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B Formal Details for Section 5

B.1 Application in Section 5.1

B.1.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0,∞) and Brownian motion {bτ}τ∈[0,t] up to that time. Let

I = {1, . . . , n} denote the set of woodcutters. A history up to time t is represented

by
(
{bτ}τ∈[0,t], {(aiτ )i∈I}τ∈[0,t)

)
, where {aiτ}τ∈[0,t) denotes the action path of woodcutter i

up to time t with the action space being R2
++ ∪ {z}. The action aiτ = (eiτ , f

i
τ ) ∈ R2

++

means that woodcutter i seeks to harvest the amount eiτ and claim the amount f iτ at time

τ . The action aiτ = z stands for choosing not to cut trees at that time.

The set of all histories up to an arbitrary time is denoted by H. Choose an arbitrary

ht ∈ H. Let X represent the set consisting of each time τ ∈ [0, t) for which there is

no i ∈ I such that aiτ = z and there exists dτ > 0 such that eiτ = dτ for all i ∈ I. If

the set X has only finitely many elements, then let {tk}Kk=1 be the increasing sequence

consisting of all the elements of X. For each k ∈ {1, . . . , K}, define the volume of the

forest right before the kth cutting by qtk = btk−
∑k−1

l=1 rtl , and define the amount harvested

on the kth cutting by rtk = min(qtk , dtk). The volume of the forest at time t is given by

qt = bt −
∑k

l=1 rtl . If the set X has only finitely many elements, then the feasibility

constraint is Āi(ht) = (0, qt] × R++ ∪ {z} for each i ∈ I. Otherwise, the feasibility

constraint is simply Āi(ht) = {z} for any i ∈ I.

The set of feasible strategies is for each i ∈ I:

Π̄i = {πi : H → R2
++ ∪ {z} | πi(ht) ∈ Āi(ht) for all ht ∈ H}.

The set of traceable, frictional, calculable, and feasible strategies can then be defined and

is denoted by Π̄C
i for woodcutter i ∈ I.

The shock process st is formally defined as a pair comprising the Brownian motion bt

and calendar time t. The instantaneous utility function vi is specified for each i ∈ I as

vi[(a
i
τ , a
−i
τ ), sτ ] = 0 if aj = z for some j ∈ I or else if ej 6= ek for some j, k ∈ I and as

vi[(a
i
τ , a
−i
τ ), sτ ] = exp(−ρτ)

(
f iτ

/∑
j∈I

f jτ

)
(dτ − κ)

if there is no j ∈ I such that aj = z and there exists dτ > 0 such that eiτ = dτ for all

i ∈ I.

B.1.2 Proofs

Proof of Proposition 5. The proof consists of three parts. We first assume the Markov

property on the path of play and solve for the unique optimum, where a symmetric SPE

2



is said to be Markov on the path of play if the action prescribed by each strategy at

any history up to an arbitrary time on the path of play depends only on the volume qt

at that time. Second, we show that any maximal equilibrium must be Markov on the

path of play. Third, we show that the supremum of the set of expected payoffs attainable

in a symmetric SPE can be approximated arbitrarily closely by a symmetric SPE that

is Markov on the path of play. These three results imply the existence of a maximal

equilibrium.

Lemma 9. For any profile (n, µ, σ, κ, ρ), the tree harvesting game has a symmetric SPE

that is Markov on the path of play and weakly Pareto dominates any symmetric SPE that

is Markov on the path of play. Moreover, on the path of play of any such SPE, the mth

cutting of trees occurs with probability one at the mth time the volume reaches x̂ for every

positive integer m, where the trees are cut to volume 0 on each cutting.

Proof. Note first that at any history up to an arbitrary time, the minmax continuation

payoff to each agent is zero, which can be obtained under the symmetric Markov strategy

profile in which no woodcutter ever chooses to harvest trees. Hence, we restrict attention

without loss of generality to strategy profiles in which after any deviation from the path of

play, a symmetric Markov strategy profile is played in which no woodcutter ever chooses

to harvest trees.

Let U(bt) denote the value of an asset that pays r at the first time the Brownian

motion reaches c ≥ bt when the current value of the Brownian motion is bt. The function

U(bt) satisfies the Bellman equation ρU(bt) = E(dU) subject to the boundary condition

U(c) = r. Using Ito’s lemma, the Bellman equation can be expressed as ρU(bt) =

µU
′
(bt) + 1

2
σ2U

′′
(bt). It has the unique solution U(bt) = reα(bt−c), where α = (−µ +√

µ2 + 2σ2ρ)/σ2.

In any symmetric SPE that is Markov on the path of play, there exist y ≥ 0 and

z > y such that with probability one on the equilibrium path, the trees are cut if and

only if the volume of the forest is currently z > y, with the volume being y ≥ 0 after each

cutting. Consider any symmetric SPE in grim-trigger strategies that is Markov on the

path of play in which the equilibrium path is such that with probability one, the trees

are cut if and only if the volume of the forest is currently z > y, with the volume being

y > 0 after each cutting. There exists a symmetric SPE in grim-trigger strategies with

a higher expected payoff to each agent in which the equilibrium path is such that with

probability one, the trees are cut if and only if the volume of the forest is currently z− y,

with the volume being 0 after each cutting. Noting that such an SPE is Markov on the

path of play, we restrict attention to symmetric SPE in grim-trigger strategies for which

there exists x > 0 such that with probability one on the equilibrium path, the trees are

cut if and only if the volume of the forest is currently x > 0, with the volume of the forest

being 0 after each cutting.
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The expected payoff to each agent from playing such a strategy profile is given by

V (x) = [(x−κ)/n+V (x)]e−αx, which yields V (x) = (x−κ)/[n(eαx−1)]. The optimization

problem is to choose x ≥ κ so as to maximize V (x) subject to the constraint (x−κ)/n+

V (x) ≥ x − κ. The left-hand side of the incentive constraint represents the expected

payoff from following the prescribed strategy profile when cutting trees, and the right-

hand side represents the payoff to an agent that unilaterally deviates in the limit as the

amount of wood that it claims becomes arbitrarily large.

The derivative of V (x) with respect to x is given by V ′(x) = {eαx[1 − α(x − κ)] −
1}/[n(eαx − 1)2], which satisfies V ′(κ) > 0, V ′(∞) < 0, and V ′(y) < 0 if V ′(x) ≤ 0

and y > x. Hence, the unconstrained maximization problem has a unique solution given

by V ′(x) = 0. The closed form expression for the value of x that solves V ′(x) = 0 is

x∗ = [1 + ακ + W (−e−1−ακ)]/α. In addition, the constraint can be expressed as x ≤ x̄,

where x̄ = ln[n/(n− 1)]/α.

Hence, the solution for x is the minimum of x∗ and x̄. �

Lemma 10. Up to zero probability events, any maximal equilibrium must be Markov on

the path of play, with the path of play in a maximal equilibrium being unique.

Proof. Suppose that there exists a maximal equilibrium. Then one can find z > 0 and

y < z such that there exists a maximal equilibrium in which with probability one, the

first cutting occurs at the first time the volume reaches z, and the trees are cut to volume

y at the first cutting. Since such a strategy profile is optimal, there exists a maximal

equilibrium in which with probability one, the first cutting occurs at the first time the

volume reaches z with the trees being cut to volume y, and the second cutting occurs at

the second time the volume reaches z with the trees being cut to volume z. Continuing

in this way, there exists a maximal equilibrium in which there is probability one that for

any positive integer k, the kth cutting occurs at the kth time the volume reaches z, with

the trees being cut to volume y at each cutting.

If y > 0, then such a strategy profile would be Pareto dominated by an SPE in which

the path of play is such that with probability one, the trees are cut if and only if the

volume of the forest is currently z − y, with the volume being 0 after each cutting. It

follows that the volume of the forest after the first cutting is zero with probability one in

any maximal equilibrium.

Let V denote the expected payoff to each agent when a maximal equilibrium is played

starting at the null history. Then the continuation payoff to each agent after the first

cutting on the equilibrium path should be V with probability one when a maximal equilib-

rium is played. Now consider the following optimization problem. The value at volume

0 of an asset that pays V + (x − κ)/n at the first time that the volume reaches x is

maximized with respect to x subject to the constraint that V + (x − κ)/n ≥ x − κ. It

is straightforward to show that this problem has a unique maximizer x′. Hence, up to
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zero probability events, a maximal equilibrium must be Markov on the equilibrium path

up to the first cutting, which happens at the first time the volume reaches x′. We can

iteratively apply a similar argument to each successive cutting on the equilibrium path

to show that with probability one in any maximal equilibrium, the trees are cut if and

only if the volume of the forest is currently x′, with the trees being cut to the volume 0

at each cutting. �

Lemma 11. Given any symmetric SPE π, there exists a symmetric SPE that is Markov

on the path of play and that yields no lower an expected payoff to each agent than does π.

Proof. Let V denote the supremum of the expected payoffs to each agent that can be

supported in a symmetric SPE. We show that there exists a symmetric SPE that is

Markov on the path of play and that yields an expected payoff arbitrarily close to V ,

which proves the desired claim given lemma 10.

Let V (q) denote the supremum of the expected payoffs that can be supported in a

symmetric SPE at any history up to an arbitrary time in which the volume is currently

q. Consider an asset A that pays (x− q − κ)/n+ V (q) at the first time that the volume

reaches x. The value V is equal to the supremum of the value of this asset at the null

history over x ≥ 0 and q ∈ [0, x] subject to the constraint that (x−q−κ)/n+V (q) ≥ x−κ.

Call this optimization problem P . Note that the function V (q) is continuous in q because

for any γ > 0, one can find δ > 0 such that there is probability greater than 1− γ of the

volume reaching q in a time interval of length γ when the current volume is q − δ. We

begin by proving the following claim.

Claim 12. The value of asset A at volume c is bounded above by the sum of c/n and a

constant.

Proof. Consider a revised model that is identical to the tree harvesting game, except that

the cost of cutting trees is zero if the volume has increased by at least the amount κ since

right after the previous cutting. At any history up to an arbitrary time, the supremum in

the tree harvesting game of the expected payoffs to each agent over all symmetric strategy

profiles is no greater than the supremum in the revised model of the expected payoffs to

each agent over all symmetric strategy profiles. In addition, the following implies that

the latter supremum is no greater than the sum of (c+2κ)/n and the value of an asset at

the null history that for every positive integer p, pays 2κ/n when the Brownian motion

reaches pκ for the first time. This sum can be expressed as c/n plus a constant.

