responsible for generating
the signals. This oscillator is used to tune the system to different
frequencies. However, every time this oscillator is used to tune the
frequency, it incurs a random phase offset. Thus, if the transmitter
has a phase offset, ϕT 3 and the receiver has a phase offset, ϕR , the
channel measured at the receiver is given by ĥfij = hfije

ϕT−ϕR . This
phase offset (ϕT −ϕR) is random and changes per frequency switch.
Thus, the phase of the channel measurements is completely garbled
and hence, cannot be used for localization directly.

5.2 Combating Phase Offsets
How can we retrive the underlying physical channel, hfij from the

measured wireless channel with garbled phase values, ĥfij? To solve
this problem, we once again rely on the BLE protocol. In the BLE
protocol, during one communication period, the master and the
slave talk to each other, i.e. there is a two-way exchange of packets.
In BLoc, we designate one of the anchors as a master and it ex-
changes packets with the target BLE tag. All other anchors measure
CSI for both sides of the conversation, i.e., they measure the channel
from the target tag to themselves and from the master anchor to
themselves. To understand how this helps, let us assume that the

3Since all antennas on an anchor are driven by the same oscillator, the phase offset
only varies across anchors and not within one anchor.
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master anchor is anchor 0, i.e. i = 0 for the master anchor. Then,
let us assume that anchor i measured channels ĥfij from the target

to itself and measured channels, Ĥ f
ij from antenna 0 on the master

AP to itself. Then, we claim that: ĥfijĤ
f
i0∗ĥ

f ∗
00 is independent of any

random phase offsets, where (.)∗ denotes the complex conjugate
operation. We present a proof of this claim below. For this proof,
we denote the phase offset of the target tag by ϕT and the phase
offset of the i − th anchor by ϕRi . Further, let us assume that H f

ij is
the true physical wireless channel from antenna 0 on anchor 0 to
antenna j on anchor i, measured at frequency f .

ĥfij = hfije
ϕT−ϕRi (7)

ĥf00 = hf00e
ϕT−ϕR0 (8)

Ĥ f
i0 = H f

i0e
ϕR0−ϕRi (9)

=⇒ ĥfijĤ
f ∗
i0 ĥ

f ∗
00 = hfijH

f ∗
i0 hf ∗00 (10)

Eq. 10 shows that the quantity ĥfijĤ
f ∗
ij ĥf ∗00 is independent of phase

offsets and just depends on the underlying physical wireless chan-
nels. In equation 10 there are three terms of channel:
• from the tag to the anchor i (slave anchor), measured using the
overhear of the packet transmission from the tag at frequency f ,
ĥfij

• from the anchor 0 (master anchor) to the anchor i (slave anchor),
measured using the overhear of the packet response from the
Master anchor to the tag at frequency f , Ĥ f

i0
• from tag to the master anchor at frequency f , ĥf00.
And as discussed in 3, the central server has access to all of these

channel estimates and can use them to correct for phase offsets.
For ease of exposition, let us denote, α fij = ĥfijĤ

f ∗
i0 ĥf ∗00 . We call α fij to

be corrected channels for the rest of the discussion. The corrected
channels are free from any random phase distortions caused due to
frequency switching. We have been able to achieve this desirable
property by relying on the observation that both the anchor and
the tag transmit data during a communication period.

5.3 Estimating Location Probabilities
Even though the corrected channels are free from phase distortions
per frequency, do they retain the information about the underlying
geometric world that can enable us to do localization? To answer
that question, let us re-write the corrected channels, α fij in their
expanded geometric form. In the equations below, we use the term
dlmij to denote the distance from antenna j on anchor i to antenna

m on anchor l. Furthermore, dijT represents distance from the tag to
antenna j on anchor i.

