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Abstract

In a series of experiments Wilcox et al. (2018,

2019b) provide evidence suggesting that

general-purpose state-of-the-art LSTM RNN

language models have not only learned En-

glish filler-gap dependencies, but also some

of their associated ‘island’ constraints (Ross,

1967)). In the present paper, I cast doubt on

such claims, and argue that upon closer inspec-

tion filler-gap dependencies are learned only

very imperfectly, including their associated is-

land constraints. I conjecture that the LSTM

RNN models in question have more likely

learned some surface statistical regularities in

the dataset rather than higher-level abstract

generalizations about the linguistic mecha-

nisms underlying filler-gap constructions.

1 Introduction

Recurrent Neural Networks (RNNs) are a class of

abstract neural network where the connections be-

tween nodes consist of a directed graph along a

temporal sequence. This architecture allows node

outputs at current time step to depend on the cur-

rent input as well as on the previous output state.

Thus, the network can exhibit temporal dynamic

behavior, since the internal state of the system is a

kind of memory that can be used to process sub-

sequent input. Such models are therefore well-

suited for natural language tasks, among others.

RNNs with a Long Short-Term Memory (LSTM)

architecture have a far more elaborate and selec-

tive form of memory. A common LSTM node is

composed of a cell, an input gate, an output gate

and a forget gate. Such gates enable RNN nodes

to remember values over arbitrary time intervals

and the three gates regulate the flow of informa-

tion into and out of the nodes.

LSTM RNNs are therefore better suited than

plain RNNs to model long-distance dependen-

cies of the kind found in natural languages

(Linzen et al., 2016; Gulordava et al., 2018;

Bernardy and Lappin, 2017). This includes

filler-gap dependencies like (1), where the wh-

phrase what is interpreted as the object of do,

even though the two words are separated by

four clausal boundaries as indicated by square

brackets.

(1) Whati do you think [the students will say

[they believe [the TA claimed [he was trying

to do i]]]]?

I refer to the ‘extracted’ phrase as the filler and

to the canonical position where it would otherwise

be realized as the gap, signaled via an underscore.

The filler-gap dependency is the semantic and syn-

tactic linkage that must be established between the

filler and its in situ canonical location in order for

such utterances to be interpretable.

1.1 Learning Filler-Gap dependencies

Recently, Chowdhury and Zamparelli (2018) pro-

vide some evidence that LSTM RNNs can store

information about the filler phrase, and detect that

the probability of the sentence-final NP in exam-

ples like (2) is low because of the presence of a

filler-gap dependency.

(2) Whoi should Mia discuss i / *this candidate.

Wilcox et al. (2018) improve on this work, and

propose a Surprisal-based (Hale, 2001; Levy,

2008) differences-within-differences design to

measure the ability of the RNN to learn filler-gap

dependencies, using a factorial design as in (3).

(3) a. I know that the lion devoured a gazelle at

sunrise.

[NO WH-LICENSOR, NO GAP]

b.*I know what the lion devoured a gazelle

at sunrise.

[WH-LICENSOR, NO GAP]
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c.*I know that the lion devoured at sunrise.

[NO WH-LICENSOR, GAP]

d. I know whati the lion devoured i at sun-

rise.

[WH-LICENSOR, GAP]

Wilcox et al. define S(w) as the surprisal of a

given word w, estimated in terms of the log in-

verse probability of w according to the RNN’s hid-

den state softmax activation h before consuming

w, given all previous words in the sentence:

(4) S(w) = −log2 p(w|h)

If the model has learned to represent filler-gap

dependencies, then the surprisal of the proposi-

tion at in (3a) should be a small number, since

the probability of at in this context is high, and

the surprisal of ‘at’ in (3b) should be a large num-

ber, since the probability of ‘at’ in this context is

low. Consequently, their difference S(3b)−S(3a)
should yield a large positive number. Similarly,

S(3d)− S(3c) should yield a large negative num-

ber, and the full licensing interaction (S(3b) −
S(3a)) − (S(3d) − S(3c)) should be a large pos-

itive number. This licensing interaction represents

how well the network learns both parts of the li-

censing relationship: a positive wh-licensing inter-

action means the model represents a filler-gap de-

pendency between the wh-word and the gap site;

a licensing interaction indistinguishable from zero

indicates no such dependency. Wilcox et al. find

that typical models show about 4 bits of licensing

interaction in simple examples like (3).

