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Abstract

The online appendix to the paper is organized as follows. Appendix A discusses the procedure

for estimating the employer learning models in the main text. Appendix B presents a simple model

of employee referrals. Appendix C derives welfare and policy implications. Additional empirical

analyses referenced in the main text are included at the end of the document. The tables display

results related to job search patterns, joint work-wage outcomes, inexperienced siblings, geographic

mobility, economic distance, human capital measures, and non-wage outcomes.



A Empirical Implementation of Model

This appendix resolves some issues concerning the estimation of the employer learning models in the
main text. A potential obstacle to implementing the tests in the paper is that the regression coefficients
are predicted to change with age in the conditional expectation of one’s log wage given one’s own and a
sibling’s test scores and schooling. The analysis treated the ages of the siblings in each family as being
fixed. In the data, however, siblings from a sample of households are interviewed over multiple years,
and the age structure varies across families and over time. One way to deal with this problem might
simply be to include interactions of schooling and test scores with age when estimating the conditional
expectation function. Nonetheless, this approach is unattractive in the current setting, because the
social learning model implies that the coefficients on test scores are a function not only of one own’s age
but also of a sibling’s age. Hence, the number of interaction terms that would need to be included in
the specification is an order of magnitude greater than that required under individual learning, making
it difficult to obtain precise estimates for the coefficients of interest.

Remarkably, there is a simple procedure that in large part overcomes this estimation problem. First,
I show that the main predictions of both the individual and the social learning model hold in aggregate.
Specifically, if one considers all the pairs of younger and older siblings in a sample of sibships with
different age structures, then the predictions of the two employer learning models for the coefficients
on test scores also apply to the expected values of these coefficients for a randomly selected pair of
siblings. This finding is somewhat surprising because these predictions involve a nonlinear function of
the regression coefficients: the ratio of the coefficient on a sibling’s test score to that on one’s own test
score. Nevertheless, the normality assumptions in this paper impose sufficient structure on the learning
process to make aggregation of this sort possible. Second, I show that the pooled ordinary least squares
estimator of the conditional expectation function will under reasonable conditions generate a consistent
estimate of the expected values of the regression coefficients for a randomly selected pair of siblings,
provided that one controls sufficiently flexibly for the ages of the siblings.

The details of the estimation procedure are as follows. To simplify the exposition, I assume that all
families consist of exactly two siblings and that all sibships enter the labor market in the same year.
Consider a random sample of I ≥ 1 sibships. The families in the sample are indexed from 1 to I, and
the siblings in each family are labeled 1 and 2. Sibling 1 is assumed to be older than sibling 2. There
are D years under observation, which are labeled from 1 to D. Both members of each sibship i are
assumed to be working in all of these years. Let ti,j,d represent the age of sibling j from family i in year
d, and let si,j and zi,j respectively denote the schooling and the test score of sibling j from family i.
The age of each person increases by one in each year. Letting ti,0 = (ti,1,0, ti,2,0) represent the ages of
the two siblings from family i in year zero, the set T of possible realizations of ti,0 is taken to be finite.
Every element of T is assumed to be a pair of distinct nonnegative integers.

Let bi,j be a K×1 vector of background variables for sibling j from family i. Although these variables
were not discussed earlier, there is a simple way to formally introduce them into the framework without
changing the predictions of either learning model. Assuming that bi,j is observable both to employers
and to the econometrician, let the respective means µa,i,j, µε,i,j, µω,i,j of ai,j, εi,j, ωi,j have the form:

(µa,i,j, µε,i,j, µω,i,j)=E [(ai,j, εi,j, ωi,j)|bi,1, bi,2, ti,0]=
(
φa,0 + b′i,jφa, φε,0 + b′i,jφε, φω,0 + b′i,jφω

)
, (A.1)

where φa,0, φε,0, and φω,0 are constants, and φa, φε, and φω are K × 1 coefficient vectors.1

Each sibling pair can be represented by the triple (i, p, q), where i indexes the family from which the

1The other parameters of the model—β, σ2
a, ρa, γ, σ2

ε , ρε, θa, θs, σ
2
ω, ρω, σ2

η—are assumed not to depend on the
realizations of bi,1, bi,2, and ti,0. The term h(ti,j,d) is assumed to be a function only of ti,j,d.
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two siblings are drawn, and p and q are the respective labels of the first and the second siblings in the
pair.2 I define two vectors:

ti,(p,q),d = (ti,p,d, ti,q,d)
′, xi,(p,q) = (zi,p, zi,q, si,p, si,q, b

′
i,p, b

′
i,q)
′, (A.2)

where ti,(p,q),d represents the ages of the two siblings from family i in year d, and xi,(p,q) contains their
labor market characteristics. The conditional expectation of the log wage yi,p,d of sibling p from family
i in year d given xi,(p,q) and ti,(p,q),d can be put in the following general form both under individual and
under social learning:

E
(
yi,p,d|xi,(p,q), ti,(p,q),d

)
= c(ti,(p,q),d) + x′i,(p,q)v(ti,(p,q),d), (A.3)

where v(ti,(p,q),d) is a (2K + 4)× 1 coefficient vector, and c(ti,(p,q),d) is a constant. Note that v(ti,(p,q),d)
and c(ti,(p,q),d) can vary with the age vector ti,(p,q),d of the two siblings from family i in year d.

I next define the two parameters of interest. For each family i, let Gi be a random variable that takes
on the value of each natural number between 1 and D with equal probability 1/D. Each realization of
Gi represents a particular year from the set of observed dates. The random variable Gi is assumed to
be independent of all the other variables in the model. Letting δ(t̃i,0) denote the proportion of families
in which the ages of the two siblings in year zero are t̃i,0 ∈ T , the expected value νH of v(ti,(1,2),Gi

) is
equal to:

νH = E[v(ti,(1,2),Gi
)] = D−1

∑
t̃i,0∈T

δ(t̃i,0)
D∑
d=1

v(t̃i,(1,2),0 + d12), (A.4)

and the expected value νL of v(ti,(2,1),Gi
) is equal to:

νL = E[v(ti,(2,1),Gi
)] = D−1

∑
t̃i,0∈T

δ(t̃i,0)
D∑
d=1

v(t̃i,(2,1),0 + d12), (A.5)

where 12 is a 2× 1 vector of ones. For a randomly sampled family, νH and νL can be interpreted as the
average values of the coefficient vectors v(ti,(1,2),Gi

) and v(ti,(2,1),Gi
) in a random year.3

It is now possible to state the following result. Consider the conditional expectation function in
equation (A.3) as well as the expected values of the coefficient vectors in equations (A.4) and (A.5).
First, if employer learning is individual, then the ratio of the second to the first entry of νH will be
equal to the ratio of the second to the first entry of νL. That is, under individual learning, the ratio
of the average coefficient on a younger sibling’s test score to the average coefficient on one’s own test
score in an older sibling’s log wage will be the same as the ratio of the average coefficient on an older
sibling’s test score to the average coefficient on one’s own test score in a younger sibling’s log wage.
Second, if employer learning is social, then the ratio of the second to the first entry of νH will be less
than the ratio of the second to the first entry of νL, especially assuming that the first entries of νH and
νL are both positive. That is, under social learning, the ratio of the average coefficient on a younger
sibling’s test score to the average coefficient on one’s own test score in an older sibling’s log wage will
typically be lower than the ratio of the average coefficient on an older sibling’s test score to the average
coefficient on one’s own test score in a younger sibling’s log wage.

2Note that each family i contains two sibling pairs: (i, 1, 2) and (i, 2, 1).
3Observe that the first and second elements of the vector νH (resp. νL) represent the average values of the coefficients

on one’s own and a younger (resp. an older) sibling’s test scores in the conditional expectation of an older (resp. a
younger) sibling’s log wage in equation (A.3).
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Proposition A.1 For i ∈ {1, 2}, let νH,i denote the ith element of the vector νH in equation (A.4), and
let νL,i denote the ith element of the vector νL in equation (A.5).

1. If learning is individual, then νH,2νL,1 = νL,2νH,1.

2. If learning is social, then νH,2νL,1 < νL,2νH,1.

Proof I begin by proving the first item of the proposition. The parameters νH,1, νH,2 and νL,1, νL,2 in
the statement of the proposition have the following form under individual learning:

νH,1 = E[χ(ti,(1,2),Gi
)πo], νH,2 = E[χ(ti,(1,2),Gi

)πf ]

νL,1 = E[χ(ti,(2,1),Gi
)πo], νL,2 = E[χ(ti,(2,1),Gi

)πf ]
, (A.6)

where the constants πo and πf are defined in the main appendix. Note that χ(ti,(p,q),d), which varies
with only the first element of ti,(p,q),d, is the same as the parameter χi defined in the main text, where
its dependence on ti was suppressed for ease of notation. Consider the identity:

{E[χ(ti,(1,2),Gi
)]πf}{E[χ(ti,(2,1),Gi

)]πo} = {E[χ(ti,(2,1),Gi
)]πf}{E[χ(ti,(1,2),Gi

)]πo}. (A.7)

Because the constants πo and πf can be moved inside each of the expectation signs, it follows from the
preceding identity that νH,2νL,1 = νL,2νH,1 as desired.

I next prove the second item of the proposition. The parameters νH,1, νH,2 and νL,1, νL,2 in the
statement of the proposition have the following form under social learning:

νH,1 = E{[1− ξ(ti,(1,2),Gi
)]ζr(ti,(1,2),Gi

)πf + ξ(ti,(1,2),Gi
)πo}

νH,2 = E{[1− ξ(ti,(1,2),Gi
)]ζr(ti,(1,2),Gi

)πo + ξ(ti,(1,2),Gi
)πf}

νL,1 = E{[1− ξ(ti,(2,1),Gi
)]ζr(ti,(2,1),Gi

)πf + ξ(ti,(2,1),Gi
)πo}

νL,2 = E{[1− ξ(ti,(2,1),Gi
)]ζr(ti,(2,1),Gi

)πo + ξ(ti,(2,1),Gi
)πf}

, (A.8)

where the constants πo and πf are defined in the main appendix. The term ξ(ti,(p,q),d), which varies
with both the first and second elements of ti,(p,q),d, is the same as the parameter ξi defined in the main
text, where its dependence on ti and te was suppressed for ease of notation. The term ζr(ti,(p,q),d), which
varies with only the second element of ti,(p,q),d, is the same as the parameter ζri in the main text, where
its dependence on te was suppressed for ease of notation.

