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Abstract

This paper examines whether wages are based on information about personal contacts. I develop

a theory of labor markets with imperfect information in which related workers have correlated

abilities. I study wage setting under two alternative processes: individual learning, under which

employers observe only a worker’s own characteristics, and social learning, under which employers

also observe those of a relative. Using sibling data from the NLSY79, I test for a form of statistical

nepotism in which a sibling’s performance is priced into a worker’s wage. Empirically, an older

sibling’s test score has a larger impact on a younger sibling’s log wage than a younger sibling’s test

score has on an older sibling’s log wage. The estimates provide strong support for social effects in

employer learning.
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1 Introduction

An important question in labor economics concerns how personal contacts influence job search behav-

ior and wage setting decisions. As Granovetter’s (1974) classic survey of workers in the Boston area

illustrates, nearly half of all jobs are obtained through a social contact. The extensive use of friends,

relatives, and acquaintances in job search enables personal contacts to play a role in shaping employers’

beliefs about a worker’s skills. As Rees (1966) notes when studying workers in a Chicago neighborhood,

“Present employees tend to refer people like themselves, and they may feel that their own reputation is

affected by the quality of the referrals.”

This paper develops an empirical test for whether wages incorporate information on personal con-

tacts. Combining a sibling model similar to Griliches (1979) with an employer learning model related

to Altonji and Pierret (2001), I construct a framework in which workers are organized into disjoint

social groups composed of agents with correlated abilities and differing ages. I examine wage determi-

nation under two competing assumptions about the market’s formation of beliefs: individual learning

and social learning. Under individual learning, a worker’s wage equals the conditional expectation of

her productivity given only her own schooling and performance. Under social learning, a worker’s wage

equals the conditional expectation of her productivity given the schooling and performance of all the

members of her social group, including herself.

Using sibling data from the NLSY79, I apply this framework to test for a form of statistical nepotism

in which a worker’s wage depends on both one’s own and a sibling’s characteristics.1 The basic logic

is as follows. If one sibling is older than another sibling, then employers should have more precise

information about the older sibling. Hence, when market participants form Bayesian beliefs about the

abilities of the two siblings, the older sibling’s average performance would have a greater impact on

employers’ mean beliefs about the younger sibling’s ability than vice versa, and the component of the

younger sibling’s wage attributable to the older sibling’s ability would be larger than the component of

the older sibling’s wage attributable to the younger sibling’s ability.

Empirically, given data on the test scores and schooling of siblings, this weighting can be detected

by regressing an individual’s log wage on her own and a sibling’s test scores and schooling. If employer

learning is nepotistic, then the ratio of the coefficient on a sibling’s test score to that on one’s own test

score should typically be higher in a younger sibling’s than in an older sibling’s log wage. However, if

employer learning is individual, then the ratio of the coefficient on a sibling’s test score to that on one’s

own test score should be the same for both a younger and an older sibling. The empirical results are

consistent with statistical nepotism. In order to eliminate other explanations for the results, I document

several pieces of evidence related to job search patterns, human capital measures, and geographic or

economic proximity.

1This article uses the term nepotism to refer to unequal treatment on the basis of family relationships. This usage
differs from the nomenclature in Becker (1971), who applies the term to describe favoritism towards a particular group.
By statistical nepotism, I mean unequal treatment due to information from a relative, not because of the preferences or
influence of a relative.
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The empirical strategy integrates elements from four largely distinct literatures in labor economics.

First, this paper is part of a sizeable literature on the identification of social effects.2 The most closely

related paper is Case and Katz (1991), which attempts to detect neighborhood influences by regressing

an individual’s outcome variable on the background variables of her peers.

Second, this paper contributes to a growing literature on employer learning and statistical discrim-

ination. In order to examine social interactions in the employer learning process, I extend the basic

methodology developed by Farber and Gibbons (1996) and Altonji and Pierret (2001).3 I thereby devise

a test for statistical nepotism, in which employers infer an individual’s productivity based partly on

information about her relatives.

Third, this paper is relevant to a theoretical literature on social networks in labor markets.4 The

framework in the current paper is most similar to the model in Montgomery (1991). In that model,

workers are arranged into social groups containing either one or two members, and social groups of

size two consist of an older and a younger worker with correlated abilities. Employers use the observed

performance of the more senior worker in each pair to infer the ability of her more junior counterpart.

Fourth, this paper contributes to a small empirical literature that attempts to test for nepotism

in labor markets. A relevant paper is Lam and Schoeni (1993), whose empirical strategy involves

comparing the coefficients on a father’s and a father-in-law’s schooling in wage equations.5 In addition,

Wang (2013) identifies the effect of a father-in-law on male earnings, and Gevrek and Gevrek (2010)

study how nepotism influences college performance.

The remainder of this paper is structured as follows. Section 2 presents the employer learning

models. Section 3 describes the empirical specification. Section 4 discusses the construction of the

estimation sample. Section 5 presents the empirical results. Section 6 proposes some implications for

antidiscrimination policy. Section 7 concludes.

2 Sibling Models with Employer Learning

This section analyzes how employer learning affects the relationship between siblings’ test scores and

log wages. The framework embeds a sibling model based on Griliches (1977, 1979) into an employer

learning model related to Farber and Gibbons (1996), Altonji and Pierret (2001), and Lange (2007).

2See Ioannides and Loury (2004) for a review of existing research on social effects in labor markets. Recent papers in
this area include Bayer et al. (2008), Beaman (2012), Beaman and Magruder (2012), Burns et al. (2010), Cingano and
Rosolia (2012), Combes et al. (2008), Dustmann et al. (2011), Hellerstein et al. (2011), Kramarz and Skans (2013), Kugler
(2003), and Nakajima et al. (2010).

3Pinkston (2003) analyzes gender differences in the process of employer learning. Autor and Scarborough (2008)
investigate an example of statistical discrimination based on race. Simon and Warner (1992) as well as Pinkston (2012)
assess the informational content of employee referrals.

4Models of job search through social networks have been developed by Bramoullé and Saint-Paul (2010), Calvò-
Armengol and Jackson (2004), Mortensen and Vishwanath (1994), and Zaharieva (2013).

5Similarly, Hellerstein and Morrill (2011) examine trends in the transmission of human capital from fathers to daughters
by analyzing changes in the likelihood that a woman enters her father’s as compared to her father-in-law’s occupation.
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2.1 Labor Market Characteristics of Siblings

This section presents a statistical model of siblings’ labor market attributes. The treatment focuses on

the case in which there are two siblings, 1 and 2. As in much of the literature on employer learning,

the log labor productivity l(si, ai, ti) of person i ∈ {1, 2} is assumed to be decomposable into two

components:

l(si, ai, ti) = g(si, ai) + h(ti), (1)

where g(si, ai) is a time-invariant component of productivity, and h(ti) represents additional human

capital accumulated with age ti. Letting β > 0, the function g(si, ai) is linear in schooling si and ability

ai:

g(si, ai) = βsi + ai, (2)

where the coefficient on ai is without loss of generality normalized to one.

The abilities a1, a2 of the two siblings are joint normally distributed with respective means µa1 and

µa2, identical variance σ2
a > 0, and correlation ρa ∈ (0, 1). Letting γ > 0, schooling is related to ability

through:

si = γai + εi, (3)

where εi, which represents factors other than labor market ability that influence education decisions,

is assumed to be independent of a1, a2. The error terms ε1, ε2 are joint normally distributed with

respective means µε1 and µε2, identical variance σ2
ε > 0, and correlation ρε ∈ (0, 1).

The information available to employers about ability ai is symmetric but imperfect.6 In particular,

employers observe the schooling si of each person as well as a sequence ri = {riu}tiu=1 of noisy productivity

signals given by:

riu = g(si, ai) + ηiu, (4)

where each measurement error ηiu is a normal random variable with mean zero and variance σ2
η > 0.7

The ηiu are assumed to be independent of each other and of all the other variables in the model.

The econometrician is assumed to observe a test score zi in addition to the education level si. Letting

θs > 0 and θa > 0, the ability measure zi takes the form:

zi = θssi + θaai + ωi, (5)

where ωi, which represents factors unrelated to labor productivity that affect the test score, is indepen-

dent of both a1, a2 and s1, s2. The error terms ω1, ω2 are joint normally distributed with respective

means µω1 and µω2, identical variance σ2
ω > 0, and correlation ρω ∈ (0, 1). In addition, the test score zi

is assumed to be unobservable to employers as in Altonji and Pierret (2001); so that, employers cannot

6Symmetric information means that all employers in the labor market are equally knowledgeable about the variables
in the model. That is, prospective employers observe the same information about a worker as a current employer.

7Note that ri can be interpreted as the performance history of a worker.
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use zi as an additional signal of productivity when forming beliefs about ai.