First, we observe that given any symmetric strategy profile in which trees are not

harvested until the volume is at least c+ 2κ, there exists in the revised model when the

volume is currently c a symmetric strategy profile yielding a higher expected payoff to

each agent in which trees are harvested before the volume reaches c + 2κ. To see this,

choose any volume l ≥ c + 2κ, and let m denote the greatest integer no larger than
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(l − c)/κ − 1. Given any symmetric strategy profile in which the trees are cut at the

next time the volume reaches l, there exists a symmetric strategy profile in the revised

model yielding a higher expected payoff to each agent in which the trees are cut at the

next time that the volume reaches l−mκ and at the m successive times that the volume

increases by the amount κ since right after the previous cutting.

Second, given any symmetric strategy profile in which the volume right after the next

cutting is greater than zero, there exists a symmetric strategy profile yielding a higher

expected payoff to each agent in which the volume right after the next cutting is zero. In

particular, consider any symmetric strategy profile π in which the trees are cut at time u

to a volume z > 0. There exists a symmetric strategy profile yielding a higher expected

payoff to each agent at time u in which the trees are cut to zero at time u, the agents do

not cut the trees at any time u′ at which the total amount cut after time u up to and

including time u′ when playing π would be no greater than z, the agents cut the amount

y−z at the first time u′ at which the total amount cut y after time u up to and including

time u′ when playing π would be greater than z, and the agents thereafter play strategy

profile π behaving as if strategy profile π had always been played from time u onwards.

Letting S denote the supremum over all symmetric strategy profiles of the expected

payoff to each agent at volume c in the revised model, the two preceding observations

imply that for any ε > 0, there exists a symmetric strategy profile yielding an expected

payoff to each agent greater than S−ε in which the trees are harvested before the volume

first reaches c+2κ, the trees are always harvested again before the volume reaches 2κ, and

the volume right after each cutting is zero. To compute an upper bound on the expected

payoff to each agent when such a strategy profile is played, note that the utility of each

agent at the first cutting is at most (c+ 2κ)/n. Second, note that each cutting thereafter

occurs when the volume is at least κ and yields a utility to each agent no greater than

2κ/n. Hence, an upper bound on the continuation value after the first cutting can be

computed by assuming that for every positive integer p, the trees are harvested when the

Brownian motion reaches pκ for the first time with the amount 2κ/n being harvested by

each agent at every cutting. v

Since the upper bound on the value at volume c is less than c−κ for c sufficiently high,

the values of x satisfying the constraint are bounded above. The values of q satisfying the

constraint are consequently bounded above. It is also straightforward to confirm that the

values of x and q satisfying the constraint form a closed set. Since the objective function

is continuous and the admissible values of x and q form a compact set, there exist values of

x and q that achieve the supremum in problem P . Let x∗ and q∗ denote these maximizers.

Note that q∗ cannot be equal to x∗ because the contradiction V (q∗) = V (q∗)−κ/n would

otherwise result. There are two cases to consider. In the first case, the constraint in

problem P is not binding. In the second case, the constraint in problem P is binding.
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Consider the first case. Choose any ε > 0. There exists a symmetric SPE φ1 in grim-

trigger strategies with the following properties that yields an expected payoff greater than

V − ε. With probability one, the first cutting on the equilibrium path occurs at the first

time the volume reaches the threshold x∗, the trees are cut to the volume q∗ at the first

cutting, and the agents after the first cutting on the equilibrium path play a strategy

profile that yields a continuation payoff W that does not depend on the history up to

the time of the first cutting. Let Y denote the expected payoff that each agent receives

with probability one at the first time the volume reaches q∗ when playing strategy profile

φ1. Note that V (q∗)− Y ≤ V (q∗)−W because the behavior up to the first cutting when

playing strategy profile φ1 is the same as the behavior in problem P .

Since Y ≥ W , there exists a symmetric SPE φ2 in grim-trigger strategies with the

following properties that yields an expected payoff greater than V − ε. With probability

one on the equilibrium path, the first cutting occurs at the first time the volume reaches

the threshold x∗, the second cutting occurs at the first time after the first cutting that

the volume reaches the threshold x∗, the trees are cut to the volume q∗ at the first and

second cutting, and the agents after the second cutting play a strategy profile that yields

a continuation payoff W that does not depend on the history up to the time of the second

cutting. In particular, with probability one, the agents start by playing φ1, and then after

any history up to an arbitrary time on the equilibrium path after the first cutting, the

agents play φ1 behaving after the first cutting on the equilibrium path as if the volume

q∗ were reached for the first time.

Applying this procedure iteratively, one can show that there exists a symmetric SPE

φ in grim-trigger strategies with the following properties that yields an expected payoff

greater than V − ε. There is probability one of the equilibrium path being such that for

any positive integer m, the mth cutting occurs at the first time after the (m−1)th cutting

that the volume reaches the threshold x∗ and the volume after each positive cutting is

q∗, where the 0th cutting is said to occur at time 0. This shows for the first case that

there exists a symmetric SPE that is Markov on the path of play and yields an expected

payoff arbitrarily close to V .

Consider the second case. Choose any ε > 0. There exists a symmetric SPE ψ1 in

grim-trigger strategies with the following properties such that the expected payoff Y1 at

the first time the volume reaches q∗ is greater than V (q∗)−ε. With probability one on the

equilibrium path, the first cutting occurs at the first time the volume reaches the threshold

x1, the trees are cut to q∗ at the first cutting, and the agents after the first cutting play a

strategy profile that yields a continuation payoff W1 that does not depend on the history

up to the time of the first cutting. Moreover, because the constraint in Problem P is

binding, the threshold x1 can be chosen such that (x1 − q∗ − κ)/n + W1 = x1 − κ by

choosing x1 to maximize the expected payoff under ψ1 given the continuation payoff W1

and the volume q∗ after the first cutting.
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Applying such an argument to any subgame after the first cutting on the equilibrium

path, there exists a symmetric SPE ψ′2 in grim-trigger strategies with the following prop-

erties such that the expected payoff at the first time the volume reaches q∗ is greater than

V (q∗)− ε. With probability one on the equilibrium path, the first cutting occurs at the

first time the volume reaches the threshold x1, the second cutting occurs at the first time

after the first cutting that the volume reaches a threshold x2, the trees are cut to the

volume q∗ at the first and second cutting, and the agents after the second cutting play a

strategy profile that yields a continuation payoff W2 that does not depend on the history

up to the time of the second cutting. Moreover, because the constraint in problem P is

binding, the threshold x2 can be chosen such that (x2 − q∗ − κ)/n + W2 = x2 − κ by

choosing x2 to maximize the expected payoff under ψ′2 given the first threshold x1, the

continuation payoff W2, and the volume q∗ after the first and second cutting. Let Y2 be

the continuation payoff that each agent receives with probability one immediately after

the first cutting on the equilibrium path when playing ψ′2.

Note that W1 > W2 if x1 > x2, W1 < W2 if x1 < x2, and W1 = W2 if x1 = x2. In

addition, Y1 > Y2 if x1 > x2, Y1 < Y2 if x1 < x2, and Y1 = Y2 if x1 = x2. If x2 > x1, then

let ψ2 = ψ′2. If x2 ≤ x1, then let ψ2 be a strategy profile in which with probability one,

the agents start by playing ψ1, and then after any history on the equilibrium path after

the first cutting, the agents play ψ1 behaving as if the game just started after the first

cutting on the equilibrium path.

Continuing in this way, one can show that there exists a symmetric SPE ψ in grim-

trigger strategies with the following properties such that the expected payoff Y1 at the

first time the volume reaches q∗ is greater than V (q∗)− ε. There is probability one of the

equilibrium path being such that for any positive integer m, the mth cutting occurs at

the first time after the (m − 1)th cutting that the volume reaches the threshold xm and

the volume after each positive cutting is q∗, where the 0th cutting is said to occur at time

0. Moreover, xm is nondecreasing in m, and the continuation payoff Qm that each agent

receives with probability one after the mth cutting is greater than V (q∗)− ε.
Let y denote the limit of the sequence {xm}. Consider a symmetric SPE ξ in which

there is probability one of the equilibrium path being such that for any positive integer

m, the mth cutting occurs at the first time after the (m − 1)th cutting that the volume

reaches the threshold y and the volume after each positive cutting is q∗, where the 0th

cutting is said to occur at time 0. With probability one, the expected payoff R under

strategy profile ξ at the first time the volume reaches q∗ is no less than V (q∗)− ε because

Qm is greater than V (q∗)−ε for all m, where R is the limit of the sequence {Qm}. Hence,

the expected payoff under strategy profile ξ at the null history is no less than V − ε.

Moreover, the incentive constraint (y − q∗ − κ)/n + R ≥ y − κ is satisfied because the

incentive constraint (xm− q∗− κ)/n+Qm ≥ xm− κ is satisfied for all m. This shows for

the second case that there exists a symmetric SPE that is Markov on the path of play
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and yields an expected payoff arbitrarily close to V . �

In a maximal SPE, there are multiple possibilities for off-path strategies, but in any

off-path strategies, the continuation payoff from deviation is zero, which is the minmax

payoff of each agent. One possibility for off-path strategies is for each agent never to

move. Another possibility is for each woodcutter to cut trees at time t if and only if

qt = κ and qτ = 0 for some time τ ∈ (t̂, t), where t̂ is the supremum of the set of times

before t at which some agent moved. Yet another possibility is as follows. Let M be a

positive integer, and let c ∈ (0, κ). The agents do not move until reaching a time t such

that qt = 0. Subsequently, the mth cutting for any m ≤M occurs when the current time

t is such that the volume reaches c for the mth time, and the trees are cut to zero on each

cutting. After the M th cutting, the woodcutters play a maximal equilibrium. If there is

any deviation from this path of play, then the agents never move. The values of M and

c are chosen so that the ex ante expected payoff of each agent is equal to zero.