From the basic properties of the expectation operator, the parameters in equation (A.8) can be
rewritten as:

νH,1 = E{[1− ξ(ti,(1,2),Gi
)]ζr(ti,(1,2),Gi

)}πf + E[ξ(ti,(1,2),Gi
)]πo

νH,2 = E{[1− ξ(ti,(1,2),Gi
)]ζr(ti,(1,2),Gi

)}πo + E[ξ(ti,(1,2),Gi
)]πf

νL,1 = E{[1− ξ(ti,(2,1),Gi
)]ζr(ti,(2,1),Gi

)}πf + E[ξ(ti,(2,1),Gi
)]πo

νL,2 = E{[1− ξ(ti,(2,1),Gi
)]ζr(ti,(2,1),Gi

)}πo + E[ξ(ti,(2,1),Gi
)]πf

. (A.9)

The statement νH,2νL,1 < νL,2νH,1 is equivalent to:(
E{[1− ξ(ti,(1,2),Gi

)]ζr(ti,(1,2),Gi
)}πo + E[ξ(ti,(1,2),Gi

)]πf
)

·
(
E{[1− ξ(ti,(2,1),Gi

)]ζr(ti,(2,1),Gi
)}πf + E[ξ(ti,(2,1),Gi

)]πo
)

<
(
E{[1− ξ(ti,(2,1),Gi

)]ζr(ti,(2,1),Gi
)}πo + E[ξ(ti,(2,1),Gi

)]πf
)

·
(
E{[1− ξ(ti,(1,2),Gi

)]ζr(ti,(1,2),Gi
)}πf + E[ξ(ti,(1,2),Gi

)]πo
). (A.10)
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Expanding both sides of the preceding inequality and canceling out terms appearing on both sides, one
obtains after some rearrangement:

E[ξ(ti,(2,1),Gi
)] · E{[1− ξ(ti,(1,2),Gi

)]ζr(ti,(1,2),Gi
)}π2

o

+ E[ξ(ti,(1,2),Gi
)] · E{[1− ξ(ti,(2,1),Gi

)]ζr(ti,(2,1),Gi
)}π2

f

< E[ξ(ti,(1,2),Gi
)] · E{[1− ξ(ti,(2,1),Gi

)]ζr(ti,(2,1),Gi
)}π2

o

+ E[ξ(ti,(2,1),Gi
)] · E{[1− ξ(ti,(1,2),Gi

)]ζr(ti,(1,2),Gi
)}π2

f

. (A.11)

From the main appendix, the parameters satisfy 1 > ξ1 > ξ2 > 0 and 0 < ζr1 < ζr2 whenever
t1 > t2. Analogously, we have 1 > ξ(ti,(1,2),d) > ξ(ti,(2,1),d) > 0 and 0 < ζr(ti,(1,2),d) < ζr(ti,(2,1),d).
It follows that 1 > E[ξ(ti,(1,2),Gi

)] > E[ξ(ti,(2,1),Gi
)] > 0 and 0 < E{[1 − ξ(ti,(1,2),Gi

)]ζr(ti,(1,2),Gi
)} <

E{[1− ξ(ti,(2,1),Gi
)]ζr(ti,(2,1),Gi

)}. Thus, equation (A.11) is satisfied if π2
o > π2

f holds, and it is shown in
the main appendix that π2

o > π2
f .

Having shown that the predictions of the employer learning models survive aggregation, I discuss
the estimation of the expected values νH and νL of the coefficient vectors v(ti,(1,2),Gi

) and v(ti,(2,1),Gi
).

Fixing any nonnegative integer M , let P represent the set composed of every pair of nonnegative integers
whose sum is no greater than M . Letting #P be the number of elements in the set P , the elements of
P can be labeled from 1 to #P with es = (es1, e

s
2) denoting the sth element of P . Given a 2× 1 vector

t = (t1, t2)
′, let ft denote the #P × 1 vector whose sth entry is equal to the product t

es1
1 t

es2
2 ; so that,

ft consists of one element for every term of a M th-order bivariate polynomial in t. Let hi,(p,q),d be the
(2K + 4 + #P )× 1 vector formed by stacking the vector xi,(p,q) on top of the vector fti,(p,q),d . That is, I
define:

hi,(p,q),d = (x′i,(p,q), f
′
ti,(p,q),d

)′, (A.12)

where xi,(p,q) comprises the test scores, schooling, and background attributes of the two siblings from
family i, and fti,(p,q),d contains the terms of a bivariate polynomial in their ages in year d.

Some further assumptions become relevant when estimating νH and νL. Fix (p, q) = (1, 2) or
(p, q) = (2, 1). First, the conditional expectation of xi,(p,q) given that ti,(p,q),Gi

= t is assumed to be
adequately approximated by a M th-order bivariate polynomial in t. That is, I assume that:

µx,(p,q)(t) =
∑
e∈P

αe(p,q)(t
e1
1 t

e2
2 ), (A.13)

where µx,(p,q)(t) = E(xi,(p,q)|ti,(p,q),Gi
= t) for any 2 × 1 vector t of nonnegative integers such that

ti,(p,q),Gi
= t with positive probability, and αe(p,q) is a (2K + 4) × 1 vector that does not depend on t.

Second, the matrix representing the expected value of hi,(p,q),Gi
h′i,(p,q),Gi

is required to be nonsingular.
That is, I assume that:

rank
[
E(hi,(p,q),Gi

h′i,(p,q),Gi
)] = 2K + 4 + #P. (A.14)

Third, the variance of xi,(p,q) given that ti,(p,q),Gi
= t is restricted to be a matrix of constants that do

not vary with t. That is, letting ri,(p,q),Gi
= xi,(p,q) − µx,(p,q)(ti,(p,q),Gi

), I assume that:

Σx,(p,q)(t) = Σx,(p,q), (A.15)

where Σx,(p,q)(t) = E(ri,(p,q),Gi
r′i,(p,q),Gi

|ti,(p,q),Gi
= t) for any 2 × 1 vector t of nonnegative integers such

that ti,(p,q),Gi
= t with positive probability, and Σx,(p,q) is a (2K + 4) × (2K + 4) matrix of constants
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that do not depend on t.4 In addition, note that all random variables are treated as having finite first
and second moments.

The following result shows that, under the assumptions above, the parameters νH and νL can be
consistently estimated simply by pooling the observations on each sibling pair across every year and
running ordinary least squares regressions on the resulting dataset. In particular, let:

ν̃H =

(
I∑
i=1

D∑
d=1

hi,(1,2),dh
′
i,(1,2),d

)−1( I∑
i=1

D∑
d=1

hi,(1,2),dyi,1,d

)
, (A.16)

and let:

ν̃L =

(
I∑
i=1

D∑
d=1

hi,(2,1),dh
′
i,(2,1),d

)−1( I∑
i=1

D∑
d=1

hi,(2,1),dyi,2,d

)
. (A.17)

Let ν̂H and ν̂L be vectors containing the first 2K + 4 elements of ν̃H and ν̃L, respectively. That is, ν̂H
(resp. ν̂L) denotes the estimated coefficient on the covariate vector xi,(1,2) (resp. xi,(2,1)) in a log wage
regression that also controls for fti,(1,2),d (resp. fti,(2,1),d). The result below shows that as the number
of sampled sibships I goes to infinity, the estimators ν̂H and ν̂L converge in probability to νH and νL,
respectively.

Proposition A.2 Suppose that the assumptions in equations (A.13), (A.14), and (A.15) are satisfied.
As the number of sampled sibships I goes to infinity, the estimators ν̂H and ν̂L, which consist of the
first 2K + 4 elements of ν̃H and ν̃L in equations (A.16) and (A.17), respectively converge in probability
to νH and νL, which are defined in equations (A.4) and (A.5).

Proof Fix (p, q) = (1, 2) or (p, q) = (2, 1). The random variable yi,p,Gi
can be expressed as:

yi,p,Gi
= x′i,(p,q)β(p,q) + f ′ti,(p,q),Gi

γ(p,q) + ei,(p,q),Gi
, (A.18)

where β(p,q) and γ(p,q) are the unique coefficient vectors such that:

E(xi,(p,q)ei,(p,q),Gi
) = O(2K+4)×1 and E(fti,(p,q),Gi

ei,(p,q),Gi
) = O#P×1, (A.19)

with O(2K+4)×1 and O#P×1 being a (2K + 4) × 1 and a #P × 1 vector of zeros, respectively. Let
δ(p,q) = (β′(p,q), γ

′
(p,q))

′. Note that δ(p,q) = [E(hi,(p,q),Gi
h′i,(p,q),Gi

)]−1E(hi,(p,q),Gi
yi,p,Gi

) in equation (A.18).
Moreover, an alternative expression for yi,p,Gi

is:

yi,p,Gi
= f ′ti,(p,q),Gi

θ(p,q) + oi,(p,q),Gi
, (A.20)

where θ(p,q) is the unique coefficient vector such that:

E(fti,(p,q),Gi
oi,(p,q),Gi

) = O#P×1. (A.21)

Note that θ(p,q) = [E(fti,(p,q),Gi
f ′ti,(p,q),Gi

)]−1E(fti,(p,q),Gi
yi,p,Gi

) in equation (A.20). Finally, the random

4This restriction on the conditional variance matrix can be weakened to some extent. Specifically, proposition A.2
remains valid if equation (A.15) is replaced by E[Σx,(p,q)(ti,(p,q),Gi

)v(ti,(p,q),Gi
)] = E[Σx,(p,q)(ti,(p,q),Gi

)]E[v(ti,(p,q),Gi
)].

That is, the random coefficient vector v(ti,(p,q),Gi
) is assumed to be uncorrelated with the random conditional variance

matrix Σx,(p,q)(ti,(p,q),Gi
).
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vector xi,(p,q) can be decomposed as:

x′i,(p,q) = f ′ti,(p,q),Gi
λ(p,q) + u′i,(p,q),Gi

, (A.22)

where λ(p,q) is the unique #P × (2K + 4) coefficient matrix such that:

E(fti,(p,q),Gi
u′i,(p,q),Gi

) = O#P×(2K+4), (A.23)

with O#P×(2K+4) being a #P × (2K + 4) matrix of zeros. Note that λ(p,q) = [E(fti,(p,q),Gi
f ′ti,(p,q),Gi

)]−1E(

fti,(p,q),Gi
x′i,(p,q)) in equation (A.22). Because the conditional expectation function µx,(p,q)(ti,(p,q),Gi

) in

equation (A.13) is assumed to be linear in the elements of fti,(p,q),Gi
, one can write µx,(p,q)(ti,(p,q),Gi

) as:

[µx,(p,q)(ti,(p,q),Gi
)]′ = f ′ti,(p,q),Gi

λ(p,q), (A.24)

where λ(p,q) is the same coefficient matrix in equation (A.22) as in equation (A.24).
Now the parameter θ(p,q) can be expressed as:

θ(p,q) = [E(fti,(p,q),Gi
f ′ti,(p,q),Gi

)]−1E(fti,(p,q),Gi
yi,p,Gi

)

= [E(fti,(p,q),Gi
f ′ti,(p,q),Gi

)]−1E[fti,(p,q),Gi
(x′i,(p,q)β(p,q) + f ′ti,(p,q),Gi

γ(p,q) + ei,(p,q),Gi
)]