α
f
ij = ĥfijĤ

f ∗
i0 ĥ

f ∗
00 (11)

= hfijH
f ∗
i0 h

f ∗
00 (12)

= e−ιd
ij
T
2π f
c eιd

i0
00

2π f
c eιd

00
T

2π f
c (13)

= e−ι
2π f
c (dijT−d

i0
00−d

00
T ) (14)

There are two important aspects to note about Eq. 14:
• Effect on AngleMeasurements: As we explained in Eq. 3, the
relative phase measured by the different antennas on a single an-
chor point determines the angle-of-arrival of the incoming signal
(i.e., the direction of the signal from the target tag). Thus, if we
add the same constant phase to the channel measurements on all
the antennas of a single anchor point, the angle distribution does
not change. Because we multiply the channels on all antennas on
an anchor point by the same conjugate channel values, we add
the same phase measurements to all antennas. Thus, the angle
distribution of the received signal can be computed using the
corrected channels, α , directly. Thus, we can just replace the true
channels(h) by corrected channels (α ) in Eq. 3 and then, write
the angular distribution of received signal at anchor i as:

Pai (θ ) =
�������

J∑
j=1

α
f
ije

ι 2π jl sinθ
λ

�������
(15)

This distribution gives us information about the angle of arrival
of the signal (and its multipath reflections). A sample of this
distribution mapped over the 2D space is shown in Fig. 6(a).

• Effect on Distance Measurements: First of all, note that di000
is a fixed-distance known a priori because the distance between
anchor i and anchor 0 can be measured one-time during deploy-
ment. Thus, Eq. 14 shows that the corrected channel contains
information about relative distances, i.e., distances measured
with respect to anchor 0, antenna 0 (i.e. dijT − d

00
T ). As we saw in

Eq. 4, we can use channel measurements at multiple frequencies
to extract this distance information out. All we need to do is to
replace distance in Eq. 4 by the relative distance and the channels
by corrected channels, α . Thus, we can denote the likelihood
of the signal received at antenna j on anchor i coming from a
relative distance dijT − d

00
T as,

Ptij (d
ij
T − d

00
T ) =

������

K∑
k=1

α
fk
ij e

ι
2π fk
c (dijT−d

00
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i0
00 )
������

(16)

A sample of this distribution mapped over the 2D space is shown
in Fig. 6(b). Note that, because we measure relative distances as
opposed to absolute distances, the shape of the high probability
region looks like a hyperbola.
We can combine Eq. 15 and Eq. 16 to write a joint distribution

over distance and angles with respect to each anchor. Let us denote
this joint distribution as Pi for the i − th anchor.

Pi (di0T − d
T
00,θ ) =

�������

J∑
j=1

K∑
k=1

α
fk
ij e

ι
2π fk
c (dijT−d

00
T −d

i0
00 )eι

2π jl sinθ fk
c

�������
(17)

Eq. 17 can further be mapped onto the 2-D cartesian coordinates by
a simple change of coordinates. Thus, Eq. 17 gives us a likelihood
of the signal originating from every point in space. A sample of
this likelihood is plotted in Fig. 6(c). We get this likelihood for each
anchor. We simply add the likelihood obtained from each anchor
together to get the joint likelihood over the X-Y space. Now that
we have obtained this distribution over space, we need to pick the
position of the target, given this distribution. Before we do that, let
us recall the steps we have done so far:
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Figure 6—CSI to Location: (a) The likelihood distribution of a signal source obtained using multiple antennas on a single anchor point using Eq. 15, (b) The likelihood distribution
of a signal source obtained using multiple frequency bands using Eq. 16. The shape of the high likelihood region is hyperbolic because the distances measured are relative. (c) The
combined likelihood distribution obtained using Eq. 17. Blue square marks the actual location of the source.

• We measure wireless channels on each anchor for two packets,
one from the target tag to the master anchor and the other from
the master anchor to the tag.

• We measure the wireless channels above for all BLE frequency
bands.

• We use the measured channels to obtain a spatial distribution of
the likelihood of the tag presence in a given location. We do this
by computing Pi using Eq. 17.

• We add the likelihood values obtained by each AP to obtain
a joint likelihood distribution. An example of this likelihood
distribution mapped over space is shown in Fig. 6(c).

