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Abstract. In this paper, we review and unite the literatures on returns to
schooling and Bayesian model averaging. We observe that most studies seeking
to estimate the returns to education have done so using particular (and often
different across researchers) model specifications. Given this, we review Bayesian
methods which formally account for uncertainty in the specification of the model
itself, and apply these techniques to estimate the economic return to a college
education. The approach described in this paper enables us to determine those
model specifications which are most favored by the given data, and also enables us
to use the predictions obtained from all of the competing regression models to
estimate the returns to schooling. The reported precision of such estimates also
account for the uncertainty inherent in the model specification. Using U.S. data
from the National Longitudinal Survey of Youth (NLSY), we also revisit several
‘stylized facts’ in the returns to education literature and examine if they continue to
hold after formally accounting for model uncertainty.
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‘It is my impression that rather generally, not just in econometrics, it is
considered decent to use judgement in choosing a functional form, but indecent
to use judgement in choosing a coefficient. If judgement about important things
is quite all right, why should it not be used for less important ones as well?’ –
J.W. Tukey (1978), taken from Poirier (1995, page 524).
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1. Introduction

In the above quote Tukey points out that researchers (not just econometricians!)
implicitly use rather strong prior information to arrive at the selection of a
particular model or set of models, but then become leery of incorporating further
prior beliefs regarding the coefficients within that model. Although one could
appeal to Tukey’s quote in defense of the practice of incorporating prior informa-
tion about a set of parameters, one could also argue that researchers should not
impose such strong prior information to select their model(s), which is, perhaps,
the ‘important’ thing.

One topic which receives considerable attention in the economics literature, and
seems to be characterized by strong (and heterogeneous across researchers) prior
beliefs regarding the appropriate model specification, is the estimation of the eco-
nomic returns to education. A quick search of 9 journals1 in JSTOR over the period
1970–1995 produced 176 citations with ‘Education’ appearing in the title and 53 with
‘Schooling’ in the title.2 These numbers are typically smaller than, though perhaps
competitive with, the results obtained when searching for the appearance of other
words in article titles, such as ‘exchange rate’ (131 articles), ‘inflation’ (333 articles),
and ‘unemployment’ (361 articles). The amount of work done on this topic relative
to the amount done on other key issues in economics clearly suggests the importance
of identifying the true economic returns to schooling.

Given this vast amount of work, it is probably not surprising to learn that
different researchers have used a variety of different specifications to arrive at
estimates of the economic returns to education. In this literature, numerous studies
have described the need to control for various explanatory variables such as
measures of ‘cognitive ability,’ or ‘sheepskin effects’ (i.e. nonlinearities upon degree
completion). As these variables are potentially correlated with education, or
obviously affect the shape of the schooling-earnings relationship, their inclusion
can have a potentially significant impact on estimated returns to education.

To illustrate the existence of specification uncertainty in this literature, we have
reviewed 38 different articles, chosen with preference given to articles published
after 1970 whose primary focus was on the ‘returns to schooling’ and appeared in
general-interest economics journals, and recorded the specifications used in these
studies. In our review of these 38 studies, we determined if any attempt was made
to control for cognitive ability or nonlinearities upon grade completion (i.e. at 12
and 16 years of schooling).3 We additionally record if the study adds controls
for family characteristics such as parental education or income, a marriage
indicator, regional variation in the pricing of education, and variation in returns
to education with measured cognitive ability and family characteristics. Presented
in Table 1 below are the probabilities that the 38 reviewed studies attempted to
control for each of these variables.

The results in Table 1 suggest that researchers are not sure of the ‘correct’
functional form of a log wage equation. Most studies (nearly 70 percent) made
some attempt to control for cognitive ability, while fewer studies (nearly 60
percent) permitted possible nonlinearities in the schooling-earnings relationship.
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Approximately one-half of the studies added controls for family characteristics,
while few studies tried to control for variation in returns to schooling across
regions, or variation in returns with ability or family characteristics.