2.2 Individual Learning

This section analyzes the case where employer learning is individualistic; so that, the wage wi of person

i ∈ {1, 2} is based only on her own education si and her own performance ri. For concreteness, employers

are assumed to set the wage wi equal to the conditional expectation of labor productivity given si and

ri. The analysis here proceeds in two steps. I first express log(wi) as a function of si and ri. I then

examine the conditional expectation of log(wi) given s1, s2 and z1, z2.

In order to calculate log(wi), I derive beliefs given si and ri.
8 Conditional on schooling si, employers’

beliefs about g(si, ai) are normally distributed with mean µmi(si) and variance σ2
m where:

µmi(si) = E[g(si, ai)|si] = βsi + E(ai|si) and σ2
m = V[g(si, ai)|si] = V(ai|si). (6)

From the results in DeGroot (1970), it follows that employers’ beliefs about g(si, ai) given both si and

ri are normally distributed with mean µgi(si, ri) and variance σ2
gi where:

µgi(si, ri) = (1− χi)µmi(si) + χir̄i, σ2
gi = (σ−2m + tiσ

−2
η )−1, χi = tiσ

−2
η σ2

gi, (7)

and r̄i is the sample mean of the sequence ri = {riu}tiu=1. If worker 1 is older than worker 2, then χ1

will be larger than χ2, indicating that beliefs about worker 1 are based less on schooling and more on

performance relative to beliefs about worker 2.

Given the normality of employers’ beliefs about g(si, ai), the conditional expectation of labor pro-

ductivity given si and ri can be expressed as:

E{exp[l(si, ai, ti)]|si, ri} = exp[µgi(si, ri) + 1
2
σ2
gi + h(ti)]; (8)

so that, the log wage of each person is simply:

log(wi) = µgi(si, ri) + 1
2
σ2
gi + h(ti), (9)

where µgi(si, ri) and σ2
gi are given by equation (7).

I now calculate the conditional expectation of the log wage given the information available to the

econometrician. Using equations (4), (7), and (9), one obtains:

E[log(wi)|s1, s2, z1, z2] = χiE(ai|s1, s2, z1, z2) + fi(si, ti), (10)

8The notation E(·) and V(·) is used for the unconditional expectation and variance. The conditional expectation and
conditional variance are respectively denoted by E(·|·) and V(·|·).
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where the function fi(si, ti) is given by:

fi(si, ti) = (1− χi)µmi(si) + χiβsi + 1
2
σ2
gi + h(ti). (11)

The following is an invariance result concerning the ratio of the coefficients on the test scores in a

regression of log(w1), log(w2) on s1, s2 and z1, z2. This property is an immediate consequence of

equation (10).

In particular, this implication of the model arises from the symmetric treatment of siblings. The

specified relationships among ability, schooling, and test scores are similar for younger and older siblings.

In equation (10), the two siblings have the same coefficients as each other on one’s own and a sibling’s

test scores and schooling in the conditional expectation of one’s ability. These equalities follow from

the formulae for schooling and test scores in equations (3) and (5). The function relating the test score

to schooling and ability, as well as that relating schooling to ability, is the same for both siblings.

Proposition 1 Suppose that learning is individual. Let αij denote the regression coefficient on person

j’s test score in the conditional expectation of person i’s log wage given s1, s2 and z1, z2. Then α12α22 =

α21α11.

To understand this result, suppose that sibling 1 is older than sibling 2; so that, sibling 1’s wage is

based less on education and more on performance than sibling 2’s wage. Because each sibling’s wage has

a different composition, it might be difficult to compare the results of wage regressions across siblings.

The importance of proposition 1 is that it enables such comparisons to be made. Even though α11 is

larger in magnitude than α22 by the proportion χ1/χ2, it follows from proposition 1 that α12 is also

larger in magnitude than α21 by this proportion. In other words, the impact of a sibling’s test score on

one’s log wage grows with age at the same rate as the impact of one’s own test score. Because employers

do not use information on a person’s siblings under individual learning, this result is valid regardless of

the number of siblings in a family. Section 2.3 examines how deviations from this rule can arise when

employers use information on one sibling when determining the wage of another sibling.

The coefficient restriction above follows from the symmetric modeling of siblings’ human capital.

Given that older and younger siblings have similar underlying skills, asymmetries in log wage regressions

may be attributed to social effects in employer learning. Nonetheless, there are several mechanisms that

might lead to differences between siblings in the parameters regulating skill formation. The potential

effects of these mechanisms on the specification of the model are discussed below. In the empirical

analysis, a number of tests are conducted in order to demonstrate that such alternative explanations

are not critical for generating the patterns observed in the data.

One possibility is that the process of human capital development in early life varies with birth order.

If so, there may be differences between siblings in how labor productivity, schooling, and test scores are

modeled in equations (2), (3), and (5). Specifically, the parameters θa and θs representing the effects

of ability and schooling on test scores may be a function of birth order as well as variables like birth
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cohort, sibship size, and birth spacing. The same applies to the coefficient β, which embodies the effect

of schooling on earnings, and the parameter γ, which captures the influence of ability on schooling.

Furthermore, as described below, the equations specifying a person’s skills may depend on a sibling’s

characteristics as well as one’s own. See Cunha and Heckman (2007) for a model of skill production in

childhood and parental investments in offspring.

Another sort of interaction involves transfers of skills between siblings, either as children in the

parental home or as adults in the labor market. For example, Zajonc (1976) notes that older children

might serve as teachers for younger children. Another type of peer influence is a role model effect,

whereby the actions of one sibling provide signals of appropriate behavior for another sibling to follow.

For example, Butcher and Case (1994) mention that individuals might compare their own achievements

with those of their siblings when making educational decisions. In such situations, a person’s schooling

may depend not only on one’s own ability but also on a sibling’s ability and schooling. Similarly, both

one’s own and a sibling’s ability and schooling may affect one’s labor productivity and test score. That

is, a person’s skills as formulated in equations (2), (3), and (5) could be functions of both one’s own

and a sibling’s attributes. In addition, these functions might differ between older and younger siblings.

Under individual learning, the parameters α11 and α22 are predicted to be strictly positive.9 Ac-

cordingly, the equality in proposition 1 can be expressed as α21/α22 = α12/α11. That is, the ratio of

the coefficient on a sibling’s test score to the coefficient on one’s own test score does not differ between

siblings in the regression of one’s log wage on one’s own and a sibling’s schooling and test scores. For

expositional purposes, the ratios α21/α22 and α12/α11 will each be called a scaled sibling effect, which is

abbreviated as SSE. In addition, the restriction α21/α22 = α12/α11 will be termed equal scaled sibling

effects, whose acronym is ESSE.

2.3 Social Learning

This section examines the case in which employer learning has an element of statistical nepotism. In

particular, the wage wi of each sibling incorporates information on the education s1, s2 and performance

r1, r2 of both siblings; so that, employers set the wage of sibling i ∈ {1, 2} equal to the conditional

expectation of her own labor productivity given s1, s2 and r1, r2.
10 I first derive the log wage as a

function of the information available to employers and then compute the conditional expectation of the

log wage given the variables observable to the econometrician.

I begin by calculating beliefs given s1, s2 and r1, r2. For a given sibling with index i, let e be the

9This property follows from the results in the appendix, where the regression coefficient on one’s own test score is
shown to be positive in the conditional expectation of one’s ability given one’s own and a sibling’s schooling and test
scores.

10A potential issue is that a sibling’s characteristics may not be observable to a person’s employer unless both individuals
work at the same firm. To address this point, the online appendix presents a simple model of employee referrals in which
an older sibling’s attributes can affect a younger sibling’s log wage even if the two siblings work for different employers.
In the model, a person refers a sibling to her employer, who then makes a wage offer to the sibling. The wage offer can
act as a signal to other firms of the sibling’s ability even if the sibling does not accept the offer.
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index of the other sibling; so that, e = 2 if i = 1, and vice versa. Conditional on the schooling si, se of

both siblings and the performance re of sibling e, employers’ beliefs about the time-invariant component

g(si, ai) of sibling i’s log productivity are normally distributed with mean µni(si, se, re) and variance σ2
ni

where:

µni(si, se, re) = βsi + E(ai|si, se, re) and σ2
ni = V(ai|si, se, re). (12)

Note that the conditional variances σ2
ni, σ

2
ne satisfy σ2

ni ≥ σ2
ne if ti ≥ te. In other words, if sibling i is

at least as old as sibling e, then beliefs about sibling e conditional only on se, si, and ri are at least as

precise as beliefs about sibling i conditional only on si, se, and re.

Employers’ beliefs about g(si, ai) given both si, se and ri, re are normally distributed with mean

µqi(si, se, ri, re) and variance σ2
qi where:

µqi(si, se, ri, re) = (1− ξi)µni(si, se, re) + ξir̄i, σ2
qi = (σ−2ni + tiσ

−2
η )−1, ξi = tiσ

−2
η σ2

qi, (13)

and r̄i is the sample mean of {riu}tiu=1. In equation (13), if ti is greater than te, then ξi is greater than

ξe. To paraphrase, if sibling i is older than sibling e, then beliefs about sibling i are based more on her

own performance and less on other measures of her ability compared to beliefs about sibling e.