Proof of Item 4 in Remark 2. It is straightforward to show that α is decreasing in µ and

σ and increasing in ρ. Since x̄ is decreasing in α > 0, it follows that x̄ is increasing in µ

and σ and decreasing in ρ. Clearly, x̄ is decreasing in n, and x∗ is increasing in κ. We

argue below that x∗ is decreasing in α, from which it follows that x∗ is increasing in µ

and σ and decreasing in ρ.

Defining W̃ (α) = W (−e−1−ακ), the cutoff x∗ can be expressed as follows:

x∗ = 1/α + κ+ W̃ (α)/α.

The partial derivative of x∗ with respect to α is given by:

∂x∗/∂α = [−1 + αW̃
′
(α)− W̃ (α)]/α2.

Differentiating −1 + αW̃
′
(α)− W̃ (α) with respect to α yields:

αW̃
′′
(α) + W̃

′
(α)− W̃ ′

(α) = αW̃
′′
(α),

where W̃
′′
(α) is given by:

W̃
′′
(α) = e−2−2ακκ2[−e1+ακW

′
(−e−1−ακ) +W

′′
(−e−1−ακ)],

which is negative because W is increasing and concave. It follows that −1 + αW̃
′
(α) −

W̃ (α) is decreasing in α. In order to demonstrate that ∂x∗/∂α < 0, it suffices to show

that limα↓0 −1 + αW̃
′
(α)− W̃ (α) = 0.

Using the formulaW
′
(`) = W (`)/{`[1+W (`)]} with ` = −e−1−ακ, we obtain αW̃

′
(α) =(

αW (`)/{`[1 + W (`)]}
)
∂`/∂α, which simplifies to −ακW̃ (α)/[1 + W̃ (α)]. Applying
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L’Hôpital’s Rule, we have limα↓0 −ακW̃ (α)/[1 + W̃ (α)] = limα↓0 −κW̃ (α)/

W̃
′
(α), which equals 0 since limα↓0 W̃ (α) = −1 and limα↓0 W̃

′
(α) = ∞. It follows that

limα↓0 −1 + αW̃
′
(α)− W̃ (α) = 0.

B.2 Application in Section 5.2

B.2.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0,∞) and any price process {pt}τ∈[0,t] up to that time. A his-

tory up to time t is represented by
(
{pτ}τ∈[0,t], {(aiτ )i∈{W,R}}τ∈[0,t)

)
, where {aWτ }τ∈[0,t) and

{aRτ }τ∈[0,t) respectively denote the action paths of the oil well and oil refinery up to time

t. Agent W ’s action space is R++×R+∪{z}. In the case where aWτ ∈ R++×R+, the first

element of aWτ , denoted by eτ , represents the amount of oil extracted by the oil well at

time τ , and the second element, denoted by xτ , records the total amount extracted before

time τ . The action z stands for not extracting any oil at time τ . Agent R’s action space

is RR+

+ ∪ {z}. In the case where aRτ is a function from R+ to itself, aRτ (τ ′) > 0 represents

the payment to the oil refinery at time τ from delivering the output produced from the

oil received at time τ ′, where aRτ (τ ′) = 0 indicates that no such delivery was made by the

oil refinery at time τ . The action aRτ = z means that the oil refinery does not deliver any

output at time τ .

The set of all histories up to an arbitrary time is denoted by H. Choose any ht ∈ H.

Let X represent the set consisting of each time τ ∈ [0, t) such that aWτ 6= z. If the set

X has infinitely many elements, then the feasibility constraints are simply ĀW (ht) =

ĀR(ht) = {z}. Consider the case where the set X has only finitely many elements, and

let {tk}Kk=1 be the sequence consisting of all the elements of X. The set of W ’s feasible

actions is ĀW (ht) = (0, q− xt]×{xt} ∪ {z}, where xt =
∑K

k=1 etk . The set of R’s feasible

actions ĀR(ht) is such that aRt ∈ ĀR(ht) if and only if aRt = z or aRt satisfies the following.

Choose any time τ ∈ [0,∞). If there exists k such that tk = τ and τ + d(eτ ) ≤ t and

there is no t′ < t such that aRt′ (τ) > 0, then aRt (τ) ∈ {0, y(pτ , eτ )}. Otherwise, aRt (τ) = 0.

In addition, aRt (τ) > 0 for some τ ∈ [0, t).

The sets of feasible strategies are:

Π̄W = {πW : H → R++ × R+ ∪ {z} | πW (ht) ∈ ĀW (ht) for all ht ∈ H}

Π̄R = {πR : H → RR+

+ ∪ {z} | πR(ht) ∈ ĀR(ht) for all ht ∈ H}
.

For agent W , the set of traceable, frictional, calculable, and feasible strategies can be

defined and is denoted by Π̄C
W . For agent R, the set of traceable, weakly frictional,

calculable, and feasible strategies can be defined and is denoted by Π̂C
R.

The shock process st is formally defined as a pair comprising the price pt and calendar
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time t. The instantaneous utility function vi is specified as follows for i = W :

vW [(aWτ , a
R
τ ), sτ ] =

[pτeτ −
∫ xτ+eτ
xτ

c(ξ)dξ] exp(−ρτ) if aWτ 6= z

0 if aWτ = z
,

and as follows for i = R:

vR[(aWτ , a
R
τ ), sτ ] =



[
∑
{τ ′:aRτ (τ ′)>0} a

R
τ (τ ′)− pτeτ ] exp(−ρτ) if aWτ 6= z and aRτ 6= z

[
∑
{τ ′:aRτ (τ ′)>0} a

R
τ (τ ′)] exp(−ρτ) if aWτ = z and aRτ 6= z

−pτeτ exp(−ρτ) if aWτ 6= z and aRτ = z

0 if (aWτ , a
R
τ ) = (z, z)

.

B.2.2 Proofs

Proof of Proposition 6. Consider the problem faced by an oil well deciding when to sell

a single unit of oil whose extraction cost is κ where the price evolves according to the

stochastic process {pt}t∈[0,∞). This is a basic search problem in continuous time.1 Letting

B(κ) denote the expected payoff to an oil well that chooses to retain the oil at the current

time, the optimal policy of the oil well is to extract the oil at time t if pt > B(κ) + κ,

to retain the oil at time t if pt < B(κ) + κ, and either if pt = B(κ) + κ. The solution is

characterized by the Bellman equation:

ρB(κ) = λ

∫ ∞
−∞

max[p−B(κ)− κ, 0]dG(p). (3)

Defining the reservation price ς(κ) = B(κ) + κ, the preceding equation can be expressed

as:

ς(κ) = κ+
λ

ρ

∫ ∞
ς(κ)

p− ς(κ)dG(p). (4)

It is straightforward to show that there exists a unique value of ς(κ) satisfying the above

equation and that ς(κ) is increasing and continuous in κ.

For any κ ∈ R+, let S(κ) be the supremum of the set {e/q : c(e) ≤ κ} if c(0) ≤ κ,

and let S(κ) = 0 otherwise. It follows from the analysis so far that the optimal policy of

an oil well that has a measure q of oil with extraction cost distributed according to the

cdf S is to extract at time t any remaining unit of oil with extraction cost κ satisfying

ς(κ) < pt, to retain at time t any remaining unit of oil with extraction cost κ satisfying

ς(κ) > pt, and either if ς(κ) = pt. Hence, the equilibrium strategy of the oil well in the

supply chain model is as specified in the statement of the proposition.

For any k such that ξt,k = 1, consider the oil extracted at time θt,k. If the refinery

1Rogerson, Shimer, and Wright (2005) present a similar problem in their review of search models of
the labor market.
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delivers the resulting output at time t′ ≥ t, then its payoff at time t from the delivery

is exp[−ρ(t′ − t)] · y(pθt,k , eθt,k) > 0. Since this expression is decreasing in t′, the refin-

ery maximizes its payoff by delivering the output immediately. Hence, the equilibrium

strategy of the oil refinery is as specified in the statement of the proposition.

B.3 Application in Section 5.3

B.3.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0,∞) and cost process {cτ}τ∈[0,t] up to that time. A history up

to time t is represented by
(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
, where {aiτ}τ∈[0,t) denotes the

action path of firm i ∈ {1, 2} up to time t with the action space being {I, A, F, z}.
The set of all histories up to an arbitrary time is denoted by H. We partition it as

follows.

1. Let Hno,no be the set consisting of every history up to any time t that has the form(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
where aiτ = z for each i = 1, 2 and all τ ∈ [0, t).

2. Let Hyes,no be the set consisting of every history up to any time t that has the form(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
where there exists τ ′ ∈ [0, t) such that (a1

τ , a
2
τ ) =

(z, z) for all τ ∈ [0, t) \ {τ ′} and (a1
τ ′ , a

2
τ ′) is (I, z), (I, A), or (A, z).

3. Let Hno,yes be the set consisting of every history up to any time t that has the form(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
where there exists τ ′ ∈ [0, t) such that (a1

τ , a
2
τ ) =

(z, z) for all τ ∈ [0, t) \ {τ ′} and (a1
τ ′ , a

2
τ ′) is (z, I), (A, I), or (z, A).

4. Let Hyes,yes be the set consisting of every history up to any time t that has the form(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
where either of the following holds:

(a) There exists τ ′ ∈ [0, t) such that (a1
τ ′ , a

2
τ ′) ∈ {(I, I), (A,A)}, and (a1

τ , a
2
τ ) =

(z, z) for all τ ∈ [0, t) with τ 6= τ ′.

(b) There exist τ ′, τ ′′ ∈ [0, t) with τ ′ < τ ′′ such that (a1
τ , a

2
τ ) = (z, z) for all

τ ∈ [0, t) with τ /∈ {τ ′, τ ′′} and either of the following holds:

i. (a1
τ ′ , a

2
τ ′) ∈ {(I, z), (I, A), (A, z)} and (a1

τ ′′ , a
2
τ ′′) = (z, F ).

ii. (a1
τ ′ , a

2
τ ′) ∈ {(z, I), (A, I), (z, A)} and (a1

τ ′′ , a
2
τ ′′) = (F, z).