= [E(fti,(p,q),Gi
f ′ti,(p,q),Gi

)]−1E(fti,(p,q),Gi
x′i,(p,q))β(p,q) + γ(p,q) = λ(p,q)β(p,q) + γ(p,q)

, (A.25)

where the second step uses equation (A.18) to substitute for yi,p,Gi
, and the third step follows from the

fact that E(fti,(p,q),Gi
ei,(p,q),Gi

) = O#P×1. From equations (A.24) and (A.25), one has:

f ′ti,(p,q),Gi
θ(p,q) = [µx,(p,q)(ti,(p,q),Gi

)]′β(p,q) + f ′ti,(p,q),Gi
γ(p,q). (A.26)

Subtracting equation (A.26) from equation (A.18) yields:

yi,p,Gi
− f ′ti,(p,q),Gi

θ(p,q) = [xi,(p,q) − µx,(p,q)(ti,(p,q),Gi
)]′β(p,q) + ei,(p,q),Gi

= r′i,(p,q),Gi
β(p,q) + ei,(p,q),Gi

. (A.27)

Multiplying the left and right sides of the preceding equation by ri,(p,q),Gi
, one obtains the following

after taking the expectation of each side:

E(ri,(p,q),Gi
yi,p,Gi

)− E(ri,(p,q),Gi
f ′ti,(p,q),Gi

)θ(p,q)

= E(ri,(p,q),Gi
r′i,(p,q),Gi

)β(p,q) + E(ri,(p,q),Gi
ei,(p,q),Gi

)
. (A.28)

Because ri,(p,q),Gi
is by construction orthogonal to any function of ti,(p,q),Gi

, one has E(ri,(p,q),Gi
f ′ti,(p,q),Gi

)

θ(p,q) = O(2K+4)×1, noting that fti,(p,q),Gi
is a function of ti,(p,q),Gi

. In addition, ei,(p,q),Gi
is orthogonal to

any linear function of xi,(p,q) and fti,(p,q),Gi
; so that, E(ri,(p,q),Gi

ei,(p,q),Gi
) = O(2K+4)×1 since ri,(p,q),Gi

is
linear in xi,(p,q) and fti,(p,q),Gi

. Therefore, equation (A.28) implies:

E(ri,(p,q),Gi
yi,p,Gi

) = E(ri,(p,q),Gi
r′i,(p,q),Gi

)β(p,q); (A.29)

so that, one has:
β(p,q) = [E(ri,(p,q),Gi

r′i,(p,q),Gi
)]−1E(ri,(p,q),Gi

yi,p,Gi
), (A.30)

where the matrix E(ri,(p,q),Gi
r′i,(p,q),Gi

) is invertible because the matrix [E(hi,(p,q),Gi
h′i,(p,q),Gi

)]−1 is assumed
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to have full rank as in equation (A.14).
Next, I consider the vector E(ri,(p,q),Gi

yi,p,Gi
). From equation (A.3), the log wage yi,p,d of sibling p

from family i in year d has the following form under both individual and social learning:

yi,p,d = c(ti,(p,q),d) + x′i,(p,q)v(ti,(p,q),d) + εi,(p,q),d, (A.31)

where the error term εi,(p,q),d satisfies:

E(εi,(p,q),d|xi,(p,q), ti,(p,q),d) = 0. (A.32)

Using equation (A.31), one obtains:

E(ri,(p,q),Gi
yi,p,Gi

) = E{ri,(p,q),Gi
[c(ti,(p,q),Gi

) + x′i,(p,q)v(ti,(p,q),Gi
) + εi,(p,q),Gi

]}
= E[ri,(p,q),Gi

c(ti,(p,q),Gi
)] + E[ri,(p,q),Gi

x′i,(p,q)v(ti,(p,q),Gi
)]

+ E(ri,(p,q),Gi
εi,(p,q),Gi

)

. (A.33)

Let S(p,q) denote the set consisting of every 2× 1 vector t of nonnegative integers such that ti,(p,q),Gi
= t

with positive probability. First, the expectation E[ri,(p,q),Gi
c(ti,(p,q),Gi

)] can be simplified as follows:

E[ri,(p,q),Gi
c(ti,(p,q),Gi

)]

=
∑

t∈S(p,q)

Pr(ti,(p,q),Gi
= t)E{[xi,(p,q) − µx,(p,q)(ti,(p,q),Gi

)]c(ti,(p,q),Gi
)|ti,(p,q),Gi

= t}

=
∑

t∈S(p,q)

Pr(ti,(p,q),Gi
= t)[E(xi,(p,q)|ti,(p,q),Gi

= t)− µx,(p,q)(t)]c(t) = O(2K+4)×1

, (A.34)

where O(2K+4)×1 is a (2K + 4)× 1 vector of zeros, and Pr(ti,(p,q),Gi
= t) represents the probability that

ti,(p,q),Gi
= t. In equation (A.34), the first equality follows from the law of total expectation and from

replacing ri,(p,q),Gi
with xi,(p,q)−µx,(p,q)(ti,(p,q),Gi

); the second equality follows from the basic properties of
the conditional expectation function; and the third equality follows from replacing E(xi,(p,q)|ti,(p,q),Gi

= t)
with µx,(p,q)(t). Second, the expectation E[ri,(p,q),Gi

x′i,(p,q)v(ti,(p,q),Gi
)] can be simplified as follows:

E[ri,(p,q),Gi
x′i,(p,q)v(ti,(p,q),Gi

)]

=
∑

t∈S(p,q)

Pr(ti,(p,q),Gi
= t)E{[xi,(p,q) − µx,(p,q)(ti,(p,q),Gi

)]x′i,(p,q)v(ti,(p,q),Gi
)|ti,(p,q),Gi

= t}

=
∑

t∈S(p,q)

Pr(ti,(p,q),Gi
= t)

(
E{[xi,(p,q) − µx,(p,q)(ti,(p,q),Gi

)]x′i,(p,q)|ti,(p,q),Gi
= t}v(t)

− E{[xi,(p,q) − µx,(p,q)(ti,(p,q),Gi
)]µ′x,(p,q)(ti,(p,q),Gi

)|ti,(p,q),Gi
= t}v(t)

)
=
∑

t∈S(p,q)

Pr(ti,(p,q),Gi
= t)E(ri,(p,q),Gi

r′i,(p,q),Gi
|ti,(p,q),Gi

= t)v(t)

=
∑

t∈S(p,q)

Pr(ti,(p,q),Gi
= t)Σx,(p,q)v(t) = Σx,(p,q)E[v(ti,(p,q),Gi

)]

. (A.35)

In equation (A.35), the first equality follows from the law of total expectation and from substituting
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xi,(p,q)−µx,(p,q)(ti,(p,q),Gi
) for ri,(p,q),Gi

; the second equality follows from the basic properties of conditional
expectations and from the fact that E{[xi,(p,q) − µx,(p,q)(ti,(p,q),Gi

)]µ′x,(p,q)(ti,(p,q),Gi
)|ti,(p,q),Gi

= t}v(t) =
O(2K+4)×1; the third equality follows from the basic properties of conditional expectations and from the
definition ri,(p,q),Gi

= xi,(p,q) − µx,(p,q)(ti,(p,q),Gi
); the fourth equality follows from the assumption that

E(ri,(p,q),Gi
r′i,(p,q),Gi

|ti,(p,q),Gi
= t) = Σx,(p,q) in equation (A.15); and the fifth equality follows from the law

of total expectation. Third, the expectation E(ri,(p,q),Gi
εi,(p,q),Gi

) can be simplified as follows:

E(ri,(p,q),Gi
εi,(p,q),Gi

)

= D−1
∑
t̃i,0∈T

δ(t̃i,0)
D∑
d=1

E(ri,(p,q),dεi,(p,q),d|ti,0 = t̃i,0)

= D−1
∑
t̃i,0∈T

δ(t̃i,0)
D∑
d=1

E[E(ri,(p,q),dεi,(p,q),d|xi,(p,q), ti,(p,q),d)|ti,0 = t̃i,0]

= D−1
∑
t̃i,0∈T

δ(t̃i,0)
D∑
d=1

E{[xi,(p,q) − µx,(p,q)(ti,(p,q),d)]E(εi,(p,q),d|xi,(p,q), ti,(p,q),d)|ti,0 = t̃i,0}

= O(2K+4)×1

. (A.36)

In equation (A.36), the first and second equalities follow from the law of total expectation; the third
equality follows from replacing ri,(p,q),d with xi,(p,q)−µx,(p,q)(ti,(p,q),d) and from the basic properties of the
conditional expectation function; and the fourth equality is due to the fact that E(εi,(p,q),d|xi,(p,q), ti,(p,q),d)
= 0 by definition. Note that ti,0 can be inferred exactly from ti,(p,q),d if the index [i, (p, q), d] is known.
To be clear about the notation in equation (A.36), the index [i, (p, q), Gi] is treated as being random
when calculating the expectation E(ri,(p,q),Gi

εi,(p,q),Gi
), and the index [i, (p, q), d] is treated as being

known when taking the conditional expectation E(ri,(p,q),dεi,(p,q),d|ti,0 = t̃i,0). That is, one can also write
E(ri,(p,q),dεi,(p,q),d|ti,0 = t̃i,0) = E(ri,(p,q),Gi

εi,(p,q),Gi
|Gi = d, ti,0 = t̃i,0).