It follows that the conditional expectation of sibling i’s labor productivity given si, se and ri, re is:

E{exp[l(si, ai, ti)]|si, se, ri, re} = exp[µqi(si, se, ri, re) + 1
2
σ2
qi + h(ti)], (14)

resulting in the proceeding expression for sibling i’s log wage:

log(wi) = µqi(si, se, ri, re) + 1
2
σ2
qi + h(ti), (15)

where µqi(si, se, ri, re) and σ2
qi are given by equation (13).

I now derive the conditional expectation of log(wi) given si, se and zi, ze. Combining equations (4),

(12), (13), and (15), one obtains:

E[log(wi)|si, se, zi, ze] = (1− ξi)E[E(ai|si, se, re)|si, se, zi, ze] + ξiE(ai|si, se, zi, ze) + bi(si, ti), (16)

where the function bi(si, ti) is given by:

bi(si, ti) = βsi + 1
2
σ2
qi + h(ti). (17)

Because the rue have identical covariances with each other and with si, se, and ai, the conditional

expectation of ai given si, se, and re has the form:

E(ai|si, se, re) = E(ai|si, se, r̄e) = ζci + ζoisi + ζfise + ζrir̄e; (18)
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so that, (si, se, r̄e) is a sufficient statistic for (si, se, re) with respect to ai. Thus, the iterated expectation

in equation (16) can be expressed as:

E[E(ai|si, se, re)|si, se, zi, ze] = ζriE(ae|si, se, zi, ze) + di(si, se), (19)

where di(si, se) is defined as:

di(si, se) = ζci + ζoisi + (ζfi + ζriβ)se. (20)

Combining equations (16) and (19), I obtain the final expression for the conditional expectation of the

log wage:

E[log(wi)|si, se, zi, ze] = (1− ξi)ζriE(ae|si, se, zi, ze) + ξiE(ai|si, se, zi, ze) + pi(si, se, ti), (21)

where pi(si, se, ti) is given by:

pi(si, se, ti) = bi(si, ti) + (1− ξi)di(si, se). (22)

Equation (21) demonstrates that the log wage can be decomposed into two separate components, one

of which contains a person’s own ability, and the other of which reflects her sibling’s ability.

It is now possible to prove the following counterpart to proposition 1 for the current model in

which employer learning has a social component.11 The first part of the proposition is an immediate

consequence of the symmetric treatment of the two siblings. In the second part, an analogous statement

holds if t2 > t1 instead of t1 > t2.

Proposition 2 Suppose that learning is social. Let νij denote the regression coefficient on person j’s

test score in the conditional expectation of person i’s log wage given s1, s2 and z1, z2.

1. If t1 = t2, then ν12ν22 = ν21ν11.

2. If t1 > t2, then ν12ν22 < ν21ν11.

On the one hand, the first part of proposition 2 is a variant of the results in Manski (1993) concerning

the difficulties of distinguishing between social and nonsocial effects. If the two siblings have the same

age, then both the individual and the social learning model predict that the ratio of the coefficients on

test scores should be the same for the two siblings. On the other hand, if there are asymmetries in the

ages of the siblings, then the two models generate different predictions regarding the relative values of

this ratio, making it possible to detect social effects in employer learning.

Intuitively, if sibling 1 is older than sibling 2, then employers have more precise information about

sibling 1 than about sibling 2, because sibling 1’s performance has been observed for longer than sibling

11The proof of the proposition is given in the appendix.
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2’s. Thus, when the market forms Bayesian beliefs about the abilities of the two siblings, greater weight

is placed on information about sibling 1 than on information about sibling 2. Given that the labor

market is competitive, this relative weighting is reflected in the wages of the two siblings; so that, the

component of sibling 2’s wage attributable to sibling 1’s ability is larger than the component of sibling

1’s wage attributable to sibling 2’s ability.

This phenomenon manifests itself in the data available to the econometrician as follows. If sibling 1

is older than sibling 2, then sibling 2’s log wage is more strongly influenced by sibling 1’s ability than

vice versa. Moreover, a person’s ability is more closely associated with one’s own than with a sibling’s

test score. Consequently, the ratio of the coefficient on a sibling’s test score to the coefficient on one’s

own test score is typically higher in sibling 2’s log wage than in sibling 1’s log wage.

The validity of this test relies on a symmetry between the skills of siblings. In order to interpret

an asymmetric wage structure as being due to social effects in employer learning, other types of peer

influence between siblings must be limited. However, the model does not formally account for mecha-

nisms such as transfers of human capital, interactions in skill development, and role model effects. As

previously explained, these factors could cause dissimilarities between siblings in the specifications of

labor productivity, schooling, and test scores. Therefore, several exercises are performed with the data

so as to isolate social learning as the most plausible explanation for the findings. In particular, the

relationship among underlying measures of human capital is analyzed, and estimates are computed for

siblings working in the same field or living in different regions. The role of job tenure is also examined.

Finally, suppose that t1 > t2, meaning that sibling 1 is older than sibling 2. If the parameters ν11

and ν22 are strictly positive, then the inequality in proposition 2 can be formulated as ν21/ν22 > ν12/ν11.

That is, the ratio of the coefficient on an older sibling’s test score to that on one’s own test score in the

conditional expectation of a younger sibling’s log wage is greater than the ratio of the coefficient on a

younger sibling’s test score to that on one’s own test score in the conditional expectation of an older

sibling’s log wage. In other words, the scaled sibling effect on a younger sibling’s log wage is larger than

the scaled sibling effect on an older sibling’s log wage. This is a deviation from the principle of equal

scaled sibling effects. Mnemonically speaking, ESSE is violated because the SSE on a younger sibling

is bigger than the SSE on an older sibling.

3 Empirical Implementation

The following is the basic strategy for estimating and testing the individual and social learning models.12

First, the log wages of all older siblings across all years are regressed both on their own and their younger

sibling’s test scores, schooling, and background attributes and on a bivariate polynomial in their own

and their younger sibling’s ages. Second, the log wages of all younger siblings across all years are

regressed both on their own and their older sibling’s test scores, schooling, and background attributes

and on a bivariate polynomial in their own and their older sibling’s ages. Third, to evaluate the nonlinear

12See the online appendix for additional technical details regarding this procedure.
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restriction implied by the individual learning model, I calculate the Wald statistic for the null hypothesis

that the coefficient on a younger sibling’s test score in an older sibling’s log wage times the coefficient on

one’s own test score in a younger sibling’s log wage minus the coefficient on an older sibling’s test score

in a younger sibling’s log wage times the coefficient on one’s own test score in an older sibling’s log wage

is equal to zero.13 When computing standard errors and test statistics, the Huber-White estimator of

the variance-covariance matrix is used to allow for arbitrary forms of correlation among the error terms

of observations on the same family.

4 Dataset Construction and Description

The dataset is constructed from the 1979-2008 waves of the National Longitudinal Survey of Youth 1979

(NLSY79), which contains panel data on 12,686 men and women aged 14-22 in 1979. Respondents were

interviewed annually from 1979 to 1994 and biennially thereafter. The NLSY79 is especially well suited

to the purpose of this paper. Because the Armed Services Vocational Aptitude Battery (ASVAB) was

administered to participants in the NLSY79, a growing literature on employer learning uses the resulting

Armed Forces Qualification Test (AFQT) score as an ability measure that is not directly observable to

employers. In addition, a large number of sibling studies analyze data from the NLSY79, which includes

5,863 respondents who have one or more interviewed siblings.

In order to implement the empirical strategy, I assemble a dataset in which each observation repre-

sents a particular sibling pair in a given survey year.14 This dataset will serve as the main estimation

sample for the paper; therefore, the current section describes in detail how this dataset is constructed.15

The data are derived from the 6,111 respondents in the cross-sectional sample and the 5,295 respondents

in the supplemental sample of the NLSY79. I identify every survey year in which a respondent has a

non-missing wage observation on a full-time job, where full-time is defined as 35 or more hours per week.

Each wage is then deflated using the CPI to a base period of 1982-1984, and any real hourly wage less

than $1 or greater than $100 is omitted from the analysis.

I next compile information on each respondent’s education and AFQT score. The AFQT scores

are standardized among all respondents in the NLSY79 with the same year of birth. I exclude all

observations that occur prior to the first survey year in which a respondent has left school for the first

time. At this point, each observation corresponds to a specific person in a given survey year.

To generate a new dataset consisting of sibling pairs instead of individuals, I apply the following

13By the delta method, this test statistic is, in general, asymptotically distributed as chi-squared with one degree of
freedom.

14If there are two siblings p and q, then a sibling pair in which sibling p appears first and sibling q second is regarded
as distinct from a sibling pair in which sibling q appears first and sibling p second. For example, if a family consists of
three siblings, then six different pairs of siblings can be formed.