The standard approach in this literature in the presence of specification uncer-
tainty involves ‘pre-testing,’ or estimating a variety of regression relationships and
then reporting the estimates associated with a single preferred specification (per-
haps by inspection of the associated t–statistics). As is well-known in the statistics
and econometrics literatures, this approach is replete with deficiencies (see, e.g
Berger and Pericchi (2001)). First, it is important to recognize that the standard
error associated with the model-selected point estimate is not simply the standard
error obtained within the selected model. These are incorrect as they are obtained
conditioned on the model, and do not reflect the uncertainty attributable to the
selection of the model itself. Second, the process of model selection ignores the
point predictions obtained from all of the other competing models, and simply
places probability one on the point prediction obtained from the selected model.
In general, we might think that the data do not unanimously favor a particular
specification, but instead, spreads its affection over a variety of competitors.
Hence, we might think of replacing model selection with model averaging. In the
model averaging framework, we will obtain point predictions from all possible
competing models, determine ‘weights’ associated with each specification, and
report as our final estimate a weighted average of the model-specific predictions.4

In this paper, we describe and empirically investigate the impact of specification
uncertainty on point estimates of the returns to education. We recognize from
Table 1 that researchers have used a variety of specifications to estimate the
returns to schooling, while the question of which specification should be used
has not been thoroughly addressed in this literature. As described in the following
section, many studies have described the empirical importance of a subset of the
variables mentioned in Table 1 and argued for their inclusion in regression
equations, while few studies have systematically addressed the empirical import-
ance of all of these variables.

Given this seemingly unresolved issue, we describe a method for determining
those specifications that are most favored by the given data and apply model
averaging techniques to estimate the economic return to the receipt of a college

Table 1. Probabilities of Including Variables among 38 Studies Surveyed.

Variable Probability of Inclusion

Ability .68
I(Ed� 12) .58
I(Ed� 16) .58
Family Characteristics .47
Marriage .29
Ed*Ability .21
Ed*Region .05
Ed*Family .02
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degree. We do this in a Bayesian approach, since in the Bayesian setting we are
able to assign posterior probabilities to the competing regression models. Essentially,
we think of different models as different ‘parameters,’ and describe methods
for (1) determining the posterior probabilities associated with different models,
(2) obtaining posterior distributions of the return to a college degree which are
not dependent on a particular model, and (3) computing standard errors of
parameters of interest which incorporate the uncertainty in the model itself.

We review some of the literature on Bayesian model selection and model
averaging, and discuss its implementation in practice. Although our focus in this
paper is primarily on implementation of these methods, it is important to note that
Bayesian model averaging has a number of desirable properties, including (1) giving
better ‘predictive performance’ than predictions obtained from any particular
model in terms of the expected log predictive score (Madigan and Raftery
(1994)), (2) adapting easily to the comparison of non-nested models, (3) building
in penalties for model complexity, (4) formally accounting for the uncertainty of the
model specification itself in the reported precision of parameters of interest, and
(5) adapting to select the ‘true’ model (with sufficient data), if the true model is
contained in the set of competing models. More complete discussions of the use of
Bayesian model selection and model averaging can be found in Poirier (1985, 1991),
Madigan and Raftery (1994), Gelfand and Dey (1994), Draper (1995), Kass and
Raftery (1995), Kass and Wasserman (1995), Raftery, Madigan and Hoeting
(1997), Hoeting et al (1999), Wasserman (2000), Berger and Pericchi (2001), and
Fernandez, Ley and Steel (2001a, 2001b), among others.

The outline of the paper is as follows. In section 2, we review several studies in
the returns to schooling literature, and describe procedures for Bayesian model
averaging. The National Longitudinal Survey of Youth (NLSY) data used in this
analysis is described in section 3. In section 4, we illustrate our methods using a
restricted set of models while in section 5, we employ our methods in a much
larger model space which consists of over 262,000 different specifications. We
determine the specifications that are most favored by the NLSY data, provide
clear evidence of model uncertainty, and revisit some ‘stylized facts’ in the
education literature to see if they continue to hold after accounting for such
uncertainty. The paper concludes with a summary in section 6.