Using this design, Wilcox et al. (2019b) found

that LSTM RNNs can maintain filler-gap de-

pendencies across up to four clausal boundaries,

not unlike the ones in (1). Two models were

used for these experiments: (i) the model in

Gulordava et al. (2018) – henceforth the Gulor-

dava model – which was trained on 90 million

tokens of English Wikipedia, and has two hidden

layers of 650 units each; and (ii) Jozefowicz et al.

(2016) – henceforth the Google model – which

was trained on the One Billion Word Benchmark

(Chelba et al., 2013), has two hidden layers with

8196 units each, and employs a character-level

convolutional neural network.

But more recently Da Costa and Chaves (2020)

shows that the Gulordava and Google LSTM mod-

els have learned filler-gap dependencies only very

imperfectly. In particular, the models completely
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Figure 1: Surprisal at the gap-agreeing verb in ‘which’

interrogatives across embedding levels (LSTM RNNs)

failed to learn that filler-gap constructions also im-

pose agreement dependencies like those in (5). In

such constructions, the singular/plural number in-

formation of the extracted phrase must match that

of the verb from which the extraction takes place.

(5) a. They wondered which lawyer I think you

said was/*were upset.

b. They wondered which lawyers I think you

said *was/were upset.

Following the same factorial approach and code of

Wilcox et al. (2018), Da Costa and Chaves (2020)

extracted the softmax activation of the verbs

were/was in 20 items like those illustrated in (6),

up to four levels of clausal embedding.

(6) a. Someone wondered which lawyer(s) I

think was/were ...

[Nsg/pl , LEVEL1, Vsg/pl]

b. Someone wondered which lawyer(s) I

think you said was/were ...

[Nsg/pl , LEVEL2, Vsg/pl]

c. Someone wondered which lawyer(s) I

think you said you thought was/were ...

[Nsg/pl , LEVEL3, Vsg/pl]

d. Someone wondered which lawyer(s) peo-

ple believe I think you said you thought

was/were ...

[Nsg/pl , LEVEL4, Vsg/pl]

The results in Figure 1 show that both the Gu-

lordava and the Google models failed. Had the



LSTM RNNs succeeded at this task, the condi-

tions where the noun and verb agree (i.e. Npl-Vpl

and Nsg-Vsg) would be lower in surprisal than

the conditions where the agreement is mismatched

(i.e. Npl-Vsg and Nsg-Vpl). Note also that in the

Google model surprisal increased with the level of

embedding, so that the correct verb form is more

unexpected in level 4 than the incorrect verb forms

in levels 1 and 2. Da Costa and Chaves (2020)

tested other types of construction and the results

are equally bad, suggesting that the Gulordava and

Google models have not learned the morphosyntax

of filler-gap dependencies, even though they were

trained on datasets larger than what a child learner

is exposed to; according to Atkinson et al. (2018),

children begin to exhibit adult-like active forma-

tion of filler-gap dependencies by age 6.

1.2 Learning Island Constraints

Wilcox et al. (2018, 2019b) in addition claim

that the Gulordava and Google models have

learned certain constraints on filler-gap dependen-

cies known as Islands (Ross, 1967). In partic-

ular, Wilcox et al. claim that the models learn

that the subordinate clauses introduced by whether

have reduced acceptability as in (7a), that relative

clauses and adverbial adjuncts are difficult to ex-

tract from as in (7b,c), and that conjuncts and the

left branches of NP are not possible to extract, as

in (7d,e). All reported examples below are from

Wilcox et. al experiments. Square brackets indi-

cate the island-establishing environments.

(7) a.* I know what Alex said [whether your

friend devoured at the party].

(Wh-Island)

b.*I know (that/what/who) the family bought

the painting [that depicted last year].

(Complex NP Constraint Island)

c.*I know what the patron got mad [after

the librarian placed on the wrong shelf].

(Adjunct Constraint Island)

d.*I know what the man bought [the painting

and ] at the antique shop.

(Conjunct Constraint island)

e.*I know what color you bought [ car] last

week.

(Left Branch Constraint island)

However, Wilcox et.’s claims are too strong.