15The main estimation sample is restricted to observations on sibling pairs in which both members have worked since
the last interview. However, selection into employment may not be entirely exogenous. To address this issue, the dataset
was expanded to include non-working individuals, and the joint work-wage outcomes of respondents were examined. I
continue to find evidence of sibling effects on labor market earnings after performing this extension. These results are
available in the online appendix.
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procedure. For each person in the sample in a given survey year, I search over all the other individuals

in the sample in that year for an observation on the person’s sibling. Whenever a sibling is found,

an observation containing information on the person and her sibling is added to the new dataset in

that survey year. Because the empirical strategy is based primarily on age differences, any pairs of

siblings having the same year and month of birth are eliminated. The resulting dataset contains 54,474

observations on 7,074 sibling pairs, covering 4,726 individuals from 1,993 families. Table 1 presents

descriptive statistics.

5 Empirical Results

This section presents empirical evidence of social interactions among siblings in the labor market.

5.1 Job Search Estimates

Job search is a channel through which employers can acquire information about a person’s siblings.16

The first four columns in Table 2 estimate linear probability models relating birth order and sibship size

to the likelihood of obtaining one’s most recent job with the help of a sibling. When both sibship size

and birth order are jointly included in the regression, the coefficient on sibship size is not significantly

different from zero, whereas the coefficient on birth order is statistically significant. This finding is

essentially unchanged after controlling for a variety of additional demographic variables. The second

four columns present estimates of the impact of birth order and sibship size on the likelihood that an

individual obtained her most recent job with the help of a sibling who was working for the employer

that offered her the job. The pattern of results in the second four columns is largely similar.17

5.2 Sibling AFQT Impacts

This section presents the main estimates of sibling effects. Table 3 displays the impacts of one’s own

and a sibling’s AFQT scores on a person’s log wage. I differentiate between the two employer learning

models based on the predictions in propositions 1 and 2. The SSE on a younger sibling is significantly

greater than the SSE on an older sibling. This finding contradicts the individual learning model in

proposition 1 but is consistent with the social learning model in proposition 2. An older sibling’s ability

seems to have a larger influence on a younger sibling’s log wage than vice versa.

16Detailed summary statistics for the role of different relatives in job search are available in the online appendix. In the
sample here, 4.52 percent of individuals found their most recent employer with the help of a sibling, and 3.68 percent of
individuals report that this sibling also worked for their most recent employer. When tabulated by birth order, the former
percentage ranges from 1.34 for first-born children to 10.35 for seventh- or later-born children, and the latter percentage
ranges from 1.05 for first-born children to 8.17 for seventh- or later-born children.

17A potential issue is that the percentages of individuals obtaining a job through a sibling or also working at the same
firm as a sibling might be too small to produce substantial estimates of sibling effects. To address this point, the online
appendix constructs a simple model of employee referrals that can generate sibling effects even if siblings work at different
firms in equilibrium. In the model, a person refers a sibling to her employer, who then makes a wage offer to the sibling.
The wage offer can act as a signal to other firms of the sibling’s ability even if the sibling does not accept the offer.
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Table 4 compares siblings who were residing in different geographic regions towards the beginning of

their careers.18 If the empirical patterns are due to social effects in employer learning, then the observed

asymmetries should largely be absent when studying younger and older siblings who have worked in

different regional labor markets since the first time they were living on their own.19 The estimates fail

to reject the null hypothesis of ESSE. There is essentially no evidence of differences between the impacts

of the AFQT scores of younger and older siblings who were residing in different regions during the early

stages of their careers.20

Table 5 shows how the estimates vary depending on whether siblings work in the same or different

occupations or industries.21 If labor market interactions are generating the documented sibling effects,

then the findings should strengthen among siblings working in the same occupation or industry, because

such individuals would be more likely to have come into contact with each other’s employer. The upper

panel displays results for siblings working in the same occupation, industry, and occupation or industry.

The results strongly reject the null hypothesis of ESSE. The lower panel displays results for siblings

who have always been working in different occupations, industries, and occupations and industries.22

The null hypothesis cannot be rejected in this case. There is virtually no evidence of an asymmetry

between the impacts of an older and a younger sibling’s AFQT scores.23

Another question concerns changes in the wage structure with tenure at a firm. On the one hand,

employers may know little about the productivity of a new hire, and so they might rely on information

about a sibling when predicting ability and formulating wages. This effect may be especially relevant

for siblings working in the same occupation or industry because firms may be more familiar with the

sibling of a worker in such a situation. On the other hand, employers should be better informed about

the capabilities of a senior employee, in which case information about one’s own performance should

be a stronger determinant of wages than information on a sibling. If siblings are working in the same

occupation or industry, then a sibling’s test score should have a large impact on the wages of new hires

18The regions above are the four Census geographic regions of the United States: Northeast, Midwest, South, and West.
19Another exercise involves estimating the relationship of the log wage to the AFQT score of a sibling with little work

experience. The outcome of this falsification test is reported in the online appendix. The SSE on a younger sibling does
not differ significantly from the SSE on an older sibling.

20The analysis can be extended by studying how the SSE changes when two siblings initially living in the same region
become geographically separated. The online appendix documents the results of this extension. The SSE decreases if
either of two siblings currently living in the same region moves to a different region. This effect is especially pronounced
for individuals that leave for a new job.

21The 2000 Census 3-digit codes for the occupation and industry of each job are used. In order to protect the privacy
of survey respondents, the NLSY79 does not contain precise information on employer identity, and so researchers cannot
distinguish exactly those siblings working for the same employer.

22In order to perform this exercise, siblings should be working in different fields throughout their careers. Otherwise, if
a pair of siblings initially works in the same occupation or industry, then some information on one sibling’s performance
might get incorporated into the other sibling’s wage, and such information might be transmitted to future employers in
a different field if the wage is publicly observable.

23Estimates were also computed for siblings working in the same occupation or industry and living in the same region
as well as for siblings working in different occupations and industries and living in different regions. The null hypothesis
is firmly rejected for the former group but safely retained for the latter group. These results are available in the online
appendix.
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but only a weak relationship with the earnings of senior employees. If siblings are employed in different

occupations and industries, then a sibling’s test score should have a relatively small influence on labor

income irrespective of seniority.

This test is implemented in Table 6, which exhibits the impacts of one’s own and a sibling’s AFQT

scores on the log wages of new hires and senior employees. A new hire is defined as an individual who

has worked at her current employer for less than three months, and a worker with over three years of

tenure on the job is labeled as a senior employee.24 For siblings in different occupations and industries,

the coefficient on a sibling’s AFQT score is not significantly different from zero, whereas the coefficient

on one’s own AFQT score is highly significant. The estimates are consistent with the null hypothesis

that the SSE is the same for new hires and senior employees. For siblings in the same occupation or

industry, the estimated coefficient on a sibling’s AFQT score is greater than the estimated coefficient

on one’s own AFQT score among new hires, whereas the opposite holds among senior employees. The

null hypothesis is rejected in this sample. Hence, sibling effects seem to fade out with job tenure.

In most specifications, the coefficient on a younger sibling’s AFQT score in an older sibling’s log wage

is negative, although not statistically significant. There are also some cases in which an older sibling’s

AFQT score has an insignificantly negative coefficient in a younger sibling’s log wage. This finding

should not be interpreted as a negative causal effect of a sibling’s performance on a person’s earnings.

Instead, the sibling model in section 2.1 provides an explanation. A negative coefficient on a sibling’s

test score is attributable to a negative partial correlation between one’s own ability and a sibling’s test

score given one’s own schooling, a sibling’s schooling, and one’s own test score.25 As described in the

appendix, this situation arises from a strong correlation between siblings in the component of test scores

that is unrelated to labor productivity. It occurs when the parameter ρω is relatively large, in which

case the error terms ω1 and ω2 in equation (5) are highly correlated between siblings.

Although social effects in employer learning are a plausible explanation for the observed asymmetries,

other mechanisms could give rise to similar patterns. One possibility is that the results do reflect labor

market interactions between siblings but that an informational mechanism such as employer learning

is not involved. In particular, Becker (1971) studies taste-based discrimination, and Lam and Schoeni

(1993) analyze skills-based nepotism. Specifically, employers may exhibit favoritism towards the younger

sibling of a skilled older employee, and an older individual may use her ability and power within a firm to

assist a younger sibling. However, such behavior does not seem to provide a satisfactory explanation. If

nepotistic returns to a sibling’s human capital were driving the results, then an older sibling’s schooling

should have a higher coefficient than a younger sibling’s schooling in a log wage equation. However, I

24Small changes in the thresholds for being categorized as a new hire or a senior employee do not affect the basic pattern
of results.