2. A Review of Previous Studies and Bayesian Model Averaging

To estimate the return to schooling, the vast majority of studies employ a
regression model of the following form:5,6

yi ¼ Zi� þ Edi�þ �i; ð1Þ

where yi is typically the log wage or log earnings of individual i, Ed denotes years
of education completed, Z denotes a set of other covariates affecting wages, and �
is our primary parameter of interest, which we interpret as measuring a private
return to schooling.
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2.1 Previous Studies

This baseline regression, similar to that described in pioneering work by Mincer
(1958, 1970, 1974) and Becker and Chiswick (1966), has seen many general-
izations. In fact, we can rationalize the contributions of many previous studies
in this literature as simply describing the need to control for additional variables
in Z in order to obtain accurate estimates of �. This is true, for example, in studies
concerned about self-selection into higher education, in which case Z might
contain inverse-Mills ratio terms in order to obtain selection-corrected conditional
mean functions given a joint normality assumption (Willis and Rosen (1979) and
Heckman, Tobias and Vytlacil (2001, 2003)). More robust techniques have been
developed in recent work that incorporate the use of the propensity score in this
context (e.g. Ahn and Powell (1993) andHeckman, Ichimura, Smith and Todd (1998)).

Other studies in this literature have simply focused on a few key variables
which should appear in Z, and have derived methods for estimating returns to
schooling in the presence of these variables. In the following sections, we review
several key variables whose inclusion has garnered considerable attention, and
also cite key studies that argued for the need to control for these variables.

2.1.1 Ability and Family Background

Numerous studies in the education literature have emerged describing various
ways to control for ability and family characteristics when estimating the returns
to education. ‘Twins (or siblings) studies,’ for example, (e.g. Ashenfelter and
Krueger (1994), Miller, Mulvey and Martin (1995), Altonji and Dunn (1996),
Behrman, Rosenzweig and Taubman (1996), Ashenfelter and Rouse (1998),
Arias, Hallock and Sosa-Escudero (2001)) provide a creative way for controlling
for unobservable ability and family endowments. The approach underlying these
studies is to find data on twins or siblings whose ability and family characteristics
are arguably identical, thus allowing researchers to purge regression specifications
of these variables by differencing across the twins or siblings. Analysis of the
specification purged of these effects (under certain conditions) will provide con-
sistent estimates of the return to schooling parameter, as the unobserved effects
which are potentially correlated with schooling have been differenced out.

The marginal role of cognitive ability itself has been featured in numerous
articles (e.g. Ashenfelter and Mooney (1968), Weisbrod and Karpoff (1968),
Griliches and Mason (1972), Blackburn and Neumark (1993), Murnane, Levy
and Willett (1995), Grogger and Eide (1995), and Heckman and Vytlacil (2001)),
while family background variables have been paramount in others studies
(Morgan and David (1963), Morganstern (1973), Behrman and Wolfe (1984),
and Lam and Schoeni (1993)).

As further evidence of the vast literature dedicated to describing methods for
controlling for these factors, consider the quote by Blackburn and Neumark
(1995, page 217):

‘One of the longest-running debates in empirical labor economics regards bias
in OLS estimates of the economic return to schooling. The overriding concern
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pertains to individual-specific productivity components not reflected in the
usual human-capital measures, as these ability components may be positively
correlated with both wages and schooling.’

2.1.2 Nonlinearities in the Schooling-Log Wage Relationship

Another source of specification uncertainty arises when trying to describe the
function mapping schooling to earnings. In particular, several studies have
focused on the importance of controlling for nonlinearities in education upon
degree completion or ‘sheepskin effects’ (e.g. Hungerford and Solon (1987),
Belman and Heywood (1991), Heywood (1994) and Heckman Layne-Ferrar and
Todd (1996), Jager and Page (1996)). These studies note that the marginal return
to an extra year of schooling may not be constant over the schooling support, and
in particular, we might see jumps or premiums paid upon the completion of
degrees – such as a high school degree, Bachelor’s or Master’s degree.