Substituting the results from equations (A.34), (A.35), and (A.36) into equation (A.33), one obtains:

E(ri,(p,q),Gi
yi,p,Gi

) = Σx,(p,q)E[v(ti,(p,q),Gi
)]. (A.37)

Moreover, it follows from the assumption E(ri,(p,q),Gi
r′i,(p,q),Gi

|ti,(p,q),Gi
) = Σx,(p,q) in equation (A.15) that

[E(ri,(p,q),Gi
r′i,(p,q),Gi

)]−1 = Σ−1x,(p,q), where Σx,(p,q) is invertible because E(hi,(p,q),Gi
h′i,(p,q),Gi

) is assumed to

have full rank. Therefore, the parameter β(p,q) in equation (A.30) can be expressed as:

β(p,q) = [E(ri,(p,q),Gi
r′i,(p,q),Gi

)]−1E(ri,(p,q),Gi
yi,p,Gi

) = E[v(ti,(p,q),Gi
)] = νJ , (A.38)

where νJ = νH if (p, q) = (1, 2) and νJ = νL if (p, q) = (2, 1). Recall that β(p,q) is a (2K + 4)× 1 vector
that contains the first (2K + 4) elements of the full coefficient vector δ(p,q) = [E(hi,(p,q),Gi

h′i,(p,q),Gi
)]−1E(

hi,(p,q),Gi
yi,p,Gi

).
Now the estimators ν̃H and ν̃L in equations (A.16) and (A.17) can be expressed as follows. For

t̂ ∈ T , let χi,t̂ be an indicator random variable that is equal to one if ti,0 = t̂ and that is equal to zero
otherwise. Letting J ∈ {H,L}, one has:

ν̃J = (ν̃J,1)
−1ν̃J,2, (A.39)
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where ν̃J,1 is given by:

ν̃J,1 = D−1

I−1 I∑
i=1

∑
t̃∈T

D∑
d=1

χi,t̃hi,(p,q),dh
′
i,(p,q),d

 , (A.40)

and ν̃J,2 is given by:

ν̃J,2 = D−1

I−1 I∑
i=1

∑
t̃∈T

D∑
d=1

χi,t̃hi,(p,q),dyi,p,d

 . (A.41)

Using the weak law of large numbers, one has:

plimI→∞ I−1
I∑
i=1

∑
t̃∈T

D∑
d=1

χi,t̃hi,(p,q),dh
′
i,(p,q),d

 = E

∑
t̃∈T

D∑
d=1

χi,t̃hi,(p,q),dh
′
i,(p,q),d


=
∑
t̃∈T

D∑
d=1

E(χi,t̃hi,(p,q),dh
′
i,(p,q),d) =

∑
t̃∈T

D∑
d=1

δ(t̃)E(hi,(p,q),dh
′
i,(p,q),d|ti,0 = t̃)

, (A.42)

and, using an analogous argument, one has:

plimI→∞ I−1
I∑
i=1

∑
t̃∈T

D∑
d=1

χi,t̃hi,(p,q),dyi,p,d

 =
∑
t̃∈T

D∑
d=1

δ(t̃)E(hi,(p,q),dyi,p,d|ti,0 = t̃). (A.43)

It follows from equations (A.40) and (A.42) that:

plimI→∞ ν̃J,1 = D−1
∑
t̃∈T

δ(t̃)
D∑
d=1

E(hi,(p,q),dh
′
i,(p,q),d|ti,0 = t̃) = E(hi,(p,q),Gi

h′i,(p,q),Gi
), (A.44)

and from equations (A.41) and (A.43) that:

plimI→∞ ν̃J,2 = D−1
∑
t̃∈T

δ(t̃)
D∑
d=1

E(hi,(p,q),dyi,p,d|ti,0 = t̃) = E(hi,(p,q),Gi
yi,p,Gi

). (A.45)

Now, by Slutsky’s theorem, equations (A.44) and (A.45) along with equation (A.39) imply that:

plimI→∞ ν̃J = [E(hi,(p,q),Gi
h′i,(p,q),Gi

)]−1E(hi,(p,q),Gi
yi,p,Gi

), (A.46)

noting that the matrix E(hi,(p,q),Gi
h′i,(p,q),Gi

) is assumed to be nonsingular as in equation (A.14). It follows

from equation (A.46) that plimI→∞ ν̃J = δ(p,q) = (β′(p,q), γ
′
(p,q))

′, where β(p,q) and γ(p,q) are the regression

parameters appearing in equation (A.18). In addition, recall from equation (A.38) that β(p,q) = νJ .
Therefore, as desired, the first (2K + 4) elements of ν̃J converge in probability to νJ .
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B Simple Model of Employee Referrals

This appendix develops a simple model of employee referrals that deals with two potential issues. First,
the social learning model assumes that one’s wage is set equal to the conditional expectation of one’s
productivity given one’s own and a sibling’s schooling and performance. If a sibling’s characteristics
are not observable to a person’s employer unless both individuals work for the same firm, then this
assumption about wage determination might be unrealistic as a broad description of the labor market.
Second, the percentages of individuals obtaining a job through a sibling or also working for the same
firm as a sibling are on average moderate in size. If siblings must work for the same firm in order to
influence each other’s wage, then these percentages might be too small to account for the main estimates
of sibling effects.

The model in this section addresses these points by relaxing the assumption that one’s employer
observes the characteristics of one’s sibling and by generating an equilibrium with social effects on wages
even if siblings work at different firms. The wage offer made by an informationally advantaged employer
is assumed to be observable to other potential employers, who can use this offer to update their beliefs
when making counteroffers. In brief, an employer’s wage offer may act as a signal to other employers of
a worker’s productivity.

The basic structure of the model is as follows. There are two siblings and two periods. The siblings
differ in seniority with the older and the younger sibling being indexed by 1 and 2, respectively. Each
sibling i has a schooling level si as well as B ≥ 1 initial productivity signals {riu}Bu=1. In period 1,
sibling 1 enters the labor market, whereupon each of M ≥ 2 firms observes s1 and {r1u}Bu=1. Each of
these firms simultaneously makes a wage offer Yj to sibling 1. Sibling 1 accepts the wage offer of some
firm I and works for one period at firm I. Subsequently, firm I observes C ≥ 1 additional productivity
signals {r1u}B+C

u=B+1 for sibling 1. Having worked, sibling 1 refers sibling 2 to firm I and then leaves the
labor market.5 In period 2, sibling 2 enters the labor market, whereupon firm I observes s1, s2 and
{r1u}B+C

u=1 , {r2u}Bu=1. Firm I makes a wage offer YI to sibling 2. Next, N ≥ 2 other firms observe YI as
well as s2 and {r2u}Bu=1. Each of these firms simultaneously makes a wage offer YOj to sibling 2, and
sibling 2 accepts a wage offer and works for one period. Subsequently, sibling 2’s employer observes
C ≥ 1 additional productivity signals {r2u}B+C

u=B+1 for sibling 2.
The additional assumptions of the model are as follows. The properties of the variables s1, s2 and

{r1u}B+C
u=1 , {r2u}B+C

u=1 are as described in the main text. Every wage offer is required to be a positive
real number, and each sibling accepts the highest wage offer received.6 If a firm does not hire a worker
in a given period, then the firm obtains a profit of zero for that period. If a firm hires sibling i at
wage Y in a given period, then the firm obtains a profit of exp( 1

C
ΣB+C
u=B+1riu)− Y for that period, where

exp( 1
C

ΣB+C
u=B+1riu) represents sibling i’s output on the job.

The solution concept is perfect Bayesian equilibrium. In period 1, every firm selects Yj so as to
maximize the expected discounted value of its profits given the strategies of the other players as well
as its beliefs about each sibling i’s output exp( 1

C
ΣB+C
u=B+1riu) conditional on s1 and {r1u}Bu=1. In period

2, firm I chooses YI so as to maximize the expected value of its profits given the strategies of the other
players in addition to its beliefs about sibling 2’s output exp( 1

C
ΣB+C
u=B+1r2u) conditional on s1, s2 and

5It is assumed for simplicity that the older sibling always refers the younger sibling to her employer. The model can
be extended to the case where the younger sibling receives a referral from the older sibling with a positive probability less
than one. This extension does not change the main prediction of the model, especially if the probability of a referral is
independent of the other variables in the model.

6In the treatment here, workers are permitted to use mixed strategies when accepting wage offers, although firms are
restricted to use pure strategies when making wage offers. The results of the analysis do not change if firms are allowed
to randomize over different wage offers.
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{r1u}B+C
u=1 , {r2u}Bu=1. Each remaining employer then chooses YOj so as to maximize the expected value

of its profits given the strategies of the other players in addition to its beliefs about sibling 2’s output
exp( 1

C
ΣB+C
u=B+1r2u) conditional on YI as well as s2 and {r2u}Bu=1. Based on the strategies of the players,

firms’ beliefs are derived from Bayes’ rule whenever possible.
In order to solve the model above, I focus on the separating equilibria.7 The result below establishes

the existence of a separating equilibrium. In addition, it shows that in any separating equilibrium,
the wage accepted by the older sibling is equal to the conditional expectation of her output given her
own schooling and initial productivity signals, and the wage accepted by the younger sibling is equal
to the conditional expectation of her output given both siblings’ schooling, the younger sibling’s initial
productivity signals, and all of the older sibling’s productivity signals.

Proposition B.1 There exists a separating perfect Bayesian equilibrium. In any separating equilibrium,
the following hold:

1. The wage W1 accepted by sibling 1 is equal to the conditional expectation of exp( 1
C

ΣB+C
u=B+1r1u)

given s1 and {r1u}Bu=1.

2. The wage W2 accepted by sibling 2 is equal to the conditional expectation of exp( 1
C

ΣB+C
u=B+1r2u)

given s1, s2 and {r1u}B+C
u=1 , {r2u}Bu=1.

Proof I begin by providing an example of a separating equilibrium. In period 2, after all the wage
offers have been made, sibling 2 accepts the wage offer YI of firm I if YI is greater than the highest
wage offer maxj YOj of the other firms. If YI is less than or equal to maxj YOj, then sibling 2 accepts the
wage offer YOk of some firm k other than I that makes an offer of maxj YOj. If multiple offers by firms
other than I are equal to maxj YOj, then sibling 2 randomly selects an offer, assigning equal probability
to each such offer.

After observing firm I’s wage offer YI to sibling 2, every other firm believes that 1
C

ΣB+C
u=B+1r2u is

normally distributed with mean log(YI)− 1
2
σ2
I and variance

σ2
I = V( 1

C
ΣB+C
u=B+1r2u|s1, s2, {r1u}

B+C
u=1 , {r2u}Bu=1). (B.1)

Each of these firms offers sibling 2 a wage YOj equal to YI . After observing sibling 1’s additional
productivity signals {r1u}B+C

u=B+1, firm I believes that 1
C

ΣB+C
u=B+1r2u is normally distributed with mean

µI = E( 1
C

ΣB+C
u=B+1r2u|s1, s2, {r1u}

B+C
u=1 , {r2u}Bu=1) (B.2)

and variance σ2
I . Firm I offers sibling 2 a log wage log(YI) equal to µI + 1

2
σ2
I .

In period 1, after observing sibling 1’s schooling s1 and initial productivity signals {r1u}Bu=1, every
firm believes that 1

C
ΣB+C
u=B+1riu is normally distributed with mean µOi and variance σ2

Oi where:

µOi = E( 1
C

ΣB+C
u=B+1riu|s1, {r1u}

B
u=1) and σ2

Oi = V( 1
C

ΣB+C
u=B+1riu|s1, {r1u}

B
u=1). (B.3)

Each firm offers sibling 1 a log wage log(Yj) equal to µO1 + 1
2
σ2
O1. Sibling 1 accepts the highest wage

offer received maxj Yj. If multiple offers are equal to maxj Yj, then sibling 1 randomly selects an offer,
assigning equal probability to each offer.