First, most of these island constraints are more

complex than Wilcox et. al’s discussion suggest,

and before it cannot be claimed that a model learns

island constraints before all the associated condi-

tions are shown to have been learned as well. For

example, the Conjunct Constraint is but a piece

of a larger set of constraints that are specific to

coordination, known as the Coordinate Structure

Constraint (CSC). The CSC consists of the Con-

junct Constraint, the Element Constraint, the ATB

Exception, and the Asymmetric Exception; see

Kehler (2002, Ch.5) for a detailed overview and an

account of most of these constraints that is based

on pragmatic discourse relations.

The Complex NP Constraint (CNPC) is simi-

larly complex. First, it is not restricted to relative

clauses: nouns that semantically introduce propo-

sitional complements like in the claim that Robin

stole a book also induce such extraction limita-

tions (e.g. *Whati did you reject the claim [that

Robin stole i]?’). Second, it is also known that

the CNPC vanishes in presentational relatives (i.e.

in relatives that express assertions rather than pres-

supposed content), as we discuss below.

Moreover, some of the island constraints that

Wilcox et al. probed are know to be weakened

when the island phrase is untensed, and vanish al-

together if there is a secondary (i.e. ‘parasitic’) gap

outside the adjunct (Engdahl, 1983); see Phillips

(2006) for experimental evidence. In sum, there is

a complex array of facts that still need to be tested.

Finally, the Left Branch Constraint (LBC) items

that Wilcox et al. used, like (7e), have a critical

confound. The sentences are not licit even without

the extraction (i.e. *what color car). And since the

sentences are ill-formed, with or without extrac-

tion, it remains unclear whether the RNNs have or

not learned the LBC.

But even conceding that the results are over-

all on the right track, there is one final problem.

Both the Gulordava and Google models failed to

learn that extraction from subject phrases (phrasal

or clausal) is hampered, as illustrated in (8).

(8) a.*I know who [the painting by ] fetched a

high price at auction.

(Subject Constraint Island)

b.*I know who [for the seniors to defeat ]

will be trivial.

(Sentential Subject Constraint Island)

The difficulty in learning clausal Subject Island ef-

fects is unexpected because such islands are much



stronger than Wh-islands. Not only the oddness

induced by a Wh-island constraint violation is less

pronounced than that of clausal Subject islands,

but also because counterexamples to the former

are much easier to find. Compare (7) with the ac-

ceptable counterpart in (9).

(9) Which shoes are you wondering [whether

you should buy ]?

See Abrusán (2014, Ch.4) for strong evidence that

Wh-islands and their exceptions are contingent on

subtle semantic-pragmatic factors, not syntax. In-

deed, there is growing evidence that many island

constraints are at least in part due to non-syntactic

factors, including pragmatics and processing bi-

ases; see Chaves and Putnam (2020) for a detailed

overview. For example, counterexamples have

been noted in the literature to all of the island con-

straints probed by Wilcox et al., with the exception

of the Conjunct Constraint and the Left Branch

Constraint islands; see Hofmeister and Sag (2010)

and references cited. This includes Subject Is-

lands involving VP subjects, as in the attested data

in (10). See Huddleston et al. (2002, 1093,1094),

Santorini (2007), and Chaves (2013) for more at-

testations.

(10) a. In his bedroom, which [to describe as

small] would be a gross understatement,

he has an audio studio setup.

[pipl.com/directory/name/Frohwein/Kym]

b. They amounted to near twenty thousand

pounds, which [to pay ] would have ru-

ined me. (Benjamin Franklin, William

Temple Franklin and William Duane.

1834. Memoirs of Benjamin Franklin, vol

1. p.58)

[archive.org/details/membenfrank01frankrich]

c. The (...) brand has just released their S/S

2009 collection, which [to describe as

noticeable] would be a sore understate-

ment.

[missomnimedia.com/2009/page/2/?s=art+radar&

x=0&y=0]

d. Because this does purport to be a food

blog, I will move from the tv topic to the

food court itself, which [to describe as

impressive] would be an understatement.

[phillyfoodanddrink.blogspot.com/2008/06/foodies-

food-court.html]

All of these counterexamples involve restrictive

relative clauses, suggesting that the Subject Con-

dition is sensitive to pragmatics (Abeillé et al.,

2018; Chaves and Dery, 2019).