Hungerford and Solon (1987, page 177) describe the empirical importance of
these nonlinearities as they state:

‘All of our results point to the existence of sheepskin effects in the returns to
education. This finding suggests, first, that treating the log wage as a smooth
function of years of education, as is conventionally done in the earnings
function literature, gives an inferior fit to the data.’

2.1.3 Returns to Schooling Varying with Ability

Rather than simply describing the need to control for measured cognitive ability,
other studies argued for the additional need to include ability-education interactions.
These studies note that the receipt of an additional year of schooling may have
differential impacts across individuals, and this variation can potentially be
explained through differences in individual ability. For example, Hause (1972),
Blackburn and Neumark (1993), Murnane, Levy and Willett (1995), Grogger
and Eide (1995), Heckman and Vytlacil (2001), and DiNardo and Tobias (2001)
and Tobias (2003) investigate the question of whether returns to schooling vary with
ability. Generally, these studies find that higher ability individuals benefit more (in
terms of wages) from additional years of education than lower ability individuals.

For regression models failing to include an ability-education interaction, Hause
(1972, page S111) states:

‘This [specification] does not seem plausible, since it implies that people of low
ability have a greater incentive to invest in schooling. The increase in earnings
from an increment of schooling is the same for all, regardless of ability, but the
opportunity cost of foregone earnings while acquiring the schooling is lower
for those with less ability. This argument implies the earnings function is
misspecified unless ability increases the marginal product of schooling.’

Finally, other studies have described the need to control for still other explana-
tory variables when attempting to estimate the return to education. Korenman
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and Neumark (1991) discuss the importance of including a marriage variable in
earnings regressions, Heckman, Layne-Ferrar and Todd (1996) discuss the poten-
tial for regional variation in the pricing of education (and schooling quality),
and Altonji and Dunn (1996) allow returns to schooling to vary with family
characteristics by interacting education with parental education. Thus, all of the
‘optional’ variables mentioned in Table 1 have a precedent in the literature – with
some studies taking a strong stance on the inclusion of particular variables among
this set – yet few studies examining the combined effect of all of these variables.

What seems called for, then, is a study which considers the set of all possible
regression models based on the ‘optional’ variables appearing in Table 1 (and
others), and determines the specifications most favored by the given data. Since
point estimates of the returns to education will surely be affected by including or
failing to include these particular variables, it is important to seek out those
specifications that are most favored by the given data. Moreover, we will not
simply choose a particular model among this large set of competitors, but rather
we will use the information provided by all of the models to obtain point
estimates of the return to a college degree. Additionally, our approach will
formally incorporate the uncertainty in the model itself when reporting standard
errors of parameters of interest.

2.2 Bayesian Model Averaging

Given the discussion of the previous sections, the problem we will address in this
paper is a standard problem of variable selection in the context of a typical
log-wage equation:

y ¼ W�þ X� þ �; � � Nð0; �2InÞ: ð2Þ

In the above, y denotes the log of hourly wages, W denotes a set of fixed
explanatory variables that will appear in all of our regressions,7 and X is a n� k
matrix of k ‘optional’ covaraites. The inclusion or exclusion of the elements of X
will define the set of possible regression models under consideration.

The approach in this paper is to note that all of these possible specifications will
provide the researcher with a point prediction of some parameter of interest, such
as the private return to an additional year of schooling. Since we have k variables
that could be included in our regression, the set of all possible models (or
regressions) has 2k elements. In this paper we will employ an approach that
uses the information provided by all of these regressions, determines those speci-
fications that receive the most support from the data, and produces standard
errors that formally account for uncertainty in the model specification itself.