5.4 Resolving Multipath
So far, we have used the measured wireless channels on the anchors
to calculate the likelihood of the tag being present at a given location
in space. Given this likelihood distribution, how do we ascertain
where the tag really is? A naive way to solve this problem would
be to pick the point with the highest likelihood. However, given
multipath effects and obstructions in the environment, the direct
path may not always be the strongest. In a lot of the cases, the
reflections of the tag might overwhelm the direct path. How can
we reason about the correct position of the tag in that case?

There are two approaches in existing works to resolve the issue
of multipath. The first approach is to isolate the direct path among
all the existing paths and thus filtering out the reflections [21, 30,
42]. The second approach is to utilize reflected components in
combination with the direct path to enable better localization [31].
But, the reflected components have a diffused distribution over
time in their angle of arrival and time of flight estimates [21]. Thus,
we use the former method to resolve multipath. So, how can we
identify the direct path and filter out the reflections?

First, observe that in Eq. 16, even though we are measuring
relative distances, the shortest path continues to be the shortest
path even in the case of multipath. This is because the reference
distance (in this case, d00T + d00) is being subtracted from all the
paths4. Thus, we can rely on the fact that direct paths have shortest
distance as compared to reflected paths. Therefore, for each peak
in the likelihood profile, we evaluate if it has the shortest distance
for each anchor point.

4While we discuss this observation in the context of a single path from the tag to the
master anchor point, it continues to hold even if multiple paths exist from the tag to
the master anchor points

Second, we observe that multipath reflections are bound to be
spread out in space as opposed to direct paths which are more
peaky. The reason behind this intuition is that the direct paths are
being directly transmitted by an antenna, whereas the reflection
is happening off surfaces which are non ideal reflectors. Since,
they are non-ideal reflectors, they can scatter some parts of the
incident signal. Furthermore, different anchors see reflections from
different parts of the reflector, making the likelihood distribution
more spread out. To quantify this intuition, we compute the spatial
entropy of the likelihood distribution around all peaks, i.e., for each
peak in the likelihood distribution, we compute the entropy of
the likelihood distribution in its immediate neighborhood. If the
likelihood distribution is almost flat, the entropy will be low and
hence, the path is more likely a reflected path.

We do a weighted combination of these two factors to determine
the position of the tag. For each peak in the likelihood distribution
over space, we define a score, sx given by:

sx = pxebH−a
∑

i di (18)

Here, x is the location of the peak, px is the joint likelihood value of
the peak, di is the distance measured from anchor i corresponding
to this peak and H is the entropy in the neighborhood of the peak.
a and b are weights for the two components of the score function.
Once we have computed the score function for all peaks, we can
just pick the peak with the highest score to be the direct path.

6 DISCUSSION
To conclude the discussion of the techniques behind BLoc, a few
points are worth mentioning:

• The system requires no changes to BLE tags. The tags talks to a
master anchor using the BLE protocol.

• BLoc complies with BLE protocol, to the best of our knowledge.
The frequency hopping used for BLoc is in-build in BLE. We
leverage the existing hopping to our advantage and used the
increased frequency bandwidth to mitigate the multipath effect.

• BLoc requires software/firmware changes to the BLE anchors
to report signal phase. Currently, no off-the-shelf BLE devices
provide access to signal phase in the application layer. Thus, to
deploy BLoc, today, one would have to use anchors which are
customized. However, the operation of the anchors is compliant
with BLE protocol.
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Further, it would seem that the long streams of 0/1’s employed
for the BLoc’s channel estimation would effect the usual BLE com-
munication. But as we know, BLE hops through all channels 40
times every second. Thus, even if one complete hop is used for
localization, the other hops can be used to communicate data as
usual. This location frequency suffices for typical indoor navigation
applications. Thus, for the CSI estimate to be possible, we would
just need 8µsec for each 0 and 1 , similar to the way [17] achieve
tones for Bluetooth, which should not effect the throughput of the
usual BLE communication.