The feasibility constraints are as follows. For firm 1,

Ā1(ht) =


{I, A, z} if ht ∈ Hno,no

{F, z} if ht ∈ Hno,yes

{z} otherwise

.
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For firm 2,

Ā2(ht) =


{I, A, z} if ht ∈ Hno,no

{F, z} if ht ∈ Hyes,no

{z} otherwise

.

The set of feasible strategies is for each i = 1, 2:

Π̄i = {πi : H → {I, A, F, z} | πi(ht) ∈ Āi(ht) for all ht ∈ H}.

The set of traceable, frictional, calculable, and feasible strategies can then be defined and

is denoted by Π̄C
i for firm i = 1, 2.

The shock process st is formally defined as a pair comprising the entry cost ct and

calendar time t. The instantaneous utility function vi is specified as follows for each firm

i = 1, 2:

vi[(a
1
τ , a

2
τ ), sτ ] =


0 if (aiτ , a

−i
τ ) ∈ {(z, z), (z, I), (z, A), (z, F ), (A, I)}

(b1 − cτ )e−ρτ if (aiτ , a
−i
τ ) ∈ {(I, z), (I, A), (A, z)}

(b2 − cτ )e−ρτ if (aiτ , a
−i
τ ) ∈ {(F, z), (I, I), (A,A)}

.

B.3.2 Proofs

Proof of Proposition 7. Define a parameter β = 1
2
− µ/σ2 −

√
(µ/σ2 − 1

2
)2 + 2ρ/σ2 < 0.

For c > 0, let κ2 be the value of κ > 0 that maximizes the expression (b2 − κ)(c/κ)β,

which for κ ≤ c is the value of an asset that pays b2− κ at the first time the cost reaches

κ when the current cost is c. The maximizer is κ2 = [β/(β − 1)]b2, and the maximized

value is b1−β
2 cβ(−β)−β(1− β)β−1.

Next let κ1 be the value of κ > κ2 that solves the equation b1−κ = (b2−κ2)(κ/κ2)β =

b1−β
2 κβ(−β)−β(1−β)β−1. The left-hand side is bigger than the right-hand side in the limit

as κ goes to κ2, and the right-hand side is bigger than the left-hand side in the limit as

κ goes to ∞. The derivative of the left-hand side minus the right-hand side with respect

to κ is given by −1 + [−β/(1 − β)]1−β(b2/κ)1−β, which is decreasing in κ. Hence, there

exists a unique value of κ that satisfies the preceding equation.

Now we characterize the SPE. First consider any history up to an arbitrary time t at

which firm i ∈ {1, 2} is the only firm not in the market. In any SPE, action F will be

chosen by firm i if and only if ct ≤ κ2.

Next consider the case in which neither firm has yet entered the market. In an SPE,

the firms will both choose I or both choose A if the history up to the current time t is

such that ct ≤ κ2. Moreover, there cannot be an SPE in which a firm chooses I or A

at a history up to a given time t satisfying ct > κ1. A firm that enters the market at

such a history could increase its expected payoff by deviating to a strategy in which it
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chooses z whenever the cost is currently greater than κ2 and it enters whenever the cost

is currently no greater than κ2. Finally, there cannot be an SPE in which the firms both

choose I or both choose A at a history up to a given time t satisfying ct > κ2. A firm

that enters the market at such a history could increase its expected payoff by deviating

to a strategy in which it chooses z whenever the cost is currently greater than κ2 and it

enters whenever the cost is currently no greater than κ2.

Now suppose that the firms are playing an SPE in Markov strategies. Consider the

set of histories up to any time in which no firm has entered yet. For i ∈ {1, 2}, let ξi

denote the maximum cost ct at which agent i chooses I or A. Such a value of the cost

exists due to the traceability assumption.

It must be that ξ1 = κ1 or ξ2 = κ1. Suppose to the contrary that ξi < κ1 for each

i ∈ {1, 2}. If ξi < ξ−i, then there exists χ ∈ (ξ−i, κ1) such that firm i could increase its

expected payoff by deviating and choosing I whenever the current value of the cost is χ.

If ξ1 = ξ2 and firm i chooses A whenever the cost is currently ξi and there is no prior

entry, then there exists χ ∈ (ξi, κ1) such that firm i could increase its expected payoff by

deviating and choosing I whenever the cost is currently χ.

It must further be that ξ1 = ξ2 = κ1. Suppose to the contrary that ξi = κ1 but

ξ−i < κ1. There exists χ ∈ (ξ−i, κ1) such that firm i could increase its expected payoff

by deviating and choosing z whenever the cost is currently greater than χ and choosing

I whenever the cost is currently no greater than χ. It follows that one firm will choose I

and the other firm will choose A whenever the cost is currently equal to κ1.

This completes the desired characterization of Markov perfect equilibrium.

Proof of Item 2 in Remark 4. Note that β < 0 is decreasing in µ and ρ but increasing in

σ. The cutoff κ2 is given by [β/(β − 1)]b2, which is increasing in b2 and decreasing in β.

Hence, κ2 is increasing in µ and ρ but decreasing in σ.

The cutoff κ1 is defined by the implicit function f(b1, b2, κ1, β) = b1−κ1−b1−β
2 κβ1 (−β)−β(1−

β)β−1 = 0. It follows from the proof of proposition 7 that ∂f/∂κ1 < 0. It is also clear

that ∂f/∂b1 > 0 and ∂f/∂b2 < 0. In addition, we have:

∂f/∂β = b1−β
2 κβ1 (−β)−β(1− β)β−1

(
log{[β/(β − 1)]b2} − log(κ1)

)
< 0,

observing that [β/(β − 1)]b2 < κ1.

The partial derivative of the threshold κ1 with respect to a parameter α ∈ {b1, b2, β}
can be signed as follows:

sgn(∂κ1/∂α) = sgn[−(∂f/∂α)/(∂f/∂κ1)] = sgn(∂f/∂α).

Hence, ∂κ1/∂b1 > 0, ∂κ1/∂b2 < 0, and ∂κ1/∂β < 0. It follows that ∂κ1/∂µ > 0,

∂κ1/∂ρ > 0, and ∂κ1/∂σ < 0.
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B.3.3 Discussion of Item 1 in Remark 4

Noting that each agent can move at most twice, it is straightforward to confirm that

any Markov perfect equilibrium satisfies both uniform and pathwise admissibility. In any

Markov perfect equilibrium, uniform inertia is violated. To see this, fix a history up to an

arbitrary time t in which the cost is currently ct ∈ (κ2, κ1] and there has been no previous

entry. Consider a firm that takes action A at such a history. For any ε > 0, there is

positive conditional probability that cτ ≤ κ2 for some τ ∈ (t, t + ε), which implies that

this firm takes action F in the time interval (t, t+ ε). Thus, there cannot exist ε > 0 such

that this firm does not move during the time interval (t, t+ε).2 However, pathwise inertia

is satisfied because the cost process has continuous sample paths. To see this, consider

any history up to time t and any realization of the cost process {cτ}τ∈(t,∞) after time t.

If ct > κ1, there exists ε > 0 such that cτ 6= κ1 for all τ ∈ (t, t+ ε). If κ1 ≥ ct > κ2, there

exists ε > 0 such that cτ 6= κ2 for all τ ∈ (t, t+ ε). In each case, the agents do not move

during the time interval (t, t+ ε). If κ2 ≥ ct, then there is no ε > 0 such that the agents

move during the time interval (t, t+ ε).

B.4 Application in Section 5.4

B.4.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0, T ), the taste process {xτ}τ∈[0,t] up to time t, and the sequence

(tk)Kk=1 of Poisson arrival times no greater than t, where tK = t if there is a Poisson hit at

time t. A history up to time t is represented by
(
{xτ}τ∈[0,t], (t

k)Kk=1, {(aiτ )i∈{B,S}}τ∈[0,t)

)
,

where {(aiτ )i∈{B,S}}τ∈[0,t) denotes the action path of agent i ∈ {B, S} up to time t with

the action space of each agent i being R ∪ {z}.
The set of all histories up to an arbitrary time is denoted by H. We partition it as

follows.

1. Let H∅ be the set consisting of every history up to any time t that has the form(
{xτ}τ∈[0,t], (t

k)Kk=1, {(aiτ )i∈{B,S}}τ∈[0,t)

)
where aiτ = z for each i = B, S and all

τ ∈ [0, t).

2. For any c ∈ R, let Hc be the set consisting of every history up to any time t that

has the form
(
{xτ}τ∈[0,t], (t

k)Kk=1, {(aiτ )i∈{B,S}}τ∈[0,t)

)
where aSτ = z for all τ ∈ [0, t)

and there exists τ ′ ∈ [0, t) such that aBτ ′ = c and aBτ = z for all τ ∈ [0, t) \ {τ ′}.
2If action A were not available, then a Markov perfect equilibrium would not exist. For example,

there cannot be an equilibrium in which when neither firm has entered yet, one firm chooses I if the
current cost is no greater than κ1 and chooses z otherwise, and the other firm chooses I if the current
cost is no greater than κ2 and chooses z otherwise. In such a strategy profile, if the cost were currently
κ1 for the first time and neither firm has entered yet, then the former firm could profitably deviate by
choosing I at the first time the cost reaches κ and choosing z otherwise, where κ ∈ (κ2, κ1).
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3. For any c ∈ R, let Hc,c be the set consisting of every history up to any time t that

has the form
(
{xτ}τ∈[0,t], (t

k)Kk=1, {(aiτ )i∈{B,S}}τ∈[0,t)

)
where there exist τ ′, τ ′′ ∈ [0, t)

with τ ′ < τ ′′ such that aBτ ′ = c, aBτ = z for all τ ∈ [0, t) \ {τ ′}, aSτ ′′ = c, and aSτ = z

for all τ ∈ [0, t) \ {τ ′′}.

The feasibility constraints are as follows. For B, ĀB(ht) = {z} ∪ R if ht ∈ H∅, and

ĀB(ht) = {z} otherwise. For S, ĀS(ht) = {z, c} if tK = t and there exists c ∈ R such

that ht ∈ Hc, and ĀS(ht) = {z} otherwise.

The sets of feasible strategies are:

Π̄B = {πB : H → {z} ∪ R | πB(ht) ∈ ĀB(ht) for all ht ∈ H}

Π̄S = {πS : H → {z} ∪ R | πS(ht) ∈ ĀS(ht) for all ht ∈ H}
.