The point here is a cautionary one: many is-

land constraints are not absolute, and come with

a complex array of patterns, many of which are

still poorly understood. It cannot be claimed that

a given language model has learned an island con-

straint before showing that both the negative and

the positive cases (if any exist) have been correctly

learned as well.

Note also that the Gulordava and the Google

models did not perform in the same way at learn-

ing these island constraints: whereas the Google

model failed to learn CNPC islands when the word

‘that’ appears instead of ‘who/what’, the Gulor-

dava model failed to learn Wh-Islands. The perfor-

mance of the Google was not significantly better

that Gulordava’s even though the former was orig-

inally trained with ten times more data than the

latter, contained ten times as many hidden units,

and used character CNN embeddings. This again

suggests that something fundamental about filler-

gap dependencies is being missed.

The question then becomes: are these mod-

els actually learning filler-gap dependencies or are

they simply learning surface-based contingencies

that have little to do with the underlying syntactic

and semantic mechanisms that cause island phe-

nomena? As Jo and Bengio (2017) demonstrate,

neural networks tend to learn surface statistical

regularities in the dataset rather than higher-level

abstract concepts; for adversarial research show-

ing this to be the case in the language domain

see Jia and Liang (2017) and Iyyer et al. (2018),

for instance. Indeed, Marvin and Linzen (2018)

found that LSTM RNNs fail to learn reflexive pro-

noun agreement and negative polarity licensing,

and Wilcox et al. (2019a) showed that such mod-

els learn center-embedding dependencies only im-

perfectly. In the remainder of this paper the same

models, code and licensing interaction approach

of Wilcox et al. (2018) is used to provide evidence

suggesting that these LSTM RNNs merely capture

partial and superficial morphosyntactic properties

of filler-gap dependency constraints. The present

results are consistent with those of Wilcox et al.

(2019a), in which these models are not fully able

to suppress expectations for gaps inside at least

some island environments and recover them later.



2 Extraction from Relative Clauses

Wilcox et al. (2018) found that evidence sug-

gesting that both the Google and the Gulor-

dava models have learned the CNPC. How-

ever, the CNPC is not without principled ex-

ceptions. It is well-known that CNPC ef-

fects systematically vanish in existential rel-

ative clauses (Erteschik-Shir and Lappin, 1979;

McCawley, 1981; Chung and McCloskey, 1983)

as in (11). See Kush et al. (2013) for experimen-

tal evidence that existential relatives are not island

inducing syntactic environments.

(11) a. This is the kind of weather that there are

[many people who like ].

(Erteschik-Shir and Lappin, 1979)

b. There were several old rock songs that she

and I were [the only two who knew ].

(Chung and McCloskey, 1983)

c. John is the sort of guy that I don’t know

[a lot of people who think well of ].

(Culicover, 1999, 230)

d. Which diamond ring did you say there

was [nobody in the world who could buy

]? (Pollard and Sag, 1994, 206)

Such relatives are special in that they express as-

sertions rather than presupposed content, and the

extraction is thus arguably acceptable because the

referent that is questioned is part of the content

that is asserted and at-issue (Goldberg, 2013). It

should be relatively easy for the models to use the

there be sequence as a cue that these constructions

are different from other relatives. If Google and

Gulordova’s RNN models have learned the CNPC

rather than superficial contingencies then the ex-

istence of a second gap inside an existential rel-

ative should not cause a large spike in surprisal

and the licensing interaction should be small, or

ideally, close to zero. For this purpose 18 exper-

imental items were taken from Kush et al. (2013)

and adapted to the present task, using the method-

ology as Wilcox et al. A sample is in (12).1

(12) a. It was known that there were many math-

ematicians who worked on the project for

years.

[NO WH-LICENSOR, NO GAP]

1Only verbs that strongly require complements were em-
ployed, and that-relatives were avoided given that the models
have difficulty with them according to Wilcox et al. (2018).
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Figure 2: Licensing Interaction in Existential Relatives

b.*This was the problem which there were

many mathematicians who worked on the

project for years.

[WH-LICENSOR, NO GAP]

c.*It was known that there were many math-

ematicians who worked on for years.