7 IMPLEMENTATION
Hardware Setup: We implement BLoc on USRP (Universal Soft-
ware Radio Peripheral) platform ([11]). We use USRP N210s to cre-
ate four 4-antenna BLE anchor points. All antennas on one anchor
point are driven by the same clock to ensure time and frequency
synchronization within one anchor point. The target device is also
run using a USRP N210, but it has only one antenna, as is common
with BLE tags.
Software Setup:We implement the BLE PHY layer on the USRP
platform in C as a patch to the UHD (USRP Hardware Driver) code.
The USRP software radios are connected to PC’s over ethernet and
the data sent by them is processed on a central server. The server
collects the complex-valued signals and processes the signals to
estimate the location of a client in MATLAB.
Ground Truth Estimates:We conduct our experiments in a 5m
by 6m room equipped with the VICON motion capture system [1].
The VICON motion capture system relies on an array of infrared
cameras to deliver mm-level accuracy in tracking objects equipped
with visible infrared markers. We equip our target device with 4
infrared markers to track it accurately using the VICON motion
capture system. The VICON estimates are used as ground truth for
our evaluation. We do not use the output of the VICON system at
all in our algorithmic implementation. Finally, note that the VICON
room is a shared space and is full of metallic objects, like robotic
equipment, large metal cupboards, etc. As a result, the room is rich
in multipath and presents a challenging localization environment.
Experiment Procedure: We manually move the tag to randomly
sampled locations in the VICON room. The anchor points are
present on the 4 edges of the VICON room, in the centre of each
edge. When the tag is moved to a location, its ground truth location
is estimated using the VICON system. The channel measurements
are performed on each antenna of every anchor point. Once the
measurements are done, the tag is moved to a different location.
Overall, we measure the ground truth of channels in 1700 different
locations, which serves as the dataset for our evaluation. The 1700
points cover the entire space. The average separation between two
nearest neighbors is 10 cm.
Compared Schemes:We compare BLoc with an angle-of-arrival
(AoA) baseline localization system. Many of the state-of-the-art
Loclaization systems [21, 42], build on AoA. Thus, we take AoA-
combining as a baseline comparison. We further implement both
BLoc and the baseline similar to [21] using the same number of
antennas and the same set of channel measurements to compare
with the state-of-the-art wireless localization.

Based on emperical observations, for all the results reported in
section 8 we use a = 0.1 and b = 0.05, and use a circular neigh-
borhood window of window size 7 × 7 in the BLoc algorithm for
entropy calculations.

8 EXPERIMENTAL EVALUATION
We present our evaluation of BLoc below.

8.1 Microbenchmarks
Before we delve deeper and analyze the overall localization accuracy
of BLoc, we discuss some microbenchmarks to illustrate some of
its important aspects.

First, as we discussed before, measuring consistent CSI mea-
surements for BLE is non-trivial, since the frequency continuously
varies with time (within one packet) depending on the sequence
of data bits. Thus, we design special packets with long sequences
of 0 bits followed by long sequences of 1 bits. Does this sequence
design lead us to measure consistent phase across time? To check
this intuition, we plot the CSI measured by BLoc for 10 consecu-
tive measurements on 4 different frequency channels in Fig. 8(a).
Note that, BLE has 40 different frequency channels but we choose
4 bands for illustration. As can be seen in the figure, the phase of
the channel remains consistent across measurements, revealing the
stability of the CSI measurements.

Further, we want to see if we can combine the signal across
multiple anchor points, to avoid channel-dependent random phase
offsets. To check this intuition, we place the target and two APs in
line of sight in a relatively multipath free environment. In this case,
the expectation is that the phase across multiple channels varies
linearly with frequency. However, random phase offsets will make
this phase offset vary randomly across frequency. Thus, we compare
the phase of the CSI measurements in two cases: (a) when BLoc’s
phase offset cancellation is applied (red curve in Fig. 8(b)), (b) when
there is no offset cancellation (blue curve in Fig. 8(b). As can be
seen in this figure, the blue curve varies randomly with frequency,
whereas the red curve shows linear behavior across frequency. This
graph shows that the random phase offsets incurred due to channel
switching can be cancelled by use of BLoc’s offset cancellation
scheme.