25See the appendix for more details. A negative partial effect of a sibling’s test score on a person’s log wage implies
that the parameter πf is negative in equation (26). That is, the coefficient on a sibling’s test score is negative in the
hypothetical regression of a person’s ability on one’s own and a sibling’s test scores and schooling. This result is compatible
with the theoretical prediction from lemma 2 that πf is smaller than πo in absolute value. That is, the magnitude of the
coefficient on a sibling’s test score is less than the magnitude of the coefficient on one’s own test score in the aforementioned
regression.
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obtain the opposite result in Table 3. Moreover, the fadeout with tenure of the coefficient on a sibling’s

AFQT score in Table 6 suggests a learning process.

In addition, several mechanisms other than labor market interactions could produce the observed

asymmetries. First, there might be transfers of skills between siblings, especially while siblings live

together in the parental home. Second, even if siblings do not directly transfer skills to each other, the

process of skill formation in childhood might give rise to asymmetries in the relationship of one’s skills

to the abilities of a younger and an older sibling. Third, an older sibling might serve as a role model

for a younger sibling.

Nonetheless, these three factors are unrelated to wage setting in particular and would likely affect

other skills measures. Specifically, if interactions among siblings prior to labor market entry were driving

the results, then test scores or schooling should exhibit the same asymmetric relationships as the log

wage.26 The first two columns of Table 7 display the impact of an individual’s AFQT score on the

schooling of a younger or an older sibling. Although there is some weak evidence of differences in the

impact of a younger compared to an older sibling’s AFQT score, the observed asymmetries have the

opposite direction from those in Table 3.27

A potential issue with the estimates in the first two columns of Table 7 is that AFQT scores might

be an endogenous function of schooling. To address this issue, I use height instead of the AFQT score as

a measure of cognitive ability.28 As noted in Case and Paxson (2008), adult height is partly determined

by nutritional conditions in early childhood and is positively associated with intellectual ability. The use

of heights instead of AFQT scores makes it less likely that education would alter the ability measures

used as regressors. The last four columns of Table 7 display the impact of an individual’s height on

the schooling and AFQT score of a younger or an older sibling. In all cases, the coefficient on an older

sibling’s height is insignificantly smaller than the coefficient on a younger sibling’s height.

6 Implications for Antidiscrimination Policy

The empirical results suggest that social effects in employer learning influence wage setting. Such

interactions can alter the equity and efficiency properties of labor markets. Moreover, there is potentially

a role for government intervention that reduces economic inefficiencies or social inequalities. In order

to address this issue formally, the online appendix presents a simple framework that demonstrates how

social learning affects employment outcomes and how public policy changes the market equilibrium.

26The online appendix reports additional tests of the hypothesized symmetric relationship among the human capital
measures of siblings. To estimate equation (23) in the appendix, a person’s AFQT score is regressed on one’s own and a
sibling’s schooling. Furthermore, equation (26) in the appendix suggests regressing a person’s height on one’s own and a
sibling’s AFQT scores and schooling, where height is treated as an indicator of ability. Separate sets of coefficients are
computed for younger and older siblings. There are no significant differences between the impacts of younger and older
siblings on AFQT scores and heights.

27As a further test for sibling effects on non-wage outcomes, the online appendix reports the impacts of one’s own and
a sibling’s AFQT scores on the probabilities of marriage, children, disability, and incarceration. The estimated impacts
of an older and a younger sibling’s AFQT scores are small in size and similar to each other.

28Information on height is available in the NLSY79 for the following survey years: 1982, 1983, 1985, 2006, 2008.
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Here the lessons of the analysis are summarized, and implications for antidiscrimination programs are

discussed.

An important question about nepotism is its lawfulness. Donohue (2007) outlines the main features

of antidiscrimination regulation in the United States. Title VII of the Civil Rights Act of 1964 prohibits

discrimination in employment on the basis of race, gender, and other protected classes. Special treatment

of relatives in hiring decisions is generally regarded as legitimate, but nepotistic employment practices

can be illegal if they significantly disadvantage members of a particular race or gender. This principle

is known as the disparate impact doctrine, which outlaws policies that seem neutral on their face but

have a discriminatory effect in practice. Nevertheless, the courts may permit employment processes

that generate a disparate impact but are justifiable as a business necessity.29

Consider first the case where employers follow antidiscrimination law and so do not statistically

discriminate based on race. Assume, however, that information about the performance of an older

relative is used when forecasting the productivity and formulating the wage of a younger relative. This

practice can depress employment among youth from a disadvantaged group. In particular, an older

relative from a group with lower mean productivity would perform poorly on average, generating adverse

beliefs about the ability of a younger relative. Consequently, the younger relative would have worse

earnings opportunities, increasing the likelihood of withdrawal from the labor force. This implication is

consistent with a number of empirical studies finding that job search through personal contacts is less

effective for minorities. Holzer (1987) finds that personal contacts produce fewer employment offers for

blacks, and Korenman and Turner (1996) note that the wage gains from employee referrals are smaller

for blacks.30

Thus, nepotism may aggravate group inequalities in labor market outcomes. A government policy for

equalizing employment might be a subsidy to employers for hiring younger relatives from a disadvantaged

group. Examples of employer subsides in the United States include the New Jobs Tax Credit, which was

implemented between 1977 and 1978, and the Targeted Jobs Tax Credit, which lasted from 1979 to 1985

and was reinstated in 1996 in the form of the Work Opportunity Tax Credit.31 The former program was

not limited to a specific demographic group, whereas eligibility for the latter was restricted to stigmatized

populations like welfare recipients, convicted felons, and the disabled. Alternatively, policymakers might

increase employment by providing an in-work benefit to members of a disadvantaged group. The main

example of such a policy in the United States is the Earned Income Tax Credit, which supplements the

wages of the working poor with children.32

Suppose now that firms statistically discriminate based on group affiliation such as race, ethnicity,

29For example, the Supreme Court invalidated the use of a general intelligence test for job assignment in the 1971 case
of Griggs v. Duke Power, but the legality of a civil service exam for promotion decisions was upheld by the Supreme
Court in the 2013 case of Ricci v. DeStefano.

30Similarly, Battu et al. (2011) observe that social networks do not improve labor market outcomes among nonwhite
immigrants to the United Kingdom.

31See Perloff and Wachter (1979) and Bishop and Montgomery (1993) for economic assessments of the New Jobs Tax
Credit and the Targeted Jobs Tax Credit, respectively.

32See Eissa and Liebman (1996) for an evaluation of the labor supply response to the Earned Income Tax Credit.
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or religion. In addition, employers observe the performance of an older relative that works and can

incorporate this information when forming beliefs about a younger relative. Under these assumptions,

labor force participation by an older relative might be suboptimally low in a market equilibrium. By

working for a firm, an older relative enables market participants to learn her productivity, and this

knowledge can be useful in efficiently assigning a younger relative to an economic activity. For example,

if an older relative from a disadvantaged group works and performs well, then employers may be more

willing to hire a younger relative despite negative group stereotypes. Market failure may occur because

an older relative ignores this positive externality of employment.

Hence, the competitive equilibrium with social learning might exhibit inadequate experimentation.

This problem frequently arises in models of observational learning and strategic experimentation, where

information generated by the actions of each agent serves as a public good that improves the quality of

decisions undertaken by other agents. Specifically, Bolton and Harris (1999) demonstrate how a free-

riding effect in a two-armed bandit problem leads to an underprovision of information, and Smith and

Sørensen (2000) study incorrect herding and confounding outcomes in a model of sequential learning.

In the current setting, efficiency might be restored through government interventions that increase

employment among older relatives. Possible policies include hiring subsidies to firms as well as in-work

benefits to employees.

7 Conclusion

This paper has implemented a test for statistical nepotism in the labor market. The empirical find-

ings provided strong support for social effects among siblings in employer learning. This phenomenon

may have important welfare implications. A possible area for extending the investigation would be

to examine the schooling decisions or occupational choices of siblings. An analysis of schooling de-

cisions might be interesting because sibling effects in employer learning could potentially contribute

to the negative correlation between birth order and educational attainment documented by Behrman

and Taubman (1986) and Black et al. (2005). Specifically, if an older sibling’s performance provides

information to employers about a younger sibling’s ability, then the signaling returns to schooling may

be lower for younger than for older siblings, leading younger siblings to invest less in education than

their older counterparts. Alternatively, an analysis of occupational choices among siblings could help

determine whether social learning can increase the efficiency of labor markets by improving the quality

of information available about a worker’s suitability for a given type of job.