The set of traceable, frictional, calculable, and feasible strategies can then be defined and

is denoted by Π̄C
i for agent i = B, S.

The shock process st is formally defined as a triple comprising the taste xt, the calendar

time t, and an indicator for there being a Poisson hit at that time. The instantaneous

utility function vi is specified as follows for i = B:

vB[(aBτ , a
S
τ ), sτ ] =


0 if aSτ = z

v − p− E[(c− xT )2|xτ ]

= v − p− (c− xτ )2 − σ2(T − τ) if aSτ = c ∈ R

,

and as follows for i = S:

vS[(aBτ , a
S
τ ), sτ ] =

0 if aSτ = z

p if aSτ = c ∈ R
.

B.4.2 Proofs

Proof of Proposition 8. First, since p > 0, it is a strictly dominant strategy for S to sell

the good as soon as he obtains a chance to do so after an order is placed. Second, since

the only choice B effectively makes is the time of placing an order, her maximization

problem can be written as:

max
τ∈(0,T ]

u(τ) = (1− e−λτ )E[v − (s− xT )2 − p] = (1− e−λτ )(v − σ2τ − p),

where τ represents the amount of time remaining until the deadline at time T . The

first-order condition is:

u′(τ) = λe−λτ (v − σ2τ − p)− σ2(1− e−λτ ) = 0. (5)
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The second derivative is given by u′′(τ) = −λe−λτ [λ(v − σ2τ − p) + 2σ2]. Note that

u′(0) > 0 since v > p. In addition, u′′(τ) < 0 whenever u′(τ) ≥ 0. Hence, the objective

function has a unique global maximizer in [0, T ). Let τ ′ be the unique value of τ satisfying

equation (5), and define τ ∗ = min{τ ′, T} and t∗ = T − τ ∗. This completes the desired

characterization of the unique equilibrium strategy profile.

Proof of Item 3 in Remark 5. We apply the implicit function theorem to (5) to conduct

comparative statics, focusing on the case where τ ∗ = τ ′. That is, (5) holds when τ = τ ∗.

Recall that if (5) holds, then the derivative of its left-hand side is strictly negative.

Denoting the left-hand side with τ = τ ∗ by f(τ ∗, σ, v, p, λ), it follows that:

sign(∂t∗/∂φ) = −sign(∂τ ∗/∂φ) = −sign[−(∂f/∂φ)/(∂f/∂τ ∗)] = −sign(∂f/∂φ),

where φ ∈ {σ, v, p, λ}.
First, t∗ is increasing in σ because ∂f/∂σ = 2σ[−λe−λτ∗τ ∗− (1− e−λτ∗)] < 0. Second,

t∗ is decreasing in v because ∂f/∂v = λe−λτ
∗
> 0. Third, t∗ is increasing in p since the

effect of p is opposite to the effect of v by (5). Fourth, t∗ is increasing in λ as:

∂f/∂λ = e−λτ
∗
(v − σ2τ ∗ − p)− λτ ∗e−λτ∗(v − σ2τ ∗ − p)− σ2τ ∗e−λτ

∗

= σ2(1− e−λτ∗)/λ− σ2τ ∗(1− e−λτ∗)− σ2τ ∗e−λτ
∗

= σ2(1− e−λτ∗ − λτ ∗)/λ < 0,

where the second step applies the equality λe−λτ
∗
(v − σ2τ ∗ − p) = σ2(1− e−λτ∗).

B.4.3 Discussion of Item 1 in Remark 5

Noting that each agent can move at most once, it can easily be seen that both uniform

and pathwise admissibility are satisfied in an SPE. B’s equilibrium strategy, which simply

involves moving at a predetermined time, satisfies both uniform and pathwise inertia.

S’s unique equilibrium strategy violates uniform inertia. For any ε > 0, there is positive

probability of a Poisson hit in the time interval (t∗, t∗ + ε), in which case S sells the

good. Thus, there is no ε > 0 such that S does not move in the time interval (t∗, t∗ + ε).

However, S’s strategy in equilibrium is pathwise inertial. Given any time t as well as any

realization of the Poisson process, there exists ε > 0 such that there is no Poisson hit

in the time interval (t, t + ε). Since S can move only at the arrival times of the Poisson

process, S does not move during this interval of time.

C Payoff Assignment with Nonmeasurable Behavior

Section C.1 describes how to assign expected payoffs to nonmeasurable behavior. Section

C.2 points out a few problems with this methodology. In section C.3, we show that with

some restrictions, any behavior on the path of play can be sustained in an SPE under a
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particular assignment of expected payoffs. Section C.4 demonstrates that any SPE under

the calculability assumption is an SPE for a certain way of assigning payoffs, and section

C.5 provides conditions under which the converse is also true.

C.1 Formulation of Expected Payoffs

We consider the assignment of expected payoffs to strategy profiles that induce nonmea-

surable behavior.3 For each agent i ∈ I, define a function χi : H× Π̄TF
i → R∪{−∞,∞}.

Choose any strategy profile π ∈ ×i∈IΠ̄TF
i . Let ku =

(
{gt}t∈[0,u], {(bit)i∈I}t∈[0,u)

)
be any

history up to time u, and denote b = {(bit)i∈I}t∈[0,u). If the process ξib(π) is progressively

measurable for each i ∈ I, then the expected payoff to agent i at ku is given by Ui(ku, π) =

Vi(ku, π), where Vi(ku, π) is as specified in equation (1) in section 4.3. Otherwise, the

expected payoff to agent i at ku is given by Ui(ku, π) = χi(ku, π).4

Given a strategy space ×i∈IΠ̂i ⊆ ×i∈IΠ̄TF
i , we say that π ∈ ×i∈IΠ̂i is a subgame-

perfect equilibrium if for any history ku up to time u, the expected payoff to agent

i ∈ I at ku satisfies Ui(ku, π) ≥ Ui[ku, (π
′
i, π−i)] for any π′i ∈ Π̂i. Since the assignment

of expected payoffs to nonmeasurable behavior is not based on an extensive form (see

footnote 4), the standard one-shot deviation principle does not hold in general. Thus,

it is crucial for the definition of SPE to consider deviations to a strategy in the entire

subgame. The following example illustrates.

Example 9. (Deviation to Measurable Behavior) Let {st}t∈[0,T ) be an arbitrary

stochastic process with state space S. Assume that there exists S̃ ⊆ S along with t̃ > 0

such that {ω ∈ Ω : st̃(ω) ∈ S̃} is not a measurable subset of the probability space

(Ω,F , P ).5 Suppose I = {1} and that Ā1(ht) = {x, z} for every ht ∈ H. The utility

function satisfies v1(x, s) = 0 for all s ∈ S. Let χ1(ht, π1) = −1 for all ht ∈ H and any

π1 ∈ Π̄TF
1 . A strategy in which agent 1 chooses action x at time t̃ if and only if st̃ is in S̃

is not optimal at the null history because agent 1 can deviate to a strategy that induces

measurable behavior. However, there is no history up to a given time at which a one-shot

deviation would increase the expected payoff of the agent.

3We assume traceability and frictionality, so that the behavior of the agents is well defined in the sense
that there exists a unique action path consistent with each strategy profile. We could also consider the
assignment of expected payoffs to nondefined behavior, but there is little difference between assigning
payoffs to nondefined and nonmeasurable behavior. In order to define equilibria, every element in a
given set of strategy profiles should be mapped to an expected payoff, and nondefined behavior like
nonmeasurability would ordinarily preclude such a mapping. The results here can be extended to allow
for strategy profiles that induce zero or multiple action paths, but these additional results are not stated
so as to simplify the exposition.

4The extensive form of the game, which assigns a payoff profile to each deterministic history, is
well defined. However, if a profile of traceable and frictional strategies induces nonmeasurable behavior,
then there is no standard method to compute the expected payoff, even though the strategy profile is
associated with a unique payoff under each realization of the shock process. In this sense, the assignment
of expected payoffs is not based on an extensive form.

5For example, let {st}t∈[0,T ) be a standard Brownian motion, and suppose that the set consisting of

every continuous function c : [0, T )→ R with c(0) = 0 and c(t̃) ∈ S̃ is not Wiener measurable.
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In what follows, we will compare SPE under the calculability restriction with SPE

under a payoff assignment. Whenever there is ambiguity about the strategy space or

payoff assignment being considered, we identify the problem as Γ
(
Π̂, (χi)i∈I

)
, where Π̂ ⊆

×i∈IΠ̄TF
i is the space of strategy profiles in consideration. For example, our analysis in

the main sections corresponds to considering the game with Γ
(
×i∈IΠ̄C

i , (χi)i∈I
)
. Since

Ui(ht, π) = Vi(ht, π) for all i ∈ I whenever π ∈ ×i∈IΠ̄C
i , the specification of (χi)i∈I is

irrelevant in this case, so that we denote Γ
(
×i∈IΠ̄C

i , (χi)i∈I
)

by Γ
(
×i∈IΠ̄C

i

)
.

C.2 Problems with Payoff Assignment

Assigning a payoff to nonmeasurable behavior may result in a model with objectionable

properties. We first observe that assigning expected payoffs to nonmeasurable behavior

may lead to a non-monotonic relationship between expected and realized payoffs.

Example 10. (Non-Monotonicity of Expected Payoffs in Realized Payoffs) Sup-

pose I = {1}. Let Ā1(ht) = {x, z} if t = 1, and let Ā1(ht) = {z} otherwise. Let {st}t∈[0,T )

be an arbitrary stochastic process with state space S. Assume that there exists S̃ ⊆ S

such that {ω ∈ Ω : s1(ω) ∈ S̃} is not a measurable subset of the probability space

(Ω,F , P ). The utility function satisfies v1(x, s) = 1 for all s ∈ S. Let χ1(ht, π1) = −1 for

all ht ∈ H and any π1 ∈ Π̄TF
1 .