Finally, we plot a sample localization profile plotted over space
in Fig. 8(c). The x-y axis in this plot correspond to the spatial X-Y
axis. The colormap defines the probability of presence of the device
at that location (white is the highest probabilit). The real location
of the target is marked by a green x, while the prediction by BLoc
is in blue x. There are two interesting aspects of this figure. First,
there are multiple locations that are possible for the device due
to the multipath present in the environment. This highlights the
requirement for BLoc’s multipath cancellation algorithm. Second,
the multipath peaks are more spread out than the direct path. This
is because the reflectors in the environment are not ideal reflectors
and so, there is not one single point on them that reflects to all the
anchor points and all the antennas. This leads them to be spread
out. This observation validates our insight mentioned before. A
detailed evaluation of BLoc’s multipath cancellation algorithm is
given in section 8.7. We can further observe that BLoc has predicted

133



BLoc: CSI-based Accurate Localization for BLE Tags CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

(a) Anchor Point (b) Testbed
-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

BLE Tag Locations
Anchor Points

AP2

AP3

AP1

AP4

(c) Point Distribution

Figure 7—Implementation: (a) A shot of one of the 4 antenna Anchor points of the setup, (b) The infrared camera to measure the ground truth for calculating localization errors,
(c) The top-view of the setup, we have 4 Anchors with 4 antenna each (in blue +) and the 1700 ground truth positoins of the BLE tag.
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Figure 9—Localization Accuracy: (a) CDFs of Localization error inmeters for BLoc and AoA-baseline, (b) CDF plots of Localization errors (in meters) for {2,3,4} anchor points for
both BLoc and AoA-combining baseline, (c) CDF plots of localization errors (in meters) for {3,4} antennas on each anchor point for both BLoc and AoA-combining baseline.

the right peak, in that the predicted location and the actual location
belong to the same Maxima’s neighborhood.

8.2 Localization Accuracy
To measure the localization accuracy of the system, we deploy BLoc
in the environment shown in Fig. 7. The environment is equipped
with 4 BLoc anchor points and has 1 target which is moved to
1700 different positions to evaluate. We measure the location of the
device using two different schemes: using BLoc and using least ToF
based AoA localization systems [21, 42], which is the state-of-the-
art in localization. We report the distance between the estimated
position of the target and the actual position of the target. The cdf
of the localization errors are plotted in Fig. 9(a).

As shown in the figure, BLoc achieves a median error of 86 cm,
whereas the AoA-combining based system achieves a median error
of 242 cm. The 90th percentile of the localization error is 170 cm
and 340 cm for BLoc and the baseline respectively. Thus, BLoc
clearly outperforms traditional AoA-combining based methods in
our evaluation. The primary reason behind the better performance

of BLoc is its ability to deal with multipath effects. It has been well
studied that for a given number of antennas per AP, there is only a
fixed number of multipath that one can resolve.

8.3 Effect of Number of Anchor Points
Further, we want to analyze the effect when the number of anchor
points is changed. To evaluate this behavior, we compute the local-
ization error for 3 anchors and 4 anchors, for both the baseline and
BLoc. For the 3 anchor scenario, we take all possible subsets of the
4 deployed anchors and report the average of those errors for each
data point. The cdf of the localization errors for 3 and 4 anchors for
both AoA baseline and BLoc are plotted in Fig. 9(b).

As expected, the results for 3 anchors is slightly worse than the
4 anchors for both the schemes. The median error for BLoc goes
up to 91.5cm from 86cm and the 90th percentile goes up from 170
cm to 175cm when one goes to 4 anchors to 3 anchors. On the
other hand, for AoA-combining based baseline, the median error
goes up from 242 cm to 247 cm, and the 90th percentile from 340
cm to 350 cm. However, in spite of this reduction, BLoc continues
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to achieve sub-meter median accuracy even with 3 anchors. We
can see from these results that just using AoA-combining based
localization would degrade if one does not have sufficient anchor
points who have (Line-of-Sight) LOS. While BLoc uses both AoA
and distance information simultaneously to localize, so even if
one has fewer anchors one can get better performance. We can
further see from Fig. 9(b) that for 2 anchors there is a significant
increase in median and 90th percentile errors for both BLoc and
AoA-combining baseline.