[NO WH-LICENSOR, GAP]

d. This was the problem which there were

many mathematicians who worked on

for years.

1 [WH-LICENSOR, GAP]

Ideally, the no-gap condition interaction S(12b)−
S(12a) should be a positive number, and the gap

condition interaction S(12d) − S(12c) a negative

number. As the graphs in Figure 2 indicate, this

is what was found for the Gulordava model, but

not for Google’s. In the latter, the no-gap condi-

tion is indistinguishable from zero (t = -0.75, p

= 0.46) suggesting that the latter model overlooks

the subject gap. That said, the full wh-licensing in-

teraction values are clearly positive, and in the or-

der of about 1.5 bits. This is much lower than the

4 bits found by Wilcox et al. (2018), but nonethe-

less suggests that at least some aspects of the filler-

gap dependency are detected by the models. Many

other attempts were made to arrive at stronger re-

sults, with different materials, but the results in-

variably had similar outcomes, with the ‘no-gap’

bars either being indistinguishable from zero or

negative. I now move on to islands which are not

as strongly correlated with surface cues.
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3 Extraction from Adjunct Clauses

Wilcox et al. (2018) probed the strongest type of

adjunct island (tensed adjuncts), traditionally re-

garded as exceptionless since Huang (1982). But

recent work has revealed that exceptions do ex-

ist; see Kluender (1998, 267), Truswell (2011,

175, ft.1), Levine and Hukari (2006, 287), and

Goldberg (2006, 144). For example, Sprouse et al.

(2016) found no evidence of an island effect in ex-

amples like (13), in terms of sentence acceptability

rating, but found strong evidence of island effects

in other adjunct island examples.

(13) I called the client [who]i the secretary wor-

ries [if the lawyer insults i].
(Sprouse et al., 2016)

Similarly, Müller (2017) experimentally shows

that Swedish conditional adjuncts seem to yield

much weaker island effects than causal adjuncts,

and Kohrt et al. (2018) found experimental ev-

idence that (non-clausal) English adjunct is-

lands are contingent on semantic factors. In

more recent work, Chaves and Putnam (2020)

provide experimental evidence suggesting that

Mueller’s results likely extend to English as well.

Chaves and Putnam (2020) report a sentence ac-

ceptability experiment with 24 items falling into

three conditions, illustrated in (14).

(14) a. Whoi did Sue blush [when she saw i]?

[TEMPORAL ADJUNCT]

b. Whati did Tom get mad [because Phil for-

got to say i]? [CAUSAL ADJUNCT]

c. Whati does Evan get grumpy [if he is told

to do i]? [CONDITIONAL ADJUNCT]

In what follows I briefly describe this experiment

in more detail, with the aim of repurposing the

items for a counterpart experiment using the Gu-

lordava and Google models. Each item was in-

terspersed and pseudo-randomized with 36 filler

phrases, half of which are ungrammatical, as illus-

trated in (15). The grammatical distractors were

immediately followed by Yes/No comprehension

questions, and the mean comprehension question

accuracy was 86%.

(15) a.*Who does the union identify as having

most recently fired from ?

b. What did the editor recommend should be

revised ?

Chaves and Putnam analyzed data from 38 English

native speakers, who were asked to rate the accept-

ability of each experimental item on a 5-point Lik-

ert scale. There was a wide range of acceptability

scores, from fairly high in the acceptability scale

to very low, as seen in Figure 3. The (aggregate)

ratings for the grammatical (G) and the ungram-

matical (U) distractors are included, for compar-

ison. Conditional adjuncts were clustered at the

high end of the ratings, temporal adjuncts in the

middle, and causal adjuncts at the bottom.

I now describe how the stimuli from this ex-

periment was repurposed to the same task that

Wilcox et al. (2018) employed. The top 5 human-

rate rated items (High Acceptability condition) re-

ceived a mean acceptability of 3.30 (SD = 0.2),

and the bottom human-rated 5 rated items (Low

Acceptability condition) received a mean accept-

ability of 1.95 (SD = 0.13). These 10 items were

selected and adapted to the 3 × 2 × 2 factorial li-

censing interaction methodology of Wilcox et al.