7To be clear, a separating equilibrium here is a perfect Bayesian equilibrium in which firm I makes a different wage
offer YI to sibling 2 for each of its possible equilibrium beliefs about sibling 2’s output exp( 1

CΣB+C
u=B+1r2u) conditional on

s1, s2 and {r1u}B+C
u=1 , {r2u}Bu=1.
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To see that the strategies and beliefs described above form a separating equilibrium, note first that
firm I offers a different log wage log(YI) to sibling 2 for each of its possible equilibrium beliefs about
1
C

ΣB+C
u=B+1r2u conditional on s1, s2 and {r1u}B+C

u=1 , {r2u}Bu=1, where any normal distribution with variance
σ2
I can be an equilibrium belief. Observe next that the specified beliefs are derived from Bayes’ rule.

In particular, firm I offers sibling 2 a wage YI = exp(µI + 1
2
σ2
I ) equal to the conditional expectation

of exp( 1
C

ΣB+C
u=B+1r2u) given s1, s2 and {r1u}B+C

u=1 , {r2u}Bu=1. Consequently, upon observing YI , the other

firms use Bayes’ rule to infer that 1
C

ΣB+C
u=B+1r2u is normally distributed with mean µI and variance σ2

I .
It is now straightforward to confirm that the prescribed strategies are sequentially rational given

beliefs. Each sibling always accepts the highest wage offer received. In period 2, every firm obtains
an equilibrium expected profit of zero. If a firm other than I were to make an offer greater than its
equilibrium offer, then it would obtain a negative expected profit. If such a firm were to make an offer
less than its equilibrium offer, then it would obtain an expected profit of zero. If firm I were to make
an offer different from its equilibrium offer, then it would continue to receive an expected profit of zero,
because the other firms would match this offer, and sibling 2 would never choose to work for firm I. In
period 1, each firm obtains an equilibrium expected discounted payoff of zero. If a firm were to offer a
lower wage, then it would obtain an expected discounted payoff of zero. If a firm were to offer a higher
wage, then it would obtain a negative expected discounted payoff, because it would receive a negative
expected profit in period 1 and an expected profit of zero in period 2.

I next show that in any separating equilibrium, the accepted wages must be as given in the statement
of the proposition. Suppose that a separating equilibrium is being played. First, if firm I offers sibling
2 a log wage log(YI) greater than µI + 1

2
σ2
I , then no other firm k will offer sibling 2 a wage YOk greater

than or equal to YI unless sibling 2 accepts firm k’s offer with probability zero. Thus, if firm I offers
sibling 2 a log wage log(YI) greater than µI + 1

2
σ2
I , then sibling 2 will accept the offer made by firm I,

and firm I will receive a negative expected profit in period 2. However, firm I could obtain an expected
payoff of zero in period 2 by instead offering sibling 2 a log wage log(YI) equal to µI + 1

2
σ2
I . Hence,

there cannot be a separating equilibrium in which firm I offers sibling 2 a log wage log(YI) greater than
µI + 1

2
σ2
I .

Second, if firm I offers sibling 2 a log wage log(YI) equal to µI + 1
2
σ2
I , then no other firm k will make

an offer greater than YI unless sibling 2 accepts firm k’s offer with probability zero. Because sibling 2
always accepts the highest wage offer, it must be in such an equilibrium that no firm offers sibling 2 a
log wage greater than µI + 1

2
σ2
I and that sibling 2 receives a log wage of µI + 1

2
σ2
I . Third, if firm I offers

sibling 2 a log wage log(YI) less than µI + 1
2
σ2
I , then there cannot be an equilibrium in which some firm

offers sibling 2 a log wage greater than µI + 1
2
σ2
I . Moreover, some firm must offer sibling 2 a log wage

equal to µI + 1
2
σ2
I . Otherwise, there would exist a wage offer Ŷ greater than max(maxj YOj, YI) but less

than exp(µI + 1
2
σ2
I ) such that some firm k other than I would have an incentive to deviate by offering

sibling 2 the wage Ŷ instead of making its original wage offer YOk. Because sibling 2 always accepts the
highest wage offer, it must be in such an equilibrium that sibling 2 receives a log wage of µI + 1

2
σ2
I .

Hence, sibling 2’s wage must be as specified in the statement of the proposition. Because every firm
obtains an expected profit of zero in period 2, the game played in period 1 is equivalent to Bertrand
competition among M ≥ 2 firms making wage offers to sibling 1, where the total expected output
from hiring sibling 1 is equal to the conditional expectation of exp( 1

C
ΣB+C
u=B+1r1u) given s1 and {r1u}Bu=1.

Consequently, the highest wage offer made to sibling 1 in such an equilibrium is exp(µO1+ 1
2
σ2
O1). Hence,

sibling 1’s wage must be as specified in the statement of the proposition.

Two remarks should be made in regard to the result above. First, although attention is restricted to
the separating equilibria of the model, other equilibria with different implications for wage setting exist.
For example, a pooling equilibrium can be constructed in which the wage accepted by each sibling i is
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equal to the conditional expectation of her total output exp( 1
C

ΣB+C
u=B+1riu) given her own schooling si

and initial productivity signals {riu}Bu=1.
8 In such an equilibrium, each sibling’s wage depends only on

one’s own characteristics. Second, in the separating equilibrium described in the first three paragraphs
from the proof of proposition B.1, the older sibling’s characteristics always affect the younger sibling’s
log wage, even though the two siblings never work for the same firm. The reason for this outcome is that
the wage offer of the older sibling’s former employer reveals private information to other firms about
the younger sibling’s productivity.9

The result below shows that if a separating equilibrium is played as in proposition B.1, then the
wages of the two siblings have the same basic structure as under the social learning model in the main
text. That is, if each sibling’s log wage is regressed on both siblings’ schooling and test scores, then
the ratio of the coefficient on a younger sibling’s test score to that on one’s own test score in an older
sibling’s log wage is typically lower than the ratio of the coefficient on an older sibling’s test score to
that on one’s own test score in a younger sibling’s log wage. Note that the properties of each sibling’s
test score zi are as described in the main text.

Proposition B.2 Suppose that a separating equilibrium is played as in proposition B.1. Let ϑij denote
the regression coefficient on sibling j’s test score in the conditional expectation of sibling i’s log wage
given s1, s2 and z1, z2. Then ϑ12ϑ22 < ϑ21ϑ11.

Proof Under individual learning, the conditional expectation of sibling 1’s log wage log(W1) given s1,
s2 and z1, z2 has the form:

E[log(W1)|s1, s2, z1, z2] = χ1E(a1|s1, s2, z1, z2) +H1(s1), (B.4)

where H1 is some function of s1, and the parameter χ1 is defined by:

χ1 = Bσ−2η σ2
g1, σ2

g1 = (σ−2m +Bσ−2η )−1, σ2
m = V(a1|s1). (B.5)

Hence, the coefficients ϑ11 and ϑ12 in the statement of the proposition can be expressed as:

ϑ11 = χ1πo and ϑ12 = χ1πf , (B.6)

where πo and πf are as defined in the main appendix. Under social learning, the conditional expectation
of sibling 2’s log wage log(W2) given s1, s2 and z1, z2 has the form:

E[log(W2)|s1, s2, z1, z2] = (1− ξ2)ζr2E(a1|s1, s2, z1, z2) + ξ2E(a2|s1, s2, z1, z2) +H2(s1, s2), (B.7)

where H2 is some function of s1 and s2; ζr2 is equal to (B + C) times the coefficient on r1u in the
conditional expectation of a2 given s1, s2, and {r1u}B+C

u=1 ; and the parameter ξ2 is defined by:

ξ2 = Bσ−2η σ2
q2, σ2

q2 = (σ−2n2 +Bσ−2η )−1, σ2
n2 = V(a2|s1, s2, {r1u}B+C

u=1 ). (B.8)

Hence, the coefficients ϑ21 and ϑ22 in the statement of the proposition can be expressed as:

ϑ21 = (1− ξ2)ζr2πo + ξ2πf and ϑ22 = (1− ξ2)ζr2πf + ξ2πo. (B.9)

Note that ζr2 was shown to be positive in the main appendix. Now, the statement ϑ12ϑ22 < ϑ21ϑ11 is

8In addition, various semi-separating equilibria can be constructed.
9Nonetheless, there can also exist a separating equilibrium in which the two siblings always work for the same firm.
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equivalent to:
(χ1πf ) · [(1− ξ2)ζr2πf + ξ2πo] < [(1− ξ2)ζr2πo + ξ2πf ] · (χ1πo), (B.10)

which reduces to π2
f < π2

o . From the main appendix, we have π2
o > π2

f , completing the proof.

C Analysis of Antidiscrimination Policies

This appendix constructs a framework to illustrate how social effects in employer learning can impact
employment. The model is applied to study group disparities in labor force participation, and govern-
ment policies to improve equity or efficiency are proposed. There are two periods and two relatives
that differ in age. Let 1 and 2 respectively index the older and the younger relative. Race is denoted
by G ∈ {B,W}, where B signifies the minority group, and W signifies the majority group. Let Li be
the labor productivity of relative i ∈ {1, 2}. The variables L1, L2 are joint normally distributed with
common mean µL,G, identical variance σ2

L, and correlation ρL. The mean productivity of the minority
group µL,B can differ from the mean productivity of the majority group µL,W . Let PB and PW with
PB + PW = 1 be the respective fractions of the population belonging to the minority and majority
groups. The reservation value of each individual is R, which represents the payoff to a nonworking
person. The labor market is competitive.

Consider first the case where employers do not statistically discriminate based on race G. However,
information on relative 1’s performance can be used to predict relative 2’s productivity and determine
relative 2’s wage. Assume that PBµL,B + PWµL,W > R, which ensures that relative 1 works at the
competitive wage. The timeline of events is as follows. In period 1, relative 1 works and is paid a
market wage M̂1 equal to his or her expected productivity. At the end of period 1, employers observe
the productivity L1 of relative 1, and relative 1 leaves the labor market. In period 2, relative 2 decides
whether or not to participate in the labor force. The market offers relative 2 a wage M̂2(L1) equal to the
conditional expectation of his or her productivity L2 given the productivity L1 of relative 1. Relative
2 works if and only if the market wage M̂2(L1) is greater than or equal to the reservation value R.
Relative 2 retires at the end of period 2.

The result below shows that younger relatives from a group with lower mean productivity have a
smaller employment probability. Employers do not directly discriminate based on racial group. However,
older relatives from a less productive group are observed to have worse performance on average, which
causes employers to infer that their younger relatives would be less efficient. Consequently, younger
relatives from a disadvantaged group are offered a lower market wage and so withdraw from the labor
force.

Proposition C.1 Assume no statistical discrimination based on race G. Let Ω2,G denote the employ-
ment probability of relative 2 from group G. If µL,B < µL,W , then Ω2,B < Ω2,W . If µL,B > µL,W , then
Ω2,B > Ω2,W .