8.4 Effect of Number of Antennas
Prior work has shown that increasing the number of antennas im-
proves the resolution of the antenna array and hence improves
localization accuracy. We want to verify what effect this reduction
in the number of antennas has on BLoc and the AoA-combining
baseline. To understand this effect, we compare the localization er-
rors achieved with 3 antennas and 4 antennas for both the schemes.
In this experiment, we use all 4 anchors. The cdf of the localization
errors for 3-antenna anchors and 4-antenna anchors are shown in
Fig. 9(c).

As shown, the median 3-antenna localization error for BLoc is
90 cm (90th percentile is 171 cm). For AoA-combined baseline, the
median 3-antenna localization error is 241 cm (90th percentile 320
cm). This shows that the reduction in the number of antennas causes
a minimal effect on the localization accuracy. This is mainly because
BLoc relies on two different components for its multipath resolution:
number of antennas and the frequency bandwidth. A reduction in
the number of antennas is compensated by the frequency bandwidth
and hence, does not effect the accuracy very much.

8.5 Bandwidth Variation
One of the goals of BLoc is to increase the frequency bandwidth
used for BLE localization, so as to achieve higher accuracy. We
presented an algorithm to achieve this goal in section 5.1. Now,
we intend to empirically investigate the effect of the enhanced
bandwidth on localization accuracy. To this effect, we measure the
localization errors observed when the bandwidth is 2 MHz (just 1
BLE channel), 20 MHz, 40 MHz and 80 MHz. We plot the median
errors as a function of frequency in Fig. 10. The error bars are
standard deviation.

As can be seen in the figure, the localization error decreases
as the available bandwidth increases. The median errors for the 4
frequencies are 86 cm, 110 cm, 134 cm, 160 cm respectively. Ob-
serve that for a bandwidth of just 2 MHz, which is equivalent to
just 1 BLE channel, the localization error is really high (almost 2
times that of 80 MHz). This shows the importance of combining
information across multiple BLE channels. Without BLoc’s combi-
nation across frequencies, the ability of BLoc to resolve multipath
is greatly limited and as a result, the localization error increases
significantly.

8.6 Interference Avoidance
BLE co-exists with Wi-Fi in 2.4GHz frequency band and is prone
to interference from Wi-Fi. As a result, BLE can sometimes black-
list certain channels that won’t be used for BLE transmissions.
How does BLoc cope with missing CSI information on these BLE

10 0 10 1 10 2

Bandwidth (MHz)

0.5

1

1.5

2

2.5

M
ed

ia
n 

E
rr

or
(m

)

Figure 10—Effect of Bandwidth: Shows how the median localization error for BLoc
varies with increasing the possible bandwidth of hops for BLE

10 50
No. of Subbands

0

0.5

1

1.5

2

M
ed

ia
n 

E
rr

or
(m

)

Figure 11—Interference Avoidance: Shows how the median localization error for
BLoc varies with limiting the number of possible available subcarriers wihtout con-
tention over 80MHz bandwidth for BLE

channels? Note that this issue is different from reduced bandwidth
because the bandwidth is not being reduced in this case. Its just
that there are gaps in available frequency bands. To evaluate this
effect, we subsampled the available BLE channels by a factor of 2
and by a factor of 4 and compute BLoc’s localization accuracy using
subsampled data. The median errors are plotted in Fig. 11.

As can be seen in the figure, subsampling the available channels
has almost no effect on the localization accuracy. This observation
is also backed by theoretical understanding. The span of frequen-
cies available determines the resolution of the system (i.e., more
bandwidth implies higher accuracy). However, the gaps in the fre-
quency bandwidth determine the aliasing, i.e., if we have 4 MHz
gaps in adjacent frequency bands, then the system will be unable to
differentiate between distances separated by 75m (speed of light/4
MHz). Even for gaps as large as 20 MHz (one Wi-Fi channel), the
aliasing distance is 15 m. Since most indoor environments are less
than 15 m large, such aliasing does not effect the accuracy of the
system. The slight reduction in accuracy due to sub-sampling is
thus attributable to lower SNR caused by sub-sampling.