(2018). The counterparts of the item in (14c) are

shown in (16) and (17) for illustration. In a nut-

shell, all items were embedded under ‘I know’ and
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Figure 4: Effect of extraction site on wh-licensing interaction for adjunct islands, across high/low acceptability

all proper names were replaced with pronouns. In

the Object condition there is no adjunct clause.

(16) a. I know that they usually are told to do the

homework in the morning.

[OBJECT, NO WH-LICENSOR, NO-GAP]

b.*I know what they usually are told to do

the homework in the morning.

[OBJECT, WH-LICENSOR, NO-GAP]

c.*I know that they usually are told to do in

the morning.

[OBJECT, NO WH-LICENSOR, GAP]

d. I know what they usually are told to do

in the morning.

[OBJECT, WH-LICENSOR, GAP]

In the Adjunct back condition there is an ad-

junct clause at the end of the sentence, as in (17).

Following Wilcox et al. (2018), there was a third

condition where the adverbial clause is fronted,

and appears immediately after the complementizer

that rather than at the end of the utterance.

(17) a. I know that the kids get grumpy if they

are told to do the homework in the morn-

ing.

[ADJUNCT BACK, NO WH-LICENSOR, NO-GAP]

b.*I know what the kids get grumpy if they

are told to do the homework in the morn-

ing.

[ADJUNCT BACK, WH-LICENSOR, NO-GAP]

c.*I know that the kids get grumpy if they are

told to do in the morning.

[ADJUNCT BACK, NO WH-LICENSOR, GAP]

d. I know what the kids get grumpy if they

are told to do in the morning.

[ADJUNCT BACK, WH-LICENSOR, GAP]

If the Gulordava and Google models have learned

the subtleties of the tensed Adjunct Constraint

then the filler-gap dependencies in the High Ac-

ceptability condition items should have a signif-

icantly lower surprisal than the Low Acceptabil-

ity condition items. In order to access this, the

surprisal of the word after the critical region was

measured. Focusing on the object items first, inter-

actions of the type S(16b)−S(16a) should ideally

result in a positive number, however, for both High

acceptability or Low acceptability items. This was

the case in the Google model, but not for the Gu-

lordava model, as Figure 4 shows; perhaps the lat-

ter model discovered that a gap after the preposi-

tion in (16b) is not necessarily out of the question.

S(16d)−S(16c) yielded the expected highly neg-

ative values, as illustrated by the long teal bars.

Moving on to the Adjunct back items, the inter-

actions of the type S(17b)−S(17a) should ideally

result in a positive number as usual, contrary to

fact, and S(17d)− S(17c) should ideally result in

a negative number in the High acceptability condi-

tion and cancel out in the Low acceptability condi-

tions. Neither result occurred because the interac-

tion values were centered around zero. The full li-

censing interaction (S(17b)−S(17a))−(S(17d)−
S(17c)) is shown in Figure 5. None of the Ad-

junct front/back High/Low conditions is statisti-

cally distinguishable from zero, although signifi-

cance is approached (t = 2.73, p = 0.052) in the
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Figure 5: Full licensing interaction for Adjunct Islands

case of Adjunct front High for Gulordava.

In sum, all extractions from clausal adjuncts

are ultimately deemed islands environments by the

models, contrary to the human judgments.

4 Extraction from Negative Phrases

Negative Islands are perhaps the clearest type of

island in which semantic and pragmatic factors

play a key role. Consider the examples in (18).

(18) a.*Which country weren’t you born in ?

b.*How many kids don’t you have ?

c.*How fast didn’t John drive ?

The question in (18a) presupposes that the ad-

dressee was born in all countries but one, which

is contrary to world knowledge, and therefore in-

felicitous (Kuno and Takami, 1997). Hence, the

oddness vanishes if the verb is not a one-time pred-

icate, as in (19).

(19) Which country haven’t you visited yet?

The oddness of the degree questions in (18b,c)

is due to an analogous reason; see Abrusán (2011)

for detailed discussion. It is again clear that the

oddness is caused by semantic factors, since the

introduction of existential modals makes the island

effect vanish (Fox and Hackl, 2006):

(20) a. How many kids can’t you have ?
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b. How fast is John required not to drive ?