The test for social learning is predicated on the assumption of symmetry between siblings in human

capital formation. Although social effects in employer learning provide the most compelling explana-

tion for the empirical findings, a variety of phenomena can generate differences between siblings in

the structure of skills. For example, siblings may serve as role models or share human capital with

each other. The characteristics of siblings might also influence resource allocation within families and

parental investments in children. Such effects could in principle be asymmetric. A direction for future
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research would be to extend the theoretical framework and econometric methodology in this paper to

accommodate such mechanisms. One can thereby distinguish between different forms of peer and fam-

ily interactions that affect labor market outcomes. Moreover, the importance of each potential channel

might be quantitatively assessed.
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Table 1: Summary Statistics for Sibling Pairs in Labor Market

Both Siblings Older Sibling Younger Sibling
Labor Market

Real Hourly Wage
Mean (S.D.) 7.838 (5.336) 8.101 (5.565) 7.574 (5.082)
Inter-Sib. Corr. 0.3556 —— ——

Human Capital
Years of Schooling

Mean (S.D.) 12.89 (2.40) 12.95 (2.41) 12.83 (2.38)
Inter-Sib. Corr. 0.5174 —— ——

Standardized AFQT
Mean (S.D.) -0.0566 (1.0019) -0.0909 (1.0150) -0.0224 (0.9875)
Inter-Sib. Corr. 0.6586 —— ——

Basic Demographics
Pct. Nonwhite 49.93 —— ——
Pct. Female 42.43 42.30 42.55
Age

Mean (S.D.) 31.07 (7.34) 32.34 (7.25) 29.81 (7.21)
Family Background

Birth Order
Mean (S.D.) 3.526 (2.231) 2.849 (2.075) 4.203 (2.175)

Sibship Size
Mean (S.D.) 5.732 (2.657) —— ——

Sample Size
No. Families 1993 —— ——
No. Individuals 4726 2695 2707
No. Sibling Pairs 7074 —— ——
No. Observations 54474 —— ——

Note: The hourly wage is deflated using the CPI with 1982-1984 as the base period. The reference group for standardizing the AFQT
score is all respondents in the NLSY79 having the same year of birth. Observations with missing data on a given variable are omitted
when calculating the summary statistics for that variable.

Table 2: Relationship of Sibship Size and Birth Order to Probability of Sibling Helping Respondent Obtain Most
Recent Job

Receive Help from Sibling Also Have Same Employer

Sibship Size 0.0087 0.0019 0.0014 0.0080 0.0032 0.0030
(0.0014) —— (0.0019) (0.0020) (0.0013) —— (0.0017) (0.0019)

Birth Order 0.0133 0.0117 0.0101 0.0109 0.0081 0.0071
—— (0.0017) (0.0024) (0.0028) —— (0.0016) (0.0022) (0.0026)

Demographic Controls No No No Yes No No No Yes

Families 4303 4303 4303 4303 4303 4303 4303 4303
Individuals 4973 4973 4973 4973 4973 4973 4973 4973

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for gender and
birth year fixed effects. Demographic controls include indicators for race, urban location, region of residence, parental education, parental
age, and dummies for missing data on a given variable. The estimates are based on responses to the questions on job search methods in
the 1982 round of the NLSY79. The sample consists of respondents who have left school for the first time and are working at a full-time
job when surveyed in 1982. Individuals are excluded if they are an only child or have missing data on birth order or sibship size. During
the 1982 wave of the survey, not all individuals were participating in the labor market, and so many families contain only one individual
with answers to the questions about job search.
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Table 3: Impact of Own AFQT and AFQT of Younger or Older Sibling in Labor Market on Log Wage

Older Sibling’s AFQT × Younger Sibling 0.0304 0.0243 0.0270 0.0222
(0.0107) (0.0099) (0.0118) (0.0111)

Younger Sibling’s AFQT × Older Sibling 0.0059 -0.0022 -0.0142 -0.0184
(0.0102) (0.0100) (0.0111) (0.0110)

Own AFQT × Younger Sibling 0.0997 0.0939 0.1001 0.0942
(0.0115) (0.0114) (0.0115) (0.0114)

Own AFQT × Older Sibling 0.1600 0.1495 0.1650 0.1550
(0.0129) (0.0124) (0.0128) (0.0123)

Own Schooling × Younger Sibling 0.0524 0.0498 0.0516 0.0493
(0.0042) (0.0042) (0.0044) (0.0043)

Own Schooling × Older Sibling 0.0468 0.0435 0.0410 0.0390
(0.0042) (0.0044) (0.0043) (0.0046)

Older Sibling’s Schooling × Younger Sibling 0.0025 0.0017
—— —— (0.0039) (0.0039)

Younger Sibling’s Schooling × Older Sibling 0.0161 0.0143
—— —— (0.0042) (0.0041)

Family Background Controls No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.0471 0.0359 0.0083 0.0092

Families / Individuals / Sibling Pairs / Observations 1993 / 4726 / 7074 /54474

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable, a third-order bivariate polynomial in the ages of the two siblings, and a quartic time trend. Family background controls
are indicator variables for sibship size, parental education, parental age, and each of the two siblings’ birth orders. The coefficients on all
control variables, except for the time trend, are estimated separately based on whether the older or the younger sibling’s log wage is used
as the dependent variable for a given pair. The main estimation sample described in the text is used. The p-values from the delta method
are reported for the Wald test of the null hypothesis that the coefficient on (Younger Sibling’s AFQT × Older Sibling) times the coefficient
on (Own AFQT × Younger Sibling) is equal to the coefficient on (Older Sibling’s AFQT × Younger Sibling) times the coefficient on (Own
AFQT × Older Sibling).

Table 4: Impact on Log Wage of Own AFQT and AFQT of Younger or Older Sibling Residing in Different Geographic
Region When First Living on Own

Older Sibling’s AFQT × Younger Sibling -0.0141 -0.0254 -0.0371 -0.0503
(0.0379) (0.0301) (0.0418) (0.0335)

Younger Sibling’s AFQT × Older Sibling -0.0120 -0.0296 -0.0280 -0.0373
(0.0280) (0.0287) (0.0296) (0.0310)

Own AFQT × Younger Sibling 0.1346 0.1237 0.1379 0.1298
(0.0391) (0.0349) (0.0388) (0.0347)

Own AFQT × Older Sibling 0.1468 0.1378 0.1479 0.1384
(0.0380) (0.0339) (0.0381) (0.0338)

Own Schooling Yes Yes Yes Yes
Sibling’s Schooling No No Yes Yes
Family Background Controls No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.9390 0.9747 0.7785 0.6727

Families / Individuals / Sibling Pairs / Observations 271 / 641 / 746 / 5698

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable, a third-order bivariate polynomial in the ages of the two siblings, and a quartic time trend. Family background controls
are indicator variables for sibship size, parental education, parental age, and each of the two siblings’ birth orders. The coefficients on all
control variables, except for the time trend, are estimated separately based on whether the older or the younger sibling’s log wage is used
as the dependent variable for a given pair. The dataset is constructed from the main estimation sample by identifying each individual’s
region of residence in the first survey year in which she is living in her own dwelling unit. The estimates are based on those pairs of siblings
who each reside in a different region of the United States when first living on one’s own. The p-values from the delta method are reported
for the Wald test of the null hypothesis that the coefficient on (Younger Sibling’s AFQT × Older Sibling) times the coefficient on (Own
AFQT × Younger Sibling) is equal to the coefficient on (Older Sibling’s AFQT × Younger Sibling) times the coefficient on (Own AFQT
× Older Sibling).
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Table 5: Impact on Log Wage of Own AFQT and AFQT of Younger or Older Sibling Working in Same or Different
Occupation or Industry

Currently Same Currently Same
Occupation Industry Either or Both

Older Sibling’s AFQT × Younger Sibling 0.0919 0.0862 0.0972 0.0901 0.0992 0.0915
(0.0356) (0.0335) (0.0257) (0.0247) (0.0248) (0.0230)

Younger Sibling’s AFQT × Older Sibling -0.0242 -0.0184 -0.0304 -0.0094 -0.0250 -0.0124
(0.0332) (0.0317) (0.0269) (0.0258) (0.0247) (0.0233)

Own AFQT × Younger Sibling 0.0548 0.0461 0.0640 0.0740 0.0529 0.0539
(0.0334) (0.0345) (0.0281) (0.0270) (0.0253) (0.0254)

Own AFQT × Older Sibling 0.2127 0.1953 0.1514 0.1227 0.1731 0.1491
(0.0271) (0.0275) (0.0279) (0.0270) (0.0234) (0.0234)

Own and Sibling’s Schooling Yes Yes Yes Yes Yes Yes
Family Background Controls No Yes No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.0230 0.0265 0.0098 0.0348 0.0029 0.0066

Families 486 486 587 587 746 746
Individuals 1060 1060 1290 1290 1674 1674
Sibling Pairs 1202 1202 1476 1476 1968 1968
Observations 2424 2424 4040 4040 5364 5364

Always Different Always Different
Occupation Industry Both

Older Sibling’s AFQT × Younger Sibling -0.0075 -0.0122 0.0130 0.0094 -0.0044 -0.0071
(0.0160) (0.0156) (0.0174) (0.0162) (0.0204) (0.0199)

Younger Sibling’s AFQT × Older Sibling -0.0114 -0.0157 -0.0085 -0.0188 -0.0004 -0.0055
(0.0164) (0.0166) (0.0174) (0.0172) (0.0217) (0.0214)