8.7 Multipath Rejection
Further, we evaluate the effectiveness of the multipath rejection
algorithm proposed in section 5.4. We turn-off the multipath rejec-
tion algorithm from the pipeline. We replace the multipath rejection
with a naive baseline that just picks the shortest distance path as
the direct path. The cdf of the localization error is plotted in Fig. 12.
Note that, this measurement uses 4 anchors with 4 antennas each.
Furthermore, it uses all the 40 available BLE channels. As can be
seen in the figure, the median error increases from 86 cm to 195 cm
(a factor of 2X), while the 90th percentile increases from 178 cm to
331 cm. This clearly shows that the multipath rejection algorithm is
crucial to the accuracy of BLoc. This multipath rejection is enabled
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Figure 12—Effect ofMultipath Rejection: BLoc’s novel multipath rejection scheme
improves the accuracy by a factor of 2.
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Figure 13—Correlation of accuracywith Location: BLoc’s accuracy variation with
the location of the BLE tag across the environmental setup.

by the high bandwidth obtained by channel combination (described
in section 5.1) and phase offset removal (section 5.2).

8.8 Location Dependency
Finally, we looks at how the variation in the location of the BLE tag
within the environment effects the accuracy of the BLoc’s RMSE.
In figure 13 we plot the RMSE values at different locations of the
BLE tag within the environment. We can observe that the errors is
particularly high in the corner locations of the setup, which can be
attributed to the closely spaced values of the sinusoid at near 90 deg
angles. Apart from that, we see that there is no consistent pattern
observed showing that the accuracy of the BLocis not dependant
on the location of the BLE tag.

9 RELATEDWORK
9.1 Context for BLE Localization
Academia and industry have worked on wireless localization since
the inception of wireless communication, for various wireless com-
munication protocols (WiFi, satellite signals, LTE, passive RFID,
active RFID, Bluetooth) [5, 8, 18, 21, 23, 25, 35–38, 41, 42, 45]. The
primary motivation has been that several devices use one or more
of the wireless protocols for communication and reusing the com-
munication protocol for localization makes it easy to add on.

Wi-Fi based localization has been a long studied topic and has
seen great advances in recent years. Wi-Fi based systems started
with using RSSI [5, 8], but have moved to CSI-based localization in
recent years [21, 23, 35, 42] due to improved accuracy of CSI based
systems, their ability to combat multipath and no requirement for
fingerprinting. Such CSI-based systems have been able to locate off-
the-shelf devices with sub-meter accuracy. But, WiFi communica-
tion and thereof localization require high power. With the advent of

Internet of Everything, low power communication is needed to en-
able long lasting battery powered devices. Therefore, these devices
cannot use WiFi for communication. To mitigate the high power
challenge, Bluetooth (BLE), passive RFID, active RFID, backscatter
communication with WiFi have been proposed [17, 19, 20, 48].

In the low power localization domain, passive RFID’s provide
zero power, short distance communication/identification proto-
col. They are deployed in large scale factories where cheap in-
ventory management is required. RFID localization has seen sev-
eral innovations in using phase measurements for localization
[25, 26, 38, 39, 46]. However, because of their zero power nature,
RFIDs are low range and have known to be unreliable. Furthermore,
RFIDs require dedicated RFID readers for localization and scanning.

Another popular communication paradigm recently evolved is
using low power backscatter radios to backscatter ambient signals
which can be decoded by existing infrastructure likeWiFi, therefore
providing low power Internet connectivity without needing any
new infrastructure [17, 19, 20, 48]. We refer to this as backscat-
ter on WiFi, which provides similar attributes of low power and
short range communication. Recently, [22] has shown high accu-
racy localization for such communication systems. However, like
passive RFIDs, backscatter on WiFi suffers from the low range of
communication.

In contrast to passive RFID’s and backscatter on WiFi, active
RFIDs (100m) or Bluetooth (20-30m) provides medium range com-
munication as they have active radios on them, while maintaining
low power. Active RFID’s typically are deployed outdoors; for ex-
ample, highway toll booth use active RFID for communication,
thereby provided an opportunity to localize and count cars using
their EZ-pass, again reusing existing communication infrastructure
for localization [2].