Throughout our investigation, our primary parameters of interest are of the
following forms:

�16;12 ¼ EðyjEd ¼ 16;X�Ed ¼ X�EdÞ � EðyjEd ¼ 12;X�Ed ¼ X�EdÞ:

and
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�16;12jA¼A0 ¼EðyjEd ¼ 16;A ¼ A0;X�Ed;A ¼ X�Ed;AÞ
� EðyjEd ¼ 12;A ¼ A0;X�Ed;A ¼ X�Ed;AÞ;

where we have used the notation X�xj to denote all variables other than xj.
The first parameter (multiplied by 100) gives the percentage increase in hourly

wages resulting from having a 4-year college degree relative to a high school
degree, holding all other variables constant and equal to mean values. The second
parameter is the same effect, but gives the return for those individuals with ability
fixed at A0. For example, if A0¼ 1, then �16,12jA¼1 will be interpreted as the
return to a 4-year degree for individuals one standard deviation above the mean
of the ability distribution.

2.2.1 Basic Elements of Discrete Model Averaging

We begin our brief discussion of the mechanics behind model averaging by noting
the following equation which follows from the law of total probability:

pð�jyÞ ¼
XT
i¼ 1

pð�jMi; yÞPrðMijyÞ: ð3Þ

In the above, Mi indexes the T different models, p generically refers to a density
function and y denotes the observed data.

The above equation states that the posterior distribution of � which is not
conditioned on a particular model is simply obtained as a weighted average of the
model-specific posterior distributions p(�jMi,y), where the terms Pr(Mijy) serve as
the weights. These weighting terms are called model probabilities, as they simply
give the posterior probability in support of model Mi among the class of competing
models.

Thus, to obtain information about some quantity of interest, such as the return
to a 4 year degree, without conditioning on a particular model, (3) provides us
with the answer. We simply compute the desired effect for all the models we can
imagine, and weight the predictions from each model ‘strategically.’ The actual
procedure for carrying out the weighting is determined by calculating the poster-
ior probability associated with each competing model.

The calculation of the posterior model probabilities is a non-trivial exercise,
and certainly can make the implementation of model averaging quite difficult
in general. Fortunately, for the case of the standard linear regression model
examined here, it is possible to calculate these model probabilities analytically8

and thus calculation of quantities as in (3) becomes possible when the number of
optional explanatory variables is not excessively large.

To summarize in non-technical terms, one can carry out the process of
(Bayesian) model averaging by proceeding as follows:

1. Calculate the model-specific posteriors p(�jMi, y) for all of the possible
competing models.
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2. Compute the posterior model probabilities Pr(Mijy) for all the competing
models. For the linear regression model examined here, closed-form solutions
exist for the calculation of these quantities (Expressions provided in appendix).

3. Use the posterior model probabilities obtained from step 2 together with the
model-specific posteriors from step 1 to obtain p(�jy) which does not depend
on a particular model, as in equation (3).

It is important to recognize that the procedure outlined above is feasible when the
number of candidate models is reasonably small. However, in a regression problem
with a large number of ‘optional’ variables (e.g. k� 20), explicit evaluation of every
model becomes computationally prohibitive. In these situations, one possible solu-
tion is to use the Markov Chain Monte Carlo Model Composition (MC3) method
(e.g. Madigan and York (1995), Raftery, Madigan and Hoeting (1997) and Fernan-
dez, Ley and Steel (2001a)) to additionally search throughout the model space. In
this paper, however, we do not employ such methods, but instead, analytically
compute the probabilities associated with more than 262,000 candidate models.

2.3 Why Model Averaging?

The previous section described a method for obtaining model-averaged estimates
in the context of a standard regression model. Our goal in this paper is to apply
these techniques to estimate the returns to education, and to argue that use of
these techniques offers several advantages over procedures conventionally imple-
mented in the literature.

First, it is important to recognize that the model averaging framework is
‘efficient’ in the sense that it uses information provided by all of the regression
models to obtain our final estimates of the return to schooling, as in equation (3).
It is perhaps more commonplace to do a series of ‘pre-tests’ to arrive at some final
preferred specification, and then to report the point estimates and standard errors
from that selected specification. What equation (3) shows is that the predictions
from all of the models should be used to calculate the final (posterior) distribution
p(�jy). Model averaging will reduce to more conventional model selection only if
the posterior model probabilities unanimously favor one model and place zero
probability on all other competing models. In general, this will not be the case, as
the data will divide its loyalties over a variety of competing specifications and will
not unambiguously select one particular specification.