In order to evaluate whether RNNs are sensi-

tive to such effects 14 items were constructed in a

2×2×2 design, as illustrated in (21). The verb is

negated in items in the negative (NEG) condition.

(21) a. I wonder if the owner of the truck has

(not) driven at this speed during the race.

[NO WH-LICENSOR, POS/NEG, NO GAP]

b.*I wonder how fast the owner of the truck

has (not) driven at this speed during the

race. [WH-LICENSOR, POS/NEG, NO GAP]

c.*I wonder if the owner of the truck has

(not) driven at during the race. [NO

WH-LICENSOR, POS/NEG, GAP]

d. I wonder how fast the owner of the truck

has (*not) driven at during the race.

[WH-LICENSOR, POS/NEG, GAP]

The results are shown in Figure 6. The inter-

action S(21b) − S(21a) should have resulted in

a moderate-to-large positive numbers, regardless

of the presence of negation. In other words, the

red bars should be positive and not overlap with

zero. This was not true of either model, espe-

cially for Gulordava. Conversely, S(21d)−S(21c)
should have yielded a moderate-to-large negative

number in the pos(itive) condition but obtain a sig-

nificantly higher value in the neg(ative) condition

(ideally, close to zero). However, there was no sta-

tistically significant difference between the inter-

action values across the two island conditions (pos

and neg) for the Google model (t = 0.3, p = 0.73)
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nor for the Gulordava model (t = 1.11, p = 0.27).

The full interactions are shown in Figure 7. Had

Negative Islands been learned, the teal bars would

be centered around zero, like those in in Figure 5.

5 Discussion

The claim that state-of-the-art LSTM RNNs mod-

els have learned filler-gap dependencies and is-

lands is premature on both linguistic and exper-

imental grounds. First, the linguistic constraints

in question are far more complex than what ex-

tant studies consider. Second, there is evidence

that these models only learn partial contingen-

cies about filler-gap dependencies, which suggests

that the actual linguistic mechanism that underlies

such long-distance phenomena is not accessible to

the model.

The problem is arguably not due to a lack of

data. The training datasets for Gulordava and

Google are unrealistically large when compared to

the amount of linguistic input the average child

is exposed to (Atkinson et al., 2018). Similarly,

the problem is not likely to be due to lack of

expressivity, since this kind of model is Turing-

complete; see Siegelmann and Sontag (1995) and

Siegelmann (1999, 29–58) for proofs and exam-

ples, as well as Hornik et al. (1989) and Lu et al.

(2017) for detailed discussion about Cybenko’s

universal approximation theorem.

The present findings suggest that model size

and training regimen yield diminishing returns,

and that there is a more fundamental factor pre-

venting such systems to learn filler-gap depen-

dencies. The problem likely stems from the

fact that filler-gap dependencies are not merely

surface string patterns: they involve rich mor-

phological, syntactic and semantic dependen-

cies which crucially interact with pragmatics and

world knowledge, thus far absent from train-

ing. Most crucially, many island phenom-

ena seem to be sensitive to semantic and prag-

matic constraints, including the Subject Constraint

(Chaves and Dery, 2019; Abeillé et al., 2018), the

Adjunct Constraint (Truswell, 2011; Müller, 2017;

Kohrt et al., 2018; Goldberg, 2013), the Com-

plex NP Constraint (Erteschik-Shir and Lappin,

1979; Goldberg, 2013), the Coordinate Struc-

ture Constraint (Kehler, 2002, Ch.5), Wh-

Islands (Abrusán, 2014, Ch.4), Negative Is-

lands (Abrusán, 2011), among others. See

Chaves and Putnam (2020) for extensive discus-

sion of these and other island effects.

In sum, it not clear how current neural models

can learn island constraints from stringsets alone,

precisely because of the subtle semantic and prag-

matic properies that underpin the phenomena in

question. The present findings are consistent with

the fact that Marvin and Linzen (2018) found that

LSTM RNNs fail to learn other complex phenom-

ena such as reflexive pronoun agreement, negative

polarity licensing, and center-embedding depen-

dencies (Wilcox et al., 2019a).

All experimental items and statistical anal-

ysis scripts are made available online at

https://github.com/RuiPChaves/LSTM-RNN-unbounded-dependen

The code to run the models is the same as

Wilcox et al. (2018).
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