In indoor environments, BLE tags are the methods of choice
[9, 10, 33, 34]. They provide sufficiently long range indoors, are
resistant to frequency selective fading and have low-power opera-
tion. BLE tags are readable by off-the-shelf smartphones and access
points, because of their co-existence in the 2.4 GHzWi-Fi band. BLE
tags are, therefore, getting very popular for tracking operations
in homes, factory floors, etc. Google’s vision for physical web is
based on extensive deployment of BLE beacons [13, 14]. It is in
this context that localization for BLE devices becomes crucial. The
goal of BLoc is to improve localization accuracy for the BLE tags
that increasingly form a part of our daily lives. In summary, each
communication protocol has different applications and different
deployment scenarios, therefore localization of each protocol is
important. BLoc is geared to advance the Bluetooth localization
towards the indoor application scenario.

9.2 BLE Localization
Past work on Bluetooth localization has significantly relied on using
RSSI as the input[7, 40]. Similar to RSSI for Wi-Fi localization, this
work either relies on extensive fingerprinting or is inaccurate. Its
also prone to multipath effects and changes in the environment.
The most recent work on Bluetooth localization in [7] provides
median localization accuracy of 1.2 meter using RSSI. However, it
requires finger printing of the environment, therefore it needs to
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be trained for every new environment and retrained every time the
environment changes.

Similar to the transition of localization algorithms for Wi-Fi,
BLoc shifts this paradigm of bluetooth localization to use channel
state information to perform localization using geometry (trian-
gulation and trilateration), therefore requiring no training for ev-
ery new environment. BLoc builds a novel algorithm to recover
channel state information from bluetooth transmission. However,
Bluetooth localization accuracy suffers due to low bandwidth. BLoc
also presents a novel technique to provide bandwidth expansion by
combining channel state information across multiple band, while
requiring no change to the Bluetooth module. By combining mul-
tiple bands, Bluetooth achieves comparable resolution in time or
distance measurement. BLoc open the doors to apply wideband
channel state information based localization algorithms which were
developed for WiFi localization to the Bluetooth communication
protocol.

Finally, we do note that BLoc requires deployment of new an-
chors in the environment which can measure CSI, whereas the
RSSI based system could use smartphones to gain RSSI information.
But, we believe this is an essential first step towards enabling zero
startup cost Bluetooth localization which requires no training and
is based on channel state information.

9.3 RF-based Localization
In terms of the algorithms presented in the paper, three systems are
close to our work. First, [21] uses channel state information avail-
able for 40 MHz Wi-Fi bands on multiple access points to measure
both distance and angle to a target device. We presented a simplified
version of [21] in background section (section 2). [35] uses stitching
of multiple Wi-Fi channels to get a wide bandwidth, but requires
CSI measurement on the target itself, which is infeasible for BLE
tags. [27, 43, 44] use relative channels, but require synchronization
across multiple access points.

In contrast to these systems, BLE does not provide wide band-
width or access to CSI. We present novel algorithms to stitch multi-
ple channels, measure CSI and cancel phase offsets using anchor
collaboration. Furthermore, our approach to solving multipath us-
ing relative distances and spatial entropy differs from these systems.

Finally, we believe the techniques to use CSI across multiple
anchor points to cancel phase offsets and the technique to use
spatial entropy for multipath cancellation are applicable beyond
BLE and can benefit general localization systems.

10 CONCLUSION
We present, BLoc, a CSI-based localization system for BLE tags.
BLoc includes novel algorithms to compute CSI for BLE packets,
to increase bandwidth of BLE signals by combining the frequency
hops and to isolate the direct path from multipath reflections. By
doing so, BLoc achieves sub-meter localization accuracy in a real
world environment. We believe BLoc will open new avenues for
localization of tens of millions of already deployed BLE tags. Fur-
thermore, we hope that BLoc will serve as a tool for the research
community to test out CSI-based localization algorithms for BLE
devices.
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