Own AFQT × Younger Sibling 0.1153 0.1107 0.0951 0.0860 0.0952 0.0879
(0.0177) (0.0174) (0.0162) (0.0163) (0.0223) (0.0226)

Own AFQT × Older Sibling 0.1271 0.1198 0.1652 0.1549 0.1364 0.1305
(0.0185) (0.0182) (0.0215) (0.0206) (0.0249) (0.0239)

Own and Sibling’s Schooling Yes Yes Yes Yes Yes Yes
Family Background Controls No Yes No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.8893 0.9105 0.3781 0.2929 0.8729 0.8881

Families 947 947 902 902 609 609
Individuals 2220 2220 2117 2117 1390 1390
Sibling Pairs 2692 2692 2576 2576 1606 1606
Observations 17512 17512 17732 17732 10306 10306

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable, a third-order bivariate polynomial in the ages of the two siblings, and a quartic time trend. Family background controls
are indicator variables for sibship size, parental education, parental age, and each of the two siblings’ birth orders. The coefficients on
all control variables, except for the time trend, are estimated separately based on whether the older or the younger sibling’s log wage is
used as the dependent variable for a given pair. A pair of siblings is labeled as currently having the same occupation (industry) if they
both belong to the same occupation (industry) in the relevant survey year. Two siblings are said to always be in different occupations
(industries) if the set of occupations (industries) reported by one sibling is disjoint from the set of occupations (industries) reported by the
other sibling over the entire course of the survey. The 2000 Census 3-digit occupation and industry codes are used to classify observations
on sibling pairs. Between the 1979 and 2000 rounds of the NLSY79, the occupation and industry of each job were originally recorded as
1970 Census 3-digit codes. These fields are converted to 2000 Census 3-digit codes based on the crosswalks available from the US Census
Bureau. The p-values from the delta method are reported for the Wald test of the null hypothesis that the coefficient on (Younger Sibling’s
AFQT × Older Sibling) times the coefficient on (Own AFQT × Younger Sibling) is equal to the coefficient on (Older Sibling’s AFQT ×
Younger Sibling) times the coefficient on (Own AFQT × Older Sibling).
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Table 6: Impact on Log Wage for New Hires and Senior Employees of Own AFQT and AFQT of Sibling Working in
Same or Different Occupation or Industry

Same Occupation or Industry Different Occupation and Industry

Sibling’s AFQT × New Hire 0.1082 (0.0307) 0.1312 (0.0333) 0.0112 (0.0135) 0.0111 (0.0135)
Sibling’s AFQT × Senior Employee 0.0324 (0.0234) 0.0254 (0.0231) 0.0099 (0.0106) 0.0020 (0.0102)
Own AFQT × New Hire 0.0537 (0.0366) 0.0535 (0.0390) 0.0962 (0.0146) 0.0929 (0.0141)
Own AFQT × Senior Employee 0.1037 (0.0200) 0.0851 (0.0216) 0.1309 (0.0111) 0.1225 (0.0112)

Own and Sibling’s Schooling Yes Yes Yes Yes
Family Background Controls No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.0363 0.0329 0.7877 0.5110

Families 619 619 1826 1826
Individuals 1107 1107 3904 3904
Sibling Pairs 1276 1276 5657 5657
Observations 3044 3044 23998 23998

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable, a third-order bivariate polynomial in the ages of the two siblings, and a quartic time trend. Family background controls
are indicator variables for sibship size, parental education, parental age, and each of the two siblings’ birth orders. The coefficients on all
control variables, except for the time trend, are estimated separately based on whether the dependent variable is the log wage observation
for a new hire or a senior employee. The dataset used here derives from the main estimation sample. An individual with under three
months of tenure at her current employer is labeled as a new hire. A person with over three years of tenure on the job is classified as a
senior employee. The 2000 Census 3-digit occupation and industry codes are used to categorize observations on sibling pairs. Between
the 1979 and 2000 rounds of the NLSY79, the occupation and industry of each job were originally recorded as 1970 Census 3-digit codes.
These fields are converted to 2000 Census 3-digit codes based on the crosswalks available from the US Census Bureau. The p-values from
the delta method are reported for the Wald test of the null hypothesis that the coefficient on (Sibling’s AFQT × Senior Employee) times
the coefficient on (Own AFQT × New Hire) is equal to the coefficient on (Sibling’s AFQT × New Hire) times the coefficient on (Own
AFQT × Senior Employee).

Table 7: Relationship of Own AFQT and Schooling to AFQT and Height of Younger or Older Sibling

Schooling AFQT

Older Sibling’s AFQT × Younger Sibling 0.3117 0.1334
(0.0416) (0.0434) —— —— —— ——

Younger Sibling’s AFQT × Older Sibling 0.3859 0.2132
(0.0385) (0.0410) —— —— —— ——

Own AFQT 1.3927 1.1932
(0.0395) (0.0420) —— —— —— ——

Older Sibling’s Height × Younger Sibling 0.0424 0.0094 0.0150 0.0030
—— —— (0.0140) (0.0129) (0.0050) (0.0044)

Younger Sibling’s Height × Older Sibling 0.0549 0.0214 0.0203 0.0084
—— —— (0.0139) (0.0123) (0.0053) (0.0046)

Own Height 0.0772 0.0386 0.0281 0.0142
—— —— (0.0129) (0.0119) (0.0048) (0.0043)

Family Background Controls No Yes No Yes No Yes

Test for equality between sibling
AFQT or height coefficients (p-value) 0.0726 0.0548 0.3594 0.3273 0.2851 0.2196

Families / Individuals / Sibling Pairs 1993 / 4726 / 7074

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable and fixed effects for each of the two siblings’ years of birth. Family background controls are indicator variables for sibship
size, parental education, parental age, and each of the two siblings’ birth orders. All specifications include an indicator for whether the
respondent is the older or the younger sibling in a given pair. The dataset contains the first observation on every sibling pair in the main
estimation sample. However, the second four columns exclude sibling pairs in which either member is missing information on height. The
first two columns report p-values for the Wald test of the restriction that the coefficient on (Older Sibling’s AFQT × Younger Sibling) is
equal to the coefficient on (Younger Sibling’s AFQT × Older Sibling). The second four columns report p-values for the Wald test of the
restriction that the coefficient on (Older Sibling’s Height × Younger Sibling) is equal to the coefficient on (Younger Sibling’s Height ×
Older Sibling).
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Appendix

This appendix contains the proof of proposition 2. The following notation is used. Let X̂ and Ŷ be
random variables. The expectation and variance of X̂ are respectively denoted by E(X̂) and V(X̂). The
conditional expectation and conditional variance of X̂ given Ŷ are respectively denoted by E(X̂|Ŷ ) and
V(X̂|Ŷ ). The notation for the covariance between X̂ and Ŷ is C(X̂, Ŷ ). If X̂ and Ŷ are random vectors,
then V(X̂) represents the variance-covariance matrix of X̂, and C(X̂, Ŷ ) represents the cross-covariance
matrix between X̂ and Ŷ .

I Lemmata for Proof of Proposition

In order to derive the empirical implications of the social learning model, it is first necessary to analyze
the coefficient obtained from a hypothetical regression of the siblings’ abilities a1, a2 on their test scores
z1, z2 after controlling for their schooling s1, s2. Let σ2

υ be the variance of the variable υi and ρυ be the
correlation between υ1 and υ2. The analysis proceeds in two steps.

The first step is to calculate the component of each sibling’s test score that is orthogonal to her own
and her sibling’s schooling. The result below characterizes the problem of predicting the test scores z1,
z2 from a regression on the schooling levels s1, s2.

Lemma 1 The regression coefficient of (z1, z2)
′ on (s1, s2)

′ is given by:
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Proof The conditional expectation of (z1, z2)
′ given (s1, s2)
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where the regression coefficient is given by:
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Inverting the variance matrix and rearranging terms leads to the formula in equation (23).

The first term on the right-hand side of equation (23) accounts for the causal effect of schooling
on the test score. The second term, which arises from the relationship of schooling with ability, is
a generalization of the univariate measurement error formula, where schooling is treated as ability
measured with error.33

This formula provides a method for answering one of the central questions raised by Griliches (1979)
regarding the role of families in human capital formation.34 In particular, one can directly test whether
the sibling correlation ρa in ability is greater or less than the sibling correlation ρs in schooling, especially

33Consider the special case where ρa = ρs and γ = 1. Then, in the second term, the coefficient on one’s own schooling
is the parameter θa multiplied by the reliability ratio σ2

a/σ
2
s . The coefficient on a sibling’s schooling is zero in this case.

34An analogous formula applies if the log wage instead of the test score is used as the dependent variable, provided that
the log wage can be modeled like the test score as a linear combination of ability, schooling, and an error term.
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if the schooling variable itself is not measured with error. Equation (23) shows that if (z1, z2)
′ is regressed

on (s1, s2)
′, then the coefficient on a sibling’s schooling is positive if ρa > ρs and negative if ρa < ρs.