Consider a class of strategies, each of which is indexed by a set C ⊆ S, where πC

prescribes action z at any time t 6= 1 and action x at time t = 1 if and only if s1 is in C. It

may be natural for the expected payoffs to satisfy the following monotonicity condition:

U1(h0, π
S′′) ≤ U1(h0, π

S′) if S ′′ ⊆ S ′. That is, the expected payoff is monotonic in the

realized payoffs in the sense of statewise dominance. However, U1(h0, π
∅) = 0 > −1 =

U1(h0, π
S̃) even though ∅ ⊆ S̃. Hence, the monotonicity condition fails.

As shown by the example below, the specific assignment of expected payoffs to non-

measurable behavior affects the set of payoffs that can be supported in an SPE.

Example 11. (Dependence of Equilibrium Set on Payoff Assignment) Suppose

I = {1, 2}. For each i ∈ {1, 2}, let Āi(ht) = {x, z} if t = i − 1, and let Āi(ht) = {z}
otherwise. Let {st}t∈[0,T ) be an arbitrary stochastic process with state space S. Assume

that there exists S̃ ⊆ S such that {ω ∈ Ω : s1(ω) ∈ S̃} is not a measurable subset of the

probability space (Ω,F , P ). The utility functions satisfy v1[(x, z), s] = 1, v1[(z, x), s] = 0,

and v2[(x, z), s] = v2[(z, x), s] = 0 for all s ∈ S.

First, suppose that χ1(ht, π) = −1 and χ2(ht, π) = 0 for all ht ∈ H and any π ∈
Π̄TF

1 × Π̄TF
2 . Then there exists an SPE in which agent 1 receives an expected payoff of

0. For example, agent 2 may use a strategy of choosing action x at time 1 if and only if

agent 1 chooses action x at time 0 and s1 is in S̃.

Second, suppose that χ1(ht, π) = χ2(ht, π) = −1 for all ht ∈ H and any π ∈ Π̄TF
1 ×

Π̄TF
2 . Then there does not exist an SPE in which agent 1 receives an expected payoff of 0.
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The reason is that there is no history h1 up to time 1 for which agent 2 has an incentive

to choose a strategy π2 such that U2[h1, (π1, π2)] = χ2[h1, (π1, π2)] for some strategy π1

of agent 1. Hence, it is always optimal for agent 1 to choose x at time 0, so that agent 1

receives an expected payoff of 1.

The general problem is that when the agents’ behavior is nonmeasurable, there is not a

well defined probability distribution over future paths of play. Hence, the expected payoff

assigned by the function χi to a strategy profile involving nonmeasurable behavior does

not have any natural relationship with the realized payoffs at future times as determined

by the function vi. Despite such a problem, the usual concept of SPE is well defined.

C.3 Arbitrary Behavior in Equilibrium

Now we examine the implications for agents’ incentives of assigning payoffs to nonmeasur-

able behavior. Given any history ku up to time u, let H̄(ku) denote the set consisting of ev-

ery history h = {st, (ajt)j∈I}t∈[0,T ) such that
(
{st}t∈[0,u], {(ajt)j∈I}t∈[0,u)

)
= ku, {ait}t∈[0,T ) ∈

Ξi(u) for each i ∈ I, and aiτ ∈ Āi
(
{st}t∈[0,τ ], {(ajt)j∈I}t∈[0,τ)

)
for all τ ≥ u and each i ∈ I.

That is, H̄(ku) includes every feasible history with finitely many moves in a finite time

interval for which ku is a subhistory. Let ζi(ku) = infh∈H̄(ku)

∑
τ∈Mu(h) vi[(a

j
τ )j∈I , sτ ] de-

note the greatest lower bound on the feasible payoffs to agent i at ku.
6 In this section,

we consider the possibility of letting χi(ku, π) ≤ ζi(ku) for all π ∈ ×j∈IΠ̄TF
j and each

i ∈ I. That is, nonmeasurable behavior is assigned an expected payoff no greater than

the infimum of the set of feasible payoffs.7

A motivation for this specification of payoffs is that assigning an extremely low payoff

to nonmeasurable behavior disincentivizes agents from pursuing such behavior, thereby

ensuring that the path of play is measureable, in which case the computation of expected

payoffs is straightforward. In what follows, we demonstrate that such a payoff assignment

may have a significant impact on the set of SPE. Intuitively, if an extremely low payoff

is supportable in an SPE, then it may be used to severely punish deviations. In fact,

we can prove a type of “folk theorem” under certain conditions. To illustrate this point,

we first describe how both agents using nonmeasurable behavior can be supported as an

SPE.

Example 12. (Mutual Nonmeasurability) Suppose I = {1, 2}. For each i ∈ {1, 2},
let Āi(ht) = {x, z} if t = 1, and let Āi(ht) = {z} otherwise. Let {st}t∈[0,T ) be an

arbitrary stochastic process with state space S. Assume that there exists S̃ ⊆ S such

that {ω ∈ Ω : s1(ω) ∈ S̃} is not a measurable subset of the probability space (Ω,F , P ).

6Recall that Mu(h) denotes the set of times at and after u where some agent moves under history h.
7Similar results hold under an alternative definition in which ζi(ku) = infπ∈Π̄TF

b
Vi(ku, π) at any

history ku =
(
{gt}t∈[0,u], {(bjt )j∈I}t∈[0,u)

)
up to time u, where Π̄TF

b denotes the set consisting of any

strategy profile π ∈ ×j∈IΠ̄TF
j such that the process ξib(π) with b = {(bjt )j∈I}t∈[0,u) is progressively

measurable for all i ∈ I.
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The utility function of each agent i ∈ {1, 2} satisfies vi[(a1, a2), s] ≥ 0 for all s ∈ S and

any (a1, a2) ∈ A1 × A2 such that (a1, a2) 6= (z, z). For each i ∈ {1, 2}, let χi(ht, π
′) =

χi(ht, π
′′) ≤ 0 for all ht ∈ H and any π′, π′′ ∈ Π̄TF

1 × Π̄TF
2 .

Let π̃ be a strategy profile in which each agent chooses x at time 1 if and only if s1

is in S̃. This strategy profile is an SPE because at any history ht up to a time t ≤ 1,

there is no unilateral deviation that would enable an agent to obtain an expected payoff

greater than χi(ht, π̃) ≤ 0.

We next show how this behavior may be used as a punishment to support other paths

of play.

Example 13. (Folk Theorem) Suppose I = {1, 2}. For each i ∈ {1, 2}, let Āi(h0) = Ai,

Āi(ht) = {x, z} if t = 1, and Āi(ht) = {z} if t /∈ {0, 1}. Let {st}t∈[0,T ) be an arbitrary

stochastic process with state space S. Assume that there exists S̃ ⊆ S such that {ω ∈
Ω : s1(ω) ∈ S̃} is not a measurable subset of the probability space (Ω,F , P ). The utility

functions satisfy v1[(a1, a2), s] ≥ v1[(z, a2), s] ≥ 0 and v2[(a1, a2), s] ≥ v2[(a1, z), s] ≥ 0 for

all s ∈ S and any (a1, a2) ∈ A1 × A2 such that (a1, a2) 6= (z, z). For each i ∈ {1, 2}, let

χi(ht, π
′) = χi(ht, π

′′) ≤ 0 for all ht ∈ H and any π′, π′′ ∈ Π̄TF
1 × Π̄TF

2 .

Choose any pair of actions (ã1, ã2) ∈ A1×A2. Let π̃ be the strategy profile defined as

follows. Each agent i ∈ {1, 2} chooses ãi at time 0. If every agent i takes action ãi at time

0, then the agents choose x at time 1. If some agent i does not take action ãi at time 0,

then the agents choose x at time 1 if and only if s1 is in S̃. This strategy profile is an SPE.

A unilateral deviation at h0 would result in an expected payoff of χi(h0, π̃) ≤ 0 to agent

i. If strategy profile π̃ is followed at time 0, then playing x at time 1 is a best response

for each agent to the action of the other agent. If strategy profile π̃ is not followed at

time 0, then neither agent has an incentive to deviate again for the same reason as in

example 12.

The preceding example illustrates how any profile of actions at the null history can be

implemented in equilibrium.8 Now we identify general conditions under which arbitrary

behavior after the null history can also be supported in equilibrium by suitably assigning

payoffs to nonmeasurable behavior.

Proposition 13. Let |I| ≥ 2 and T = ∞. Consider the game Γ
(
×j∈IΠ̄TF

j , (χj)j∈I
)

where χi(ht, π̂) = χi(ht, π̄) ≤ ζi(ht) for all π̂, π̄ ∈ ×j∈IΠ̄TF
j , any ht ∈ H, and every i ∈ I.

Assume that for each i ∈ I and any ht ∈ H, there exists ã ∈ Āi(ht) such that ã 6= z.

8In our model, actions are assumed to be perfectly observable. Hence, given a strategy profile in
which behavior on the path of play is measurable, assigning an extremely low payoff to nonmeasurable
behavior at information sets that can be reached only after a deviation does not affect expected payoffs
at the null history. Bonatti, Cisternas, and Toikka (2017) consider a related approach in which a
payoff of negative infinity is assigned to strategy profiles with undesirable properties. However, their
model assumes imperfect monitoring, so that punishment using an infinitely negative payoff results in
an infinitely negative payoff at the null history.
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Suppose that there exists t̃ > 0 along with a collection of sets {S̃t}t∈[0,t̃] such that {ω ∈
Ω : st(ω) ∈ S̃t, ∀ t ∈ [0, t̃]} is not a measurable subset of the probability space (Ω,F , P ).

Choose any π ∈ ×i∈IΠ̄TF
i such that for any profile of action paths

(
{bit}t∈[0,u)

)
i∈I up

to an arbitrary time u > 0, there exists with probability one some t < u such that

πi
(
{sτ}τ∈[0,t], {(bjτ )j∈I}τ∈[0,t)

)
6= bit for some i ∈ I. Then there exists an SPE π′ ∈

×i∈IΠ̄TF
i such that

(
{φit(h0, {sτ}τ∈(0,T ), π

′)}t∈[0,T )

)
i∈I =

(
{φit(h0, {sτ}τ∈(0,T ), π)}t∈[0,T )

)
i∈I

with probability one.