Proof The market wage for relative 1 is M̂1 = PBµL,B+PWµL,W , which is greater than R by assumption.
The market wage for relative 2 can be calculated as:

M̂2(L1) =E(L2|L1) = PBE(L2|L1, G = B) + PWE(L2|L1, G = W )

=PB[(1− ρL)µL,B + ρLL1] + PW [(1− ρL)µL,W + ρLL1]

=(1− ρL)(PBµL,B + PWµL,W ) + ρLL1

, (C.1)

where the second equality follows from the law of total expectation, and the third equality applies the
formulas for the conditional distributions of bivariate normal random variables. Since relative 2 works
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if and only if M̂2(L1) ≥ R, the employment probability of relative 2 is given by:

Ω2,G = Pr[M̂2(L1) ≥ R] = Pr[(1− ρL)(PBµL,B + PWµL,W ) + ρLL1 ≥ R]

=1− Φ{[R− (1− ρL)(PBµL,B + PWµL,W )]/(ρLσL)− µL,G/σL}
, (C.2)

where Φ denotes the cdf of the standard normal distribution. The preceding expression shows that Ω2,G

is increasing in µL,G, whence the proposition follows.

Hence, statistical nepotism can generate racial inequalities in market wages and employment rates.
The next result shows that policymakers can equalize employment rates between groups by providing
an employer subsidy for hiring younger relatives from the less productive group. The same outcome can
be achieved with an in-work subsidy to younger relatives from the disadvantaged group.

Proposition C.2 Assume no statistical discrimination based on race G. Let Ω2,G(S) denote the em-
ployment probability of relative 2 from group G if a subsidy of S is given to an employer for hiring relative
2 from group G or to relative 2 from group G for working. If µL,B < µL,W , then Ω2,B[ρL(µL,W −µL,B)] =
Ω2,W (0). If µL,B > µL,W , then Ω2,B(0) = Ω2,W [ρL(µL,B − µL,W )].

Proof Suppose that a subsidy of S is given to an employer for hiring relative 2 from group G or to
relative 2 from group G for working. Relative 2 from group G works if and only if E(L2|L1) + S ≥ R,
where the conditional expectation is given by:

E(L2|L1) = (1− ρL)(PBµL,B + PWµL,W ) + ρLL1. (C.3)

Hence, the employment probability of relative 2 from group G can be expressed as:

Ω2,G(S) = Pr[(1− ρL)(PBµL,B + PWµL,W ) + ρLL1 ≥ R− S]

=1− Φ{[R− S − (1− ρL)(PBµL,B + PWµL,W )]/(ρLσL)− µL,G/σL}
, (C.4)

where Φ denotes the cdf of the standard normal distribution. It is straightforward to confirm the
proposition given the preceding expression.

Consider now the case where employers statistically discriminate based on raceG. Moreover, information
on relative 1’s performance is used to infer relative 2’s productivity and decide relative 2’s wage. The
following is the sequence of actions. In period 1, relative 1 chooses whether or not to join the labor
force. The market offers relative 1 a wage M̃1(G) equal to the conditional expectation of his or her

productivity L1 given race G. Relative 1 works if and only if the competitive wage M̃1(G) is greater
than or equal to the outside option R. At the end of period 1, employers observe the productivity L1

of relative 1 if and only if relative 1 was employed, and relative 1 retires.
In period 2, relative 2 chooses whether or not to join the labor force. If relative 1 worked, then

the market offers relative 2 a wage M̃2,I(G,L1) equal to the conditional expectation of his or her
productivity L2 given race G and the productivity L1 of relative 1. In this case, relative 2 works if and
only if M̃2,I(G,L1) is no less than R. If relative 1 did not work, then the market offers relative 2 a wage

M̃2,O(G) equal to the conditional expectation of his or her productivity L2 given race G. In this case,

relative 2 works if and only if M̃2,O(G) is no less than R. Relative 2 retires at the end of period 2.
The result below characterizes employment in a competitive equilibrium of the model. The solution

is assumed to be noncooperative in that the younger relative cannot make a side payment to the
older relative or to a prospective employer. If the mean productivity µL,G of group G is less than the

15



reservation value R, then neither relative works. If µL,G is no less than R, then the older relative works,

and the younger relative decides whether to participate based on how the market wage M̃2,I(G,L1)
compares to R.

Proposition C.3 Assume statistical discrimination based on race G. The competitive outcome is as
follows. If µL,G < R, then neither relative 1 nor relative 2 from group G works. If µL,G ≥ R, then relative
1 from group G works, and relative 2 from group G works if and only if L1 ≥ [R− (1− ρL)µL,G]/ρL.

Proof Suppose first that µL,G < R. Relative 1 does not work because the market wage is M̃1(G) = µL,G,

which is less than R. Consequently, relative 2 does not work because the market wage is M̃2,O(G) = µL,G,
which is less than R.

Suppose now that µL,G ≥ R. Relative 1 works because the market wage is M̃1(G) = µL,G, which is

no less than R. Relative 2 works if and only if M̃2,I(G,L1) ≥ R, where the market wage for relative 2
is given by:

M̃2,I(G,L1) = E(L2|G,L1) = (1− ρL)µL,G + ρLL1. (C.5)

The proposition follows after some substitution and rearrangement.

The next question concerns socially efficient employment decisions. For ease of exposition but
without loss of generality, assume that there is no discounting between periods. The total product in
period i ∈ {1, 2} equals the reservation value R if relative i does not work and equals the productivity
Li of relative i if relative i does work. A Pareto optimum maximizes the conditional expectation of the
sum of the total products in periods 1 and 2 given race G. When allocating relative 1 to employment
or nonemployment, a social planner does not know the realizations of the productivities L1 and L2 of
relatives 1 and 2. If relative 1 is employed, then the realization of L1 but not L2 is known when selecting
the employment status of relative 2. If relative 1 is not employed, then the social planner knows the
realization of neither L1 nor L2 when assigning relative 2 to a sector.

As the result below shows, the Pareto optimum depends on a cutoff µ∗L, which is less than R. If
the mean productivity µL,G of group G is less than µ∗L, then neither the younger nor the older relative
should be employed. If µL,G is greater than µ∗L, then the older relative should be employed, and the
younger relative should be assigned a status based on how the conditional expectation E(L2|G,L1) of
his or her productivity compares to R.

Proposition C.4 Assume statistical discrimination based on race G. There exists a threshold µ∗L < R
such that the socially efficient employment decisions are as follows. If µL,G < µ∗L, then neither relative
1 nor relative 2 from group G works. If µL,G > µ∗L, then relative 1 from group G works, and relative 2
from group G works if and only if L1 ≥ [R− (1− ρL)µL,G]/ρL.

Proof If neither relative 1 nor relative 2 works, then the conditional expectation of the sum of the total
products in periods 1 and 2 given race G is simply H0 = 2R. If relative 1 does not work but relative 2
works, then the conditional expectation of the sum of the total products in periods 1 and 2 given race
G is simply H1 = R + µL,G.

Consider now the case where relative 1 works and so L1 is observed when assigning relative 2 to a
sector. The conditional expectation of the productivity L2 of relative 2 given race G and the productivity
L1 of relative 1 is (1−ρL)µL,G+ρLL1, which is no less than R if and only if L1 ≥ [R− (1−ρL)µL,G]/ρL.
Hence, it is socially efficient for relative 2 to work if and only if L1 ≥ [R− (1− ρL)µL,G]/ρL. If relative
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2 is efficiently allocated, then the conditional expectation of the sum of the total products in periods 1
and 2 given race G is:

H2 = µL,G +R · Φ
(
R− µL,G
ρLσL

)
+

[
µL,G + ρLσLλ

(
R− µL,G
ρLσL

)]
·
[
1− Φ

(
R− µL,G
ρLσL

)]
, (C.6)

where λ = φ/(1−Φ) denotes the inverse Mills ratio with φ and Φ being respectively the pdf and cdf of
the standard normal distribution. The first term in the preceding expression represents the conditional
expectation given G of the total product in period 1, and the second and third terms constitute the
conditional expectation given G of the total product in period 2. The second term is the reservation
value multiplied by the conditional probability given G that relative 2 is not employed, and the third
term is the conditional probability given G that relative 2 works multiplied by the expected productivity
of relative 2 conditional on G and the fact that relative 2 works.

Note that H2 > H1 for µL,G ≥ R and H0 > H1 for µL,G < R, and so it is never socially efficient for
relative 1 not to work but for relative 2 to work. It is straightforward to confirm based on the expression
above that H2 is continuous and increasing in µL,G with H2 having a limit of −∞ as µL,G approaches
−∞ and a limit of ∞ as µL,G approaches ∞. In addition, H2 > H0 for µL,G = R, where H0 is constant
in µL,G. It follows using the intermediate value theorem that there exists µ∗L < R such that H2 < H0

for µL,G < µ∗L and H2 > H0 for µL,G > µ∗L. The constant µ∗L is the threshold in the statement of the
proposition.

The competitive outcome is not socially efficient if mean productivity µL,G is greater than µ∗L but
less than R. In this case, neither relative works under competition, whereas Pareto optimality requires
the older relative to work and the younger relative to choose between employment and nonemployment
based on the realized productivity of the older relative. The competitive equilibrium is problematic
because of insufficient experimentation. The labor force participation of the older relative generates
information about the productivity of the younger relative that is useful when assigning the younger
relative to a sector. However, the older relative does not account for the positive externality of his or
her decision to work.

In principle, one solution might involve Coasian bargaining, whereby the younger relative compen-
sates the older relative for working or reimburses an employer for hiring the older relative. However,
liquidity constraints might prevent a younger relative from making the required transfers. The next
result shows that policymakers can implement an efficient outcome by subsidizing employers for hiring
older relatives. Alternatively, an in-work subsidy to older relatives can correct the market failure.

Proposition C.5 Assume statistical discrimination based on race G. Suppose that a subsidy S =
R − µL,G is given to an employer for hiring relative 1 from group G or to relative 1 from group G for
working. The market outcome with the subsidy is for relative 1 from group G to work, and relative 2
from group G works if and only if L1 ≥ [R− (1− ρL)µL,G]/ρL.

Proof Suppose that a subsidy S is given to an employer for hiring relative 1 from group G or to relative
1 from group G for working. Relative 1 from group G works if and only if µL,G+S ≥ R. Hence, relative
1 works for S = R− µL,G. In this case, relative 2 works if and only if E(L2|G,L1) ≥ R. This condition
can be expressed as (1− ρL)µL,G + ρLL1 ≥ R or, equivalently, L1 ≥ [R− (1− ρL)µL,G]/ρL.