This question is relevant when interpreting family fixed-effects estimates of the returns to schooling.
Depending on whether siblings have a higher or lower correlation in ability than in schooling, the within-
family estimator of the schooling coefficient may either mitigate or exacerbate ability bias relative to
the ordinary least squares estimate.

The second step is to characterize the relationship between siblings’ abilities and test scores after
partialling out the influence of schooling. Denoting s = (s1, s2)

′ and z = (z1, z2)
′, consider the regression

coefficient of the siblings’ abilities on their schooling and test scores:
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V
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)
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In equation (26), the coefficients πo and πf on one’s own and a sibling’s test scores do not differ
between the two siblings, and likewise for the coefficients ψo and ψf on one’s own and a sibling’s
schooling. This result obtains because the skills of younger and older siblings are modeled symmetrically.
The specifications of schooling and test scores are analogous for both siblings in equations (3) and (5).
The impact γ of ability on schooling does not vary between siblings, nor do the impacts θs and θa
of schooling and ability on test scores. Moreover, the abilities a1 and a2 of the two siblings have an
identical variance, although the means can differ. The same holds for the error terms ε1 and ε2 in
the schooling equation, which are independent of a1 and a2, and for the error terms ω1 and ω2 in the
test score equation, which are independent of a1 and a2 as well as ε1 and ε2. The similar treatment of
siblings is key to proposition 1, which shows that the ratio of the coefficients on test scores does not
vary between siblings under individual learning. Given the underlying symmetry of the human capital
measures, the asymmetries in proposition 2 can be attributed to social learning.

The result below enumerates the basic properties of the regression parameters πo and πf , which
represent the relationship of one’s ability to one’s own test score and a sibling’s test score.

Lemma 2 The regression parameters πo and πf satisfy πo > πf , πo > 0, and π2
o > π2

f .

Proof Expressing the regression coefficient in equation (23) as:
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the component of (z1, z2)
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ẑ1
ẑ2
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where equations (5) and (24) are used to substitute for (z1, z2)
′ and E[(z1, z2)

′|(s1, s2)′], respectively.
Note that the coefficient on (z1, z2)

′ in a regression on (s1, s2, z1, z2)
′ is the same as the coefficient on

(ẑ1, ẑ2)
′ in a regression on (s1, s2, ẑ1, ẑ2)

′. Therefore, consider the regression of (a1, a2)
′ on (s1, s2, ẑ1, ẑ2)

′.
Because (ẑ1, ẑ2)
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where the inverse variance matrix can be expressed as:
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I first show that C(a1, ẑ1) = C(a2, ẑ2) > 0. Using equations (28) and (23), this covariance is given
by:
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From equation (31), the statement C(a1, ẑ1) = C(a2, ẑ2) > 0 is equivalent to:
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Note that ko = 0 when σ2
ε = 0. The derivative of ko with respect to σ2
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It follows that ko > 0 if σ2
ε > 0 and so C(a1, ẑ1) = C(a2, ẑ2) > 0 in equation (31).

I next show that C(a1, ẑ2) = C(a2, ẑ1) > 0. Using equations (28) and (23), this covariance is given
by:
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From equation (35), the statement C(a1, ẑ2) = C(a2, ẑ1) > 0 is equivalent to:
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Note that kf = 0 when σ2
ε = 0. The derivative of kf with respect to σ2

ε is:
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It follows that kf > 0 if σ2
ε > 0 and so C(a1, ẑ2) = C(a2, ẑ1) > 0 in equation (35).

I now show that C(a1, ẑ1) > C(a1, ẑ2). From equations (31) and (35), the statement C(a1, ẑ1) >
C(a1, ẑ2) is equivalent to:

1− γ2σ2
a(1− 2ρaρs + ρ2a)

σ2
s(1− ρ2s)

> ρa −
γ2σ2

a(2ρa − ρ2aρs − ρs)
σ2
s(1− ρ2s)

, (39)
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which is satisfied whenever:

w = σ2
s(1− ρs)− γ2σ2

a(1− ρa) = (γ2σ2
a + σ2

ε )

(
1− γ2ρaσ

2
a + ρεσ

2
ε

γ2σ2
a + σ2

ε

)
− γ2σ2

a(1− ρa) > 0. (40)

Note that w = 0 if σ2
ε = 0. Differentiating w with respect to σ2

ε yields:

∂w

∂σ2
ε

= 1− ρε > 0. (41)

Hence, w > 0 if σ2
ε > 0 and so C(a1, ẑ1) > C(a1, ẑ2).

It is now straightforward to prove the three claims in the lemma. Given the form of the inverse
variance matrix in equation (30), it follows from C(a1, ẑ1) > C(a1, ẑ2) that πo > πf , proving the first
claim. From equations (29) and (30), the regression parameters πo and πf take the form:

πo = κo − ρẑκf and πf = κf − ρẑκo, (42)

where κo = τC(a1, ẑ1) > 0, κf = τC(a1, ẑ2) > 0, and τ > 0. Because it has been shown above that
C(a1, ẑ1) > C(a1, ẑ2) > 0, one has κo > κf > 0. These inequalities imply that πo > 0 in equation (42),
proving the second claim. Finally, because κ2o > κ2f from the preceding inequalities, one has:

κ2o+ρ2ẑκ
2
f > ρ2ẑκ

2
o+κ2f ⇔ κ2o−2ρẑκoκf +ρ2ẑκ

2
f > ρ2ẑκ

2
o−2ρẑκoκf +κ2f ⇔ (κo−ρẑκf )2 > (κf−ρẑκo)2; (43)

so that, π2
o > π2

f in equation (42), proving the third claim.

The three parts of lemma 2 can be stated as follows. First, one’s own test score remains a stronger
predictor of one’s ability than a sibling’s test score after controlling for one’s own and a sibling’s
schooling. Second, the partial correlation of one’s ability with one’s own test score is positive. Third,
the coefficient on one’s own test score is larger in absolute value than the coefficient on a sibling’s test
score in the regression of one’s ability on one’s own and a sibling’s test scores and schooling. These
simple properties are important in deriving the empirical implications of the employer learning models.

Although lemma 2 demonstrates that one’s own test score is positively related to one’s ability given
the other regressors, there is no analogous result for the coefficient on a sibling’s test score, which can
in general have either a positive or a negative partial correlation with one’s ability. The reason for this
ambiguity is that the test score is affected by factors other than ability that may be correlated between
siblings. In other words, the sign of the coefficient πf on a sibling’s test score is the outcome of two
competing effects: a positive correlation in ability ai leads πf to be positive, but a positive correlation
in testing error ωi leads πf to be negative. This feature of the model is akin to the finding in lemma 1
that a sibling’s schooling can have either a positive or a negative coefficient in the regression of one’s
test score on one’s own and a sibling’s schooling.

II Proof of Proposition

To prove the second part of the proposition, I first calculate the coefficient ζri on r̄e in the conditional
expectation of ai given si, se, and r̄e in equation (18). The component of r̄e orthogonal to si and se is
given by:

r̂e = r̄e − E(r̄e|si, se) = [ae − (δose + δfsi) + η̄e]− [µae − (δoµse + δfµsi)], (44)
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where δo, δf are defined in equation (27), and η̄e is the sample mean of {ηue}teu=1. Note that the
coefficient on r̄e in the conditional expectation given si, se, and r̄e is the same as the coefficient on r̂e in
the conditional expectation given si, se, and r̂e. Because r̂e is uncorrelated with si and se, the coefficient
ζri is equal to:

ζri = C(ai, r̂e)/V(r̂e) = σ2
a[ρa − γ(δoρa + δf )]/(ς

2 + t−1e σ2
η), (45)

where ς2 is defined as:
ς2 = V[ae − (δose + δfsi)]. (46)

Note that the bracketed term in the numerator of equation (45) also appears in equation (35) and was
shown to be positive in the proof of lemma 2. Thus, ζri is positive. Moreover, if t1 > t2, then ζr1 < ζr2.

From equation (21), the coefficients νie, νii in proposition 2 can be expressed as:

νii = (1− ξi)ζriπf + ξiπo and νie = (1− ξi)ζriπo + ξiπf . (47)

Thus, the statement ν12ν22 < ν21ν11 is equivalent to:

[(1− ξ1)ζr1πo + ξ1πf ][(1− ξ2)ζr2πf + ξ2πo] < [(1− ξ2)ζr2πo + ξ2πf ][(1− ξ1)ζr1πf + ξ1πo], (48)

which reduces to:

(1− ξ1)ξ2ζr1π2
o + ξ1(1− ξ2)ζr2π2

f < (1− ξ2)ξ1ζr2π2
o + ξ2(1− ξ1)ζr1π2

f . (49)

If t1 > t2, then ξ1 > ξ2 and ζr1 < ζr2. Thus, equation (49) is satisfied if π2
o > π2

f holds, and lemma 2
shows that π2

o > π2
f .
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