Proof. Choose any strategy profile π ∈ ×i∈IΠ̄TF
i . Define the strategy profile π′ ∈ ×i∈IΠ̄TF

i

as follows. Let ku =
(
{st}t∈[0,u], {(ait)i∈I}t∈[0,u)

)
be any history up to an arbitrary time

u. If ait = πi
(
{sτ}τ∈[0,t], {(ajτ )j∈I}τ∈[0,t)

)
for each i ∈ I and all t ∈ [0, u), then let

π′i(ku) = πi(ku) for all i ∈ I. If there exists t ∈ [0, u) and i ∈ I such that ait 6=
πi
(
{sτ}τ∈[0,t], {(ajτ )j∈I}τ∈[0,t)

)
, then for each i ∈ I, let π′i(ku) 6= z if st is in S̃t for all

t ∈ [0, t̃] and u = nt̃ for some positive integer n, and let π′i(ku) = z otherwise.

The strategy profile π′ is an SPE because if agent i ∈ I deviates at h0, then the

expected payoff to agent i is χi(h0, π
′) ≤ ζi(h0). Moreover, consider any history ku =(

{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to an arbitrary time u > 0. By assumption, there exists

with probability one some t < u such that πi
(
{sτ}τ∈[0,t], {(bjτ )j∈I}τ∈[0,t)

)
6= bit for some

i ∈ I. It follows that for each i ∈ I, the function φi
nt̃

[(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
,

{st(ω)}t∈(u,∞), π
′] from Ω to Ai is not measurable, where n is any integer such that nt̃ ≥ u.

Hence, the process ξib(π
′) with b = {(bjt)j∈I}t∈[0,u) is not progressively measurable, so that

the expected payoff to agent i is χi(ku, π
′) ≤ ζi(ku) when the other agents follow strategy

profile π′.

The result is proved by constructing a strategy profile π′ with the following properties.

At the null history h0, agent i has no incentive to deviate because doing so would result

in an expected payoff of χi(h0, π), which is no more than the infimal feasible payoff ζi(h0)

based on the utility function. At any history ku up to a positive time u, the action

path b up to time u is such that the process ξib(π
′) is not progressively measurable given

the restriction on strategy profile π in the statement of the proposition as well as the

assumption that ξib(π
′) records the continuation path of play when the action path up to

time u is fixed at b. Hence, the expected payoff of agent i at history ku is constant at

χi(ku, π
′) when the other agents play π′, so that agent i has no incentive to deviate.9

Note that simply requiring progressive measurability of the shock process does not

enable an arbitrary path of play to be implemented as an equilibrium. To see this, suppose

9We assume only for simplicity when defining ξib(π
′) that the action path up to time u is fixed

irrespective of the shock realization up to time u. The reasoning in the proof does not entirely apply
under the alternative definition in footnote 28 where behavior up to time u may be determined by π′.
However, it can still be shown that at any history up to a given time that is reached with probability
one when playing π, π′ specifies the same action profile as π, and π′i designates a best response to π′−i.
As mentioned in footnote 28, the main results in section 4 are valid under both definitions of the action
process.
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that the shock can take values only in a finite set and can change values only at discrete

times. Then the shock process would be progressively measurable, but the finiteness of

the state space and the discrete timing of state changes make it impossible for a strategy

profile to induce nonmeasurable behavior.

C.4 From Calculability Restriction to Payoff Assignment

We examine the relationship between the SPE under the calculability restriction and

the SPE when payoffs are assigned to nonmeasurable behavior. As in section C.3, we

associate nonmeasurable behavior with an expected payoff no more than the greatest

lower bound on the feasible payoffs. The following result shows that the set of SPE in

this case is at least as large as the set of SPE under the calculability restriction.

Proposition 14. Let Āi(ht) = Ai for every ht ∈ H and each i ∈ I. If π is an SPE

of Γ
(
×i∈IΠ̄C

i

)
, then π is an SPE of Γ

(
×i∈IΠ̄TF

i , (χi)i∈I
)

with χi(ht, π̃) ≤ ζi(ht) for all

π̃ ∈ ×j∈IΠ̄TF
j , any ht ∈ H, and every i ∈ I.

Proof. Let π be an SPE of Γ
(
×i∈IΠ̄C

i

)
, and consider the game Γ

(
×i∈IΠ̄TF

i , (χi)i∈I
)

with

χi(ht, π̃) ≤ ζi(ht) for all π̃ ∈ ×j∈IΠ̄TF
j , ht ∈ H, and i ∈ I. Let ku =

(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
be any history up to an arbitrary time u, and denote b = {(bjt)j∈I}t∈[0,u).

For any i ∈ I, choose any π′i ∈ Π̄TF
i . If there is some j ∈ I such that ξjb(π

′
i, π−i) is

not progressively measurable, then Ui[ku, (π
′
i, π−i)] = χi[ku, (π

′
i, π−i)] ≤ ζi(ku), whereas

Ui(ku, π) = Vi(ku, π) ≥ ζi(ku). Suppose now that ξjb(π
′
i, π−i) is progressively measurable

for all j ∈ I. Let π′′i with π′′i (ht) = z for t < u be defined such that π′′i
[(
{sτ}τ∈[0,t], {(djτ )j∈I}τ∈[0,t)

)]
=

φit
[(
{sτ}τ∈[0,u], {(bjτ )j∈I}τ∈[0,u)

)
, {sτ}τ∈(u,T ), (π

′
i, π−i)

]
for each realization of the shock pro-

cess {sτ}τ∈[0,T ) and any action path {(djτ )j∈I}τ∈[0,t) up to an arbitrary time t ≥ u.

Note that π′′i ∈ Π̄i given the assumption that Āi(ht) = Ai for all ht ∈ H and i ∈ I.

By the definition of π′′i , π′′i ∈ ΠTF
i , and the stochastic process ξjb(π

′′
i , π−i) is the same

as ξjb(π
′
i, π−i) for all j ∈ I, which implies that Ui[ku, (π

′′
i , π−i)] = Vi[ku, (π

′′
i , π−i)] =

Vi[ku, (π
′
i, π−i)] = Ui[ku, (π

′
i, π−i)]. Moreover, π′′ is quantitative and hence calculable.

Since π is an SPE of Γ
(
×i∈IΠ̄C

i

)
, it must be that Ui(ku, π) ≥ Ui[ku, (π

′′
i , π−i)]. It follows

that Ui(ku, π) ≥ Ui[ku, (π
′
i, π−i)]. Hence, no agent i has an incentive to deviate from πi

to π′i at ku, which proves that π is an SPE of Γ
(
×i∈IΠ̄TF

i , (χi)i∈I
)
.

Therefore, if the model has an SPE under the calculability restriction, then there

exists an SPE under the approach where nonmeasurable behavior is assigned an expected

payoff no greater than the infimal feasible payoff, even when we do not associate each

instance of nonmeasurable behavior with the same expected payoff. This result implies

that insofar as the concept of SPE is concerned, the calculability restriction is not picking

up strategy profiles that would be ruled out by every assignment of expected payoffs to

nonmeasurable behavior.
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C.5 From Payoff Assignment to Calculability Restriction

Here we identify when an SPE under the method of assigning payoffs to nonmeasurable

behavior is also an SPE under the calculability restriction.

We begin by defining a set of strategy profiles with certain measurability properties.

Let the random variable θ : Ω→ [0, T ] be a stopping time.10 Given any π′, π′′ ∈ ×i∈IΠi,

let ψ(π′, π′′, θ) be the strategy profile satisfying the following two properties for each i ∈ I:

1. ψi(π
′, π′′, θ)

(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
= π′i

(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
for each

i ∈ I, all u ≥ 0, every {(bjt)j∈I}t∈[0,u), and any ω ∈ Ω with u ≤ θ(ω);

2. ψi(π
′, π′′, θ)

(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
= π′′i

(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
for each

i ∈ I, all u ≥ 0, every {(bjt)j∈I}t∈[0,u), and any ω ∈ Ω with u > θ(ω).

In other words, the strategy ψi(π
′, π′′, θ) plays π′i until and including the stopping time,

and plays π′′i thereafter. A strategy profile π ∈ ×i∈IΠTF
i is said to be measurably

attachable if for each action path b, every stopping time θ, and any π̃ ∈ ×i∈IΠTF
i such

that ξib(π̃) is progressively measurable for all i ∈ I, the strategy ψi(π̃, π, θ) is traceable

and frictional for all i ∈ I and the process ξib[ψ(π̃, π, θ)] is progressively measurable for

all i ∈ I. That is, π is required to induce progressively measurable behavior after any

progressively measurable behavior up to and including an arbitrary random time. Let

ΠA ⊆ ×i∈IΠTF
i be the set of measurably attachable strategy profiles. In addition, a

strategy profile π ∈ ×i∈IΠi is said to be synchronous if for any ht ∈ H, πj(ht) = z for

all j ∈ I whenever πi(ht) = z for some i ∈ I. That is, π requires the agents to move at

the same time as each other.11

According to the following result, any synchronous and measurably attachable strat-

egy profile that is an SPE when payoffs are assigned to nonmeasurable behavior is also

an SPE under the calculability restriction.

Theorem 3. If the synchronous strategy profile π ∈ ΠA is an SPE of Γ
(
×i∈IΠ̄TF

i ,

(χi)i∈I
)
, then π is an SPE of Γ

(
×i∈IΠ̄C

i

)
.

Proof of Theorem 3. We first show that π is an SPE of Γ
(
×i∈IΠ̄C

i

)
, assuming that π is

an SPE of Γ
(
×i∈IΠ̄TF

i , (χi)i∈I
)

and πi is calculable for each i ∈ I. Then we confirm that

πi is calculable for each i ∈ I given that π is synchronous and measurably attachable.

10That is, it satisfies {ω ∈ Ω : θ(ω) ≤ t} ∈ Ft for all t ∈ [0, T ).
11The synchronicity assumption is satisfied by the maximal equilibrium of the tree harvesting problem

(section 5.1) and of the sequential exchange model and technology adoption game in the supplementary
information as well as by a Markov perfect equilibrium of the inventory restocking application in the
supplementary information. In addition, any asynchronous strategy profile can be expressed as a syn-
chronous strategy profile by adding a payoff irrelevant action to the action space of each agent and
requiring this action to be chosen by an agent that does not move when another agent moves. All
the equilibria studied in section 5 and the supplementary information satisfy synchronicity after such a
reformulation.
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To show that π is an SPE of Γ
(
×i∈IΠ̄C

i

)
, consider any ht ∈ H. Given any i ∈ I, choose

any π′i ∈ Π̄C
i . Since π is an SPE of Γ

(
×i∈IΠ̄TF

i , (χi)i∈I
)
, it must be that Ui(ht, π) ≥

Ui[ht, (π
′
i, π−i)], where Ui(ht, π) = Vi(ht, π) and Ui[ht, (π

′
i, π−i)] = Vi[ht, (π

′
i, π−i)] because

π ∈ ×j∈IΠC
j . It follows that π is an SPE of Γ

(
×i∈IΠ̄C

i

)
.