Note that a subsidy should be provided to older relatives only from a group G whose mean productivity
µL,G is greater than µ∗L but less than R. Specifically, if µL,B ∈ (µ∗L, R) but µL,W /∈ (µ∗L, R), then an
employment subsidy should be provided to the minority but not to the majority because the employment
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decisions of the majority but not the minority group are efficient in the equilibrium without intervention.
Likewise, if µL,W ∈ (µ∗L, R) but µL,B /∈ (µ∗L, R), then an employment subsidy should be provided to the
majority but not to the minority because the employment decisions of the minority but not the majority
group are efficient in the equilibrium without intervention.
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Table D.1: Probability of Given Relative Helping Respondent Obtain Most Recent Job

Entire Sibship Size
Sample 1 2 3 4 5 6 7+

Percentage Receiving Help from:
Personal Contact 52.35 49.66 51.67 51.70 53.10 51.77 53.66 53.00

Relative 20.05 12.93 17.66 18.64 20.40 21.20 23.41 21.66
Father 5.28 4.08 7.49 5.77 5.71 4.92 4.39 3.68
Mother 3.47 4.08 3.50 4.33 4.10 3.07 3.66 2.03
Brother 2.08 0.00 0.65 1.29 1.72 2.84 3.17 3.57
Sister 2.12 0.00 0.65 1.34 1.94 2.69 3.05 3.63
Uncle 1.15 1.02 1.14 1.03 1.50 0.84 1.46 1.04
Aunt 0.92 0.34 1.30 0.88 1.00 0.84 1.46 0.55
Cousin 1.39 1.36 1.30 0.82 1.39 1.46 1.46 1.98

Percentage Receiving Help from and
Working for Same Employer as:

Personal Contact 35.06 29.93 35.64 33.83 35.03 35.33 36.71 35.90
Relative 14.20 8.16 12.53 12.20 14.19 15.67 16.83 16.22

Father 3.67 2.72 4.88 3.96 3.88 3.53 3.54 2.64
Mother 2.06 2.38 2.20 2.32 2.49 1.69 2.68 1.21
Brother 1.72 0.00 0.57 1.08 1.55 2.38 1.83 3.08
Sister 1.62 0.00 0.65 0.57 1.61 2.07 2.32 3.02
Uncle 0.85 1.02 0.98 0.72 1.00 0.54 1.34 0.71
Aunt 0.67 0.00 0.90 0.72 0.50 0.77 1.10 0.49
Cousin 1.12 1.02 1.06 0.57 1.11 1.31 1.10 1.65

Note: The tabulations include all 9210 individuals in the NLSY79 with non-missing responses to the relevant questions on job search
methods in the 1982 survey. Respondents were first asked, “Was there anyone specifically who helped you get your job with [employer
name]?” If so, this question was followed by, “Was this person working for [employer name] when you were first offered this job?” Those
answering the first question affirmatively were also asked whether this person was a relative and, if so, what was this person’s relationship
to them.
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Table D.2: Impact of Own AFQT and AFQT of Younger or Older Sibling on Joint Work-Wage Outcomes

Entire Sample

Worked Wage ≥ $5 Also Wage ≥ $10 Also

Older Sibling’s AFQT × Younger Sibling 0.0103 0.0121 0.0148 0.0157 0.0110 0.0082
(0.0053) (0.0054) (0.0070) (0.0070) (0.0057) (0.0055)

Younger Sibling’s AFQT × Older Sibling 0.0094 0.0102 -0.0033 -0.0015 -0.0023 -0.0043
(0.0055) (0.0052) (0.0074) (0.0072) (0.0059) (0.0058)

Own AFQT × Younger Sibling 0.0260 0.0279 0.0615 0.0624 0.0393 0.0366
(0.0053) (0.0054) (0.0074) (0.0074) (0.0056) (0.0057)

Own AFQT × Older Sibling 0.0356 0.0350 0.0993 0.0982 0.0653 0.0626
(0.0061) (0.0062) (0.0084) (0.0083) (0.0072) (0.0073)

Own and Sibling’s Schooling Yes Yes Yes Yes Yes Yes
Family Background Controls No Yes No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.6546 0.6194 0.0438 0.0476 0.0753 0.1061

Families 2181 2181 2181 2181 2181 2181
Individuals 5195 5195 5195 5195 5195 5195
Sibling Pairs 8032 8032 8032 8032 8032 8032
Observations 123388 123388 123388 123388 123388 123388

Out of School

Worked Wage ≥ $5 Also Wage ≥ $10 Also

Older Sibling’s AFQT × Younger Sibling 0.0146 0.0167 0.0197 0.0202 0.0150 0.0114
(0.0057) (0.0057) (0.0080) (0.0080) (0.0067) (0.0065)

Younger Sibling’s AFQT × Older Sibling 0.0060 0.0072 -0.0018 -0.0008 0.0037 0.0006
(0.0063) (0.0059) (0.0086) (0.0084) (0.0071) (0.0070)

Own AFQT × Younger Sibling 0.0285 0.0306 0.0794 0.0798 0.0544 0.0506
(0.0059) (0.0060) (0.0088) (0.0088) (0.0070) (0.0071)

Own AFQT × Older Sibling 0.0374 0.0374 0.1134 0.1120 0.0780 0.0745
(0.0067) (0.0067) (0.0093) (0.0092) (0.0082) (0.0082)

Own and Sibling’s Schooling Yes Yes Yes Yes Yes Yes
Family Background Controls No Yes No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.2301 0.2142 0.0362 0.0384 0.1541 0.1878

Families 2161 2161 2161 2161 2161 2161
Individuals 5149 5149 5149 5149 5149 5149
Sibling Pairs 7948 7948 7948 7948 7948 7948
Observations 104602 104602 104602 104602 104602 104602

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable, a third-order bivariate polynomial in the ages of the two siblings, and a quartic time trend. Family background controls
are indicator variables for sibship size, mother’s education, father’s education, mother’s age, father’s age, and each of the two siblings’
birth orders. The coefficients on all control variables, except for the time trend, are estimated separately based on whether the older or
the younger sibling’s outcome is used as the dependent variable for a given pair. The dataset used here is derived by expanding the main
estimation sample to include observations on sibling pairs in which one or both members may not have worked since the last interview.
In the upper panel, the sample contains observations in which one or both siblings may not yet have left school. In the lower panel, the
sample includes only observations in which both siblings have left school for the first time. In the first pair of columns, the dependent
variable is an indicator equal to one if the respondent worked since the last interview and equal to zero otherwise. The dependent variable
in the second (third) pair of columns is an indicator equal to one if the respondent worked since the last interview at an hourly wage of at
least $5.00 ($10.00) in 1982-1984 terms and equal to zero otherwise. The p-values from the delta method are reported for the Wald test
of the null hypothesis that the coefficient on (Younger Sibling’s AFQT × Older Sibling) times the coefficient on (Own AFQT × Younger
Sibling) is equal to the coefficient on (Older Sibling’s AFQT × Younger Sibling) times the coefficient on (Own AFQT × Older Sibling).
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Table D.3: Impact on Log Wage of Own AFQT and AFQT of Younger or Older Sibling Not Yet Primarily Working

Older Sibling’s AFQT × Younger Sibling 0.0056 0.0048 -0.0184 -0.0105
(0.0245) (0.0234) (0.0322) (0.0280)

Younger Sibling’s AFQT × Older Sibling 0.0141 0.0091 -0.0048 -0.0070
(0.0132) (0.0134) (0.0130) (0.0131)

Own AFQT × Younger Sibling 0.1070 0.0925 0.1084 0.0938
(0.0269) (0.0250) (0.0269) (0.0249)

Own AFQT × Older Sibling 0.1071 0.0996 0.1115 0.1046
(0.0157) (0.0151) (0.0156) (0.0152)

Own Schooling Yes Yes Yes Yes
Sibling’s Schooling No No Yes Yes
Family Background Controls No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.7703 0.8942 0.6771 0.8837

Families / Individuals / Sibling Pairs / Observations 1528 / 2175 / 2670 / 9596

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable, a third-order bivariate polynomial in the ages of the two siblings, and a quartic time trend. Family background controls
are indicator variables for sibship size, parental education, parental age, and each of the two siblings’ birth orders. The coefficients on
all control variables, except for the time trend, are estimated separately based on whether the older or the younger sibling’s log wage is
used as the dependent variable for a given pair. For a given survey year, the sample comprises those individuals in the NLSY79 who have
left school for the first time, have non-missing data on their AFQT score and schooling, have a valid wage observation on a full-time job,
have non-missing sibling data including birth order and sibship size, and have a non-twin sibling who has not yet spent a year primarily
working. An interviewed sibling is classified as primarily working if she has worked in at least half the weeks since the last interview for
an average of at least 30 hours per week during the working weeks. In every survey year, any respondent satisfying these criteria is paired
with each of her siblings who has not yet spent a year primarily working, and the resulting sample of sibling pairs is divided into two
groups based on whether the respondent is older or younger than the inexperienced sibling. The analysis excludes any siblings whose first
year spent primarily working cannot be accurately determined because they have a positive number of weeks unaccounted for in the work
history data. The p-values from the delta method are reported for the Wald test of the null hypothesis that the coefficient on (Younger
Sibling’s AFQT × Older Sibling) times the coefficient on (Own AFQT × Younger Sibling) is equal to the coefficient on (Older Sibling’s
AFQT × Younger Sibling) times the coefficient on (Own AFQT × Older Sibling).
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Table D.4: Impact of Own and Sibling’s AFQT on Log Wage Immediately Before and After Siblings Reside in Different
Geographic Regions

Entire Sample Leave for New Job Stay at Old Job

Sibling’s AFQT × Before Separated 0.0285 0.0258 0.0245 0.0400 0.0213 0.0203
(0.0284) (0.0281) (0.0486) (0.0490) (0.0325) (0.0355)

Sibling’s AFQT × After Separated -0.0197 -0.0320 -0.0570 -0.0463 0.0032 0.0141
(0.0298) (0.0294) (0.0516) (0.0473) (0.0314) (0.0331)

Own AFQT × Before Separated 0.0929 0.0930 0.0792 0.0800 0.0976 0.0951
(0.0257) (0.0247) (0.0399) (0.0401) (0.0373) (0.0359)

Own AFQT × After Separated 0.1223 0.1060 0.1059 0.0629 0.1171 0.1116
(0.0277) (0.0286) (0.0471) (0.0481) (0.0331) (0.0329)

Own and Sibling’s Schooling Yes Yes Yes Yes Yes Yes
Family Background Controls No Yes No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.0431 0.0351 0.1468 0.1888 0.3937 0.7159

Families 263 263 203 203 220 220
Individuals 598 598 279 279 344 344
Sibling Pairs 692 692 329 329 380 380
Observations 1480 1480 680 680 800 800

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable, a third-order bivariate polynomial in the ages of the two siblings, and a quartic time trend. Family background controls
are indicator variables for sibship size, parental education, parental age, and each of the two siblings’ birth orders. The coefficients on all
control variables, except for the time trend, are estimated separately based on whether the dependent variable is the log wage observation
before or after the siblings are separated. To construct the dataset, the main estimation sample is expanded to include pairs of siblings
born in the same year and month as well as sibling pairs in which one or both members may be missing data on their number of older
siblings. The resulting sample is used to identify those sibling pairs for which there exists a consecutive pair of survey years such that
the two siblings are living in the same Census geographic region of the United States in the first year but not in the second year. The
observations on the sibling pair for the first and second years are included in the samples of sibling pairs before and after being separated,
respectively. The dataset excludes any sibling pair in which either member is recorded as residing in a region other than one of the four
Census geographic regions of the United States. A sibling pair is included in the new-job sample if there is a change between the two
years in the CPS job of the sibling whose wage is used as the dependent variable for the pair. Otherwise, the sibling pair is added to the
old-job sample. A sibling pair can belong to both the old-job and the new-job samples if the siblings in a family move between regions
in multiple survey years. The p-values from the delta method are reported for the Wald test of the null hypothesis that the coefficient
on (Sibling’s AFQT × After Separated) times the coefficient on (Own AFQT × Before Separated) is equal to the coefficient on (Sibling’s
AFQT × Before Separated) times the coefficient on (Own AFQT × After Separated).
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Table D.5: Impact on Log Wage of Own AFQT and AFQT of Younger or Older Sibling Working in Same or Different
Occupation, Industry, or Geographic Region

Currently Same Currently Same
Currently Same Region Occupation Industry Either or Both

Older Sibling’s AFQT × Younger Sibling 0.1043 0.0988 0.1021 0.0916 0.1037 0.0934
(0.0365) (0.0333) (0.0266) (0.0255) (0.0259) (0.0238)

Younger Sibling’s AFQT × Older Sibling -0.0259 -0.0217 -0.0245 -0.0006 -0.0220 -0.0081
(0.0351) (0.0338) (0.0288) (0.0273) (0.0264) (0.0246)

Own AFQT × Younger Sibling 0.0463 0.0417 0.0655 0.0757 0.0525 0.0578
(0.0344) (0.0360) (0.0302) (0.0291) (0.0267) (0.0272)

Own AFQT × Older Sibling 0.2164 0.1990 0.1521 0.1159 0.1759 0.1452
(0.0282) (0.0282) (0.0287) (0.0277) (0.0240) (0.0238)

Own and Sibling’s Schooling Yes Yes Yes Yes Yes Yes
Family Background Controls No Yes No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.0154 0.0129 0.0128 0.0631 0.0035 0.0103

Families 445 445 543 543 693 693
Individuals 970 970 1192 1192 1548 1548
Sibling Pairs 1092 1092 1360 1360 1804 1804
Observations 2204 2204 3718 3718 4900 4900

Always Different Always Different
Currently Different Region Occupation Industry Both

Older Sibling’s AFQT × Younger Sibling -0.0630 -0.0414 0.0052 -0.0013 0.0174 0.0344
(0.0352) (0.0357) (0.0407) (0.0381) (0.0489) (0.0528)

Younger Sibling’s AFQT × Older Sibling 0.0003 -0.0070 -0.0481 -0.0618 0.0365 0.0085
(0.0395) (0.0407) (0.0451) (0.0504) (0.0557) (0.0548)

Own AFQT × Younger Sibling 0.0730 0.1046 0.1002 0.1125 0.0325 0.0342
(0.0413) (0.0405) (0.0401) (0.0376) (0.0566) (0.0595)

Own AFQT × Older Sibling 0.0143 0.0144 0.0876 0.0890 -0.0011 -0.0073
(0.0402) (0.0438) (0.0481) (0.0469) (0.0624) (0.0570)

Own and Sibling’s Schooling Yes Yes Yes Yes Yes Yes
Family Background Controls No Yes No Yes No Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.7903 0.9733 0.3594 0.2932 0.7275 0.8731

Families 245 245 240 240 146 146
Individuals 555 555 545 545 325 325
Sibling Pairs 628 628 618 618 362 362
Observations 2188 2188 2238 2238 1306 1306

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable, a third-order bivariate polynomial in the ages of the two siblings, and a quartic time trend. Family background controls
are indicator variables for sibship size, parental education, parental age, and each of the two siblings’ birth orders. The coefficients on all
control variables, except for the time trend, are estimated separately based on whether the older or the younger sibling’s log wage serves
as the dependent variable for a given pair. The four Census geographic regions of the United States are used when determining whether
two siblings live in the same or different areas. A pair of siblings is labeled as currently having the same occupation (industry) if they
both belong to the same occupation (industry) in the relevant survey year. Two siblings are said to always be in different occupations
(industries) if the set of occupations (industries) reported by one sibling is disjoint from the set of occupations (industries) reported by the
other sibling over the entire course of the survey. The 2000 Census 3-digit occupation and industry codes are used to classify observations
on sibling pairs. Between the 1979 and 2000 rounds of the NLSY79, the occupation and industry of each job were originally recorded as
1970 Census 3-digit codes. These fields are converted to 2000 Census 3-digit codes based on the crosswalks available from the US Census
Bureau. The p-values from the delta method are reported for the Wald test of the null hypothesis that the coefficient on (Younger Sibling’s
AFQT × Older Sibling) times the coefficient on (Own AFQT × Younger Sibling) is equal to the coefficient on (Older Sibling’s AFQT ×
Younger Sibling) times the coefficient on (Own AFQT × Older Sibling).
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Table D.6: Relationship of Own AFQT and Height to Schooling and AFQT of Younger or Older Sibling

AFQT Height

Older Sibling’s Schooling × Younger Sibling 0.0466 0.0283 0.0189 0.0039
(0.0084) (0.0080) (0.0351) (0.0359)

Younger Sibling’s Schooling × Older Sibling 0.0451 0.0228 0.0467 0.0324
(0.0069) (0.0069) (0.0289) (0.0290)

Own Schooling × Younger Sibling 0.1535 0.1304 0.0725 0.0551
(0.0080) (0.0079) (0.0332) (0.0334)

Own Schooling × Older Sibling 0.1544 0.1348 0.0429 0.0275
(0.0082) (0.0079) (0.0313) (0.0326)

Older Sibling’s AFQT × Younger Sibling 0.0948 0.0709
—— —— (0.0945) (0.0925)

Younger Sibling’s AFQT × Older Sibling 0.0886 0.0785
—— —— (0.0789) (0.0801)

Own AFQT × Younger Sibling 0.3191 0.2754
—— —— (0.0946) (0.0985)

Own AFQT × Older Sibling 0.2719 0.2186
—— —— (0.0866) (0.0854)

Family Background Controls No Yes No Yes

Test for equality between sibling
schooling coefficients (p-value) 0.8908 0.5946 0.5531 0.5440
Test for equality between own
schooling coefficients (p-value) 0.9347 0.6768 0.5150 0.5444
Test for equality between sibling
AFQT coefficients (p-value) —— —— 0.9589 0.9500
Test for equality between own
AFQT coefficients (p-value) —— —— 0.7021 0.6547

Families / Individuals / Sibling Pairs 1993 / 4726 / 7074

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable and fixed effects for each of the two siblings’ years of birth. Family background controls are indicator variables for sibship
size, parental education, parental age, and each of the two siblings’ birth orders. The coefficients on all control variables are estimated
separately based on whether the respondent is the older or the younger sibling in a given pair. The dataset contains the first observation
on every sibling pair in the main estimation sample. However, the third and fourth columns exclude sibling pairs in which either member
is missing information on height. The table reports p-values for the Wald tests of the following restrictions: the coefficient on (Older
Sibling’s Schooling × Younger Sibling) is equal to the coefficient on (Younger Sibling’s Schooling × Older Sibling); the coefficient on (Own
Schooling × Younger Sibling) is equal to the coefficient on (Own Schooling × Older Sibling); the coefficient on (Older Sibling’s AFQT
× Younger Sibling) is equal to the coefficient on (Younger Sibling’s AFQT × Older Sibling); the coefficient on (Own AFQT × Younger
Sibling) is equal to the coefficient on (Own AFQT × Older Sibling).
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Table D.7: Impact of Own AFQT and AFQT of Younger or Older Sibling on Non-Wage Outcomes

Married Has Kids Disabled In Jail

Older Sibling’s AFQT × Younger Sibling 0.0046 -0.0186 0.0004 -0.0031
(0.0090) (0.0086) (0.0038) (0.0014)

Younger Sibling’s AFQT × Older Sibling 0.0043 -0.0172 0.0040 -0.0013
(0.0099) (0.0097) (0.0045) (0.0013)

Own AFQT × Younger Sibling 0.0364 -0.0069 -0.0181 -0.0044
(0.0106) (0.0102) (0.0043) (0.0016)

Own AFQT × Older Sibling 0.0656 0.0016 -0.0308 -0.0043
(0.0107) (0.0114) (0.0052) (0.0016)

Own and Sibling’s Schooling Yes Yes Yes Yes
Family Background Controls No No No No

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.8387 0.5831 0.6579 0.4433

Families / Individuals / Sibling Pairs / Observations 2169 / 5168 / 7988 / 119708

Married Has Kids Disabled In Jail

Older Sibling’s AFQT × Younger Sibling 0.0074 -0.0168 -0.0005 -0.0033
(0.0091) (0.0087) (0.0038) (0.0014)

Younger Sibling’s AFQT × Older Sibling 0.0095 -0.0166 0.0041 -0.0017
(0.0098) (0.0096) (0.0044) (0.0013)

Own AFQT × Younger Sibling 0.0404 -0.0049 -0.0186 -0.0047
(0.0106) (0.0102) (0.0042) (0.0016)

Own AFQT × Older Sibling 0.0662 0.0046 -0.0301 -0.0044
(0.0108) (0.0115) (0.0052) (0.0015)

Own and Sibling’s Schooling Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes

Test for equality of ratios of own AFQT
impact to sibling AFQT impact (p-value) 0.8919 0.5113 0.4849 0.5541

Families / Individuals / Sibling Pairs / Observations 2169 / 5168 / 7988 / 119708

Note: Huber-White standard errors, clustered at the family level, are reported in parentheses. All specifications control for the race,
gender, region of residence, and urban location of the members of each sibling pair. Included also are indicators for missing data on a
given variable, a third-order bivariate polynomial in the ages of the two siblings, and a quartic time trend. Family background controls
are indicator variables for sibship size, parental education, parental age, and each of the two siblings’ birth orders. The coefficients on all
control variables, except for the time trend, are estimated separately based on whether the older or the younger sibling’s outcome is used
as the dependent variable for a given pair. The dataset is constructed by expanding the main estimation sample to include observations
on sibling pairs in which one or both members may not have valid wage data on a full-time job and by limiting the resulting sample to
observations on sibling pairs in which both members have non-missing data on marital status, presence of children, health restrictions, and
residence type. The p-values from the delta method are reported for the Wald test of the null hypothesis that the coefficient on (Younger
Sibling’s AFQT × Older Sibling) times the coefficient on (Own AFQT × Younger Sibling) is equal to the coefficient on (Older Sibling’s
AFQT × Younger Sibling) times the coefficient on (Own AFQT × Older Sibling).

25