Given any i ∈ I, we now confirm that πi ∈ ΠC
i . Define πzj (ht) = z for each j ∈ I

and every ht ∈ H. Choose any b = {(bjt)j∈I}t∈[0,u) as well as any π′−i ∈ ΠQ
−i. Define the

stopping time θ0 as follows. For any ω ∈ Ω, let Υ̂0(ω) denote the set consisting of all

t ∈ [u, T ) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), π

]
6= z

for some e ∈ I, and let Ῡ0(ω) denote the set consisting of all t ∈ [u, T ) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]
6= z

for some e ∈ I. Let θ0(ω) be the lesser of the infimum of Υ̂0(ω) and the infimum of

Ῡ0(ω). Note that ξib[ψ(π, πz, θ0)] and ξib{ψ[(πi, π
′
−i), π

z, θ0]} are the same progressively

measurable stochastic process.

Apply the following procedure iteratively for every positive integer k. Define the

stopping time θk as follows. For any ω ∈ Ω, let Υ̂k(ω) denote the set consisting of all

t ∈ (θk−1(ω), T ) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), ψ[(πi, π

′
−i), π, θ

k−1]
]
6= z

for some e ∈ I, and let Ῡk(ω) denote the set consisting of all t ∈ (θk−1(ω), T ) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]
6= z

for some e ∈ I. Let θk(ω) be the lesser of the infimum of Υ̂k(ω) and the infimum

of Ῡk(ω), where P ({ω ∈ Ω : θk(ω) > θk−1(ω)} ∪ {ω ∈ Ω : θk−1(ω) = ∞}) = 1 because

ψ[(πi, π
′
−i), π, θ

k−1], (πi, π
′
−i) ∈ ×j∈IΠTF

j . Note that ξib
(
ψ{ψ[(πi, π

′
−i), π, θ

k−1], πz, θk}
)

and

ξib{ψ[(πi, π
′
−i), π

z, θk]} are the same progressively measurable stochastic process.

Suppose that the sequence {θk}∞k=1 does not converge almost surely to ∞. Then

P [{ω ∈ Ω : limk→∞ θ
k(ω) <∞}] 6= 0. For each ω ∈ Ω, let Ξ(ω) denote the set consisting

of all t ∈ [u, T ) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]
6= z

for some e ∈ I. Letting E denote the set consisting of all ω ∈ Ω such that {t ∈ Ξ(ω) :

t ≤ c} contains only finitely many elements for any c ∈ [u,∞), we have P ({ω ∈ Ω : ω ∈
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E}) = 1 because (πi, π
′
−i) ∈ ×j∈IΠTF

j . The definition of E also implies that for all ω ∈ E
such that limk→∞ θ

k(ω) <∞, there exists t̃(ω) ∈ [u, limk→∞ θ
k(ω)) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]

= z

for each e ∈ I and all t ∈ [t̃(ω), limk→∞ θ
k(ω)).

For any ω ∈ E such that limk→∞ θ
k(ω) < ∞, choose any k̃(ω) ≥ 1 such that

θk̃(ω)−1(ω) ≥ t̃(ω). Assuming now that π is synchronous,

φet
[(
{sτ (ω)}τ∈[0,u],({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), ψ[(πi, π

′
−i), π, θ

k̃(ω)−1]
]

= φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]

= z

for each e ∈ I, any t ∈ (θk̃(ω)−1(ω), limk→∞ θ
k(ω)), and all ω ∈ E such that limk→∞ θ

k(ω)

<∞. This implies that θk̃(ω)(ω) ≥ limk→∞ θ
k(ω) for all ω ∈ E such that limk→∞ θ

k(ω) <

∞, from which it follows that there is a set of nonzero measure consisting of ω ∈ E

with limk→∞ θ
k(ω) < ∞ for which there exists l ≥ 1 such that θl(ω) > limk→∞ θ

k(ω).

However, θk(ω) is nondecreasing in k by construction, so this is a contradiction. Thus,

the sequence {θk}∞k=1 must converge almost surely to ∞. Since the stochastic process

ξib{ψ[(πi, π
′
−i), π

z, θk]} is progressively measurable for all k ≥ 1 and the sequence {θk}∞k=1

converges almost surely to ∞, the stochastic process ξib(πi, π
′
−i) is progressively measur-

able. It follows that πi ∈ ΠC
i .

The theorem implies that the restriction to calculable strategies does not exclude

from the set of SPE any synchronous and measurably attachable strategy profile that

is supported as an SPE under some assignment of expected payoffs to nonmeasurable

behavior.

To prove this result, we first show that any profile of calculable strategies that is an

SPE under an assignment of payoffs to nonmeasurable behavior is also an SPE under

the calculability restriction. Intuitively, when the other agents are playing calculable

strategies, a deviation by an agent from one calculable strategy to another calculable

strategy produces the same change in expected payoffs under the calculability restriction

as under the payoff assignment method.

We then confirm that any synchronous and measurably attachable strategy profile

π is also a profile of calculable strategies. This part of the proof involves an iterative

procedure as in the proof of the main theorem stating that calculable strategies generate

a measurable path of play. Specifically, we let π′−i be a profile of quantitative strategies

for the agents other than i. If the agents are playing (πi, π
′
−i), then the behavior induced

by (πi, π
′
−i) is progressively measurable up to and including the first time that π or

(πi, π
′
−i) prescribes a move. Because π induces progressively measurable behavior after

any progressively measurable behavior up to and including an arbitrary random time, the
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behavior induced by (πi, π
′
−i) is progressively measurable up to and including the next

time that π or (πi, π
′
−i) prescribes a move. We can apply this argument iteratively in

order to show that the behavior induced by (πi, π
′
−i) is progressively measurable. This

sort of reasoning establishes that πi is calculable.

The restriction to synchronous SPE ensures that the aforesaid iterative procedure

characterizes the path of play of (πi, π
′
−i) over the entire course of the game. To see this,

choose any time t ∈ [0, T ). By the traceability and frictionality assumptions, strategy

profile (πi, π
′
−i) with probability one induces only a finite number of moves before time

t. Moreover, the synchronicity assumption implies that the procedure is such that π

prescribes a move only if (πi, π
′
−i) does so. Hence, the iterations with probability one

reach time t after only finitely many steps.

Without the assumption that π is measurably attachable, the proposition fails. This

is illustrated by the following example, in which there are two agents, two times at which

the agents can move, and two possible actions at each of these times. We specify a

strategy profile π∗ that is an SPE for a given assignment of payoffs to nonmeasurable

behavior but that is not measurably attachable because the action of each agent at time

2 is not measurable if one or both agents choose a non-z action at time 1. We explain

that π∗i is not calculable because agent i’s behavior at time 2 under π∗i is not measurable

if agent −i follows the quantitative strategy π̃−i of always choosing a non-z action at time

1 and always choosing z at time 2.

Example 14. (Role of Measurable Attachability) Suppose I = {1, 2}. For each

i ∈ {1, 2}, let Āi(ht) = {w, z} if t = 1, Āi(ht) = {x, z} if t = 2, and let Āi(ht) = {z}
otherwise. Let {st}t∈[0,T ) be an arbitrary stochastic process with state space S. Assume

that there exists S̃ ⊆ S such that {ω ∈ Ω : s2(ω) ∈ S̃} is not a measurable subset of the

probability space (Ω,F , P ). For all s ∈ S, the utility function of each agent i ∈ {1, 2}
satisfies vi[(x, x), s] = 1 and vi[(a1, a2), s] = 0 for any (a1, a2) ∈ A1 × A2 such that

(a1, a2) 6= (x, x). Let χi(ht, π) = 0 for each i ∈ I, all ht ∈ H, and any π ∈ Π̄TF
1 × Π̄TF

2 .

Let π∗ be a strategy profile in which both agents choose z at time 1 and choose z at

time 2 if and only if some agent i ∈ {1, 2} chooses w at time 1 and s2 is in S̃. First,

π∗ is not measurably attachable since the process ξi{}[ψ(π̃, π∗, θ̃)] is not progressively

measurable, where π̃ is a strategy profile in which both agents always choose w at time

1 and choose z at time 2, and the stopping time θ̃ is equal to the constant 1. Second,

π∗ is an SPE of Γ
(
×i∈IΠ̄TF

i , (χi)i∈I
)

because for all i ∈ I and π′i ∈ Π̄TF
i , we have

Ui(ht, π
∗) = Vi(ht, π

∗) = 1 ≥ Ui[ht, (π
′
i, π
∗
−i)] for every history ht up to time 1 and every

history ht up to time 2 where z is chosen by both agents at time 1 and because for all i ∈ I
and π′i ∈ Π̄TF

i , we have Ui(ht, π
∗) = χi(ht, π

∗) = 0 = χi[ht, (π
′
i, π
∗
−i)] = Ui[ht, (π

′
i, π
∗
−i)] for

every history ht up to time 2 where w is chosen by some agent at time 1. Third, π∗i is

not calculable since the process ξi{}(π
∗
i , π̃−i) is not progressively measurable, where π̃−i is

the quantitative strategy of always choosing w at time 1 and choosing z at time 2.
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Note that measurable attachability is not a restriction on the strategy space of an

individual agent but on the space of strategy profiles. Hence, ΠA does not necessarily have

a product structure. Although we find it unsatisfactory, one could define a notion of SPE

under the restriction of measurable attachability, where the set of strategies to which an

agent can deviate depends on the strategy profile of its opponents. In the supplementary

information, we provide a formal definition of this concept and demonstrate that any

synchronous strategy profile satisfying this notion of equilibrium is an SPE under the

calculability restriction.
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