Second, the model averaging framework produces standard errors associated
with estimated returns to schooling that are ‘correct’ in the sense that they also
formally account for model uncertainty. To further support this point, let � be
some parameter of interest. It is straight-forward to show:

Varð�jyÞ ¼ EM ½Varð�jM; yÞ� þ VarM ½Eð�jM; yÞ�:

Thus, the model averaged variance on the left hand side which is not conditioned
on any particular model is equal to the average variance in our parameter of
interest across the models (the first term) plus the variation in point predictions
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across the models (second term). Often-reported model-selected variance
estimates tend to approximate the first term, but clearly ignore the second. For
this reason, model averaged variances can be much larger than model-selected
variances, as they correctly account for the fact that the model selection process is
itself uncertain.9

In terms of returns to schooling, Table 1 suggests that specification uncertainty
is indeed a serious problem in this literature. Some studies have controlled for
nonlinearities in the schooling-earnings relationship, others have described the
need to control for ability and family background characteristics, and yet others
have not attempted to control for these variables. Our approach is to use the
Bayesian model averaging paradigm to embrace model uncertainty and obtain
posterior distributions associated with the receipt of a college degree that are not
conditioned on particular models.

3. The Data

The data employed in this analysis are taken from the National Longitudinal
Survey of Youth (NLSY). The NLSY is a widely-used panel survey containing a
wealth of demographic information as well as information on the labor market
experiences of a sample of relatively young men and women in the U.S. The survey
begins in 1979 (where the respondents range in age between 14 and 22), and we
obtain earnings and other data until 1993. To focus on possible dynamic changes in
the earnings relationship, we obtain results year-by-year for the period 1985–1993.

The dependent variable used is the log of hourly wages at the respondent’s most
recent job. Using test scores from the ASVAB (Armed Services Vocational Aptitude
Battery) which was administered to the NLSY participants, we construct a uni-
variate ‘ability’ measure from the 10 ASVAB component tests. This ability measure
is constructed from the standardized residuals of all of the 10 test scores after
purging the tests of an age trend, since the participants vary in age at the time of
the test and age is a strong predictor of test scores. Our final univariate ability
measure is then standardized to have mean zero and unit variance. We also limit our
focus to white males reporting hourly wages between $1 and $ 100 in the given year.

To make things tractable and to focus on key ideas, we limit the number of
‘optional’ variables and thus choose to keep a subset of these variables as ‘fixed.’
These fixed variables include a constant, indictors for residence in the northeast
northcentral and south, potential labor market experience and its square, an
urban indicator, and a linear education term. Thus, our set of competing models
will be indexed by all combinations of a set of ‘optional’ explanatory variables,
and we will require that the set of core explanatory variables above appear in all
of our regressions.

In our most general specification, we allow a variety of different variables to
appear. Our optional variables consist of 4 nonlinearities in education (I(Ed� 12),
I(Ed� 16), Ed*I(Ed� 12), and Ed*I(Ed� 16)), which allow for jumps upon
degree completion, and also permit slopes to vary across the education support.
We control for measured cognitive ability (A), and allow for interactions of
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ability with schooling (Ed*A, A*I(Ed� 12), A*I(Ed� 16)). The addition of these
variables relax the requirement that the marginal return to a unit of education is
linear in ability over the education support.10 We also add a marriage indicator
(Married), highest grade completed by the respondent’s mother and father
(Hgcmom and Hgcdad), interactions of education with the parental education
variables, (Ed*Hgcmom and Ed*Hgcdad), education interacted with three region
indicators: (Ed*Ncent, Ed*Neast, Ed*South), education interacted with an urban
indicator (Ed*Urban) and the local unemployment rate (Ed*Urate). In total, this
creates 18 optional variables in our most general model, so that we will entertain
218¼ 262,144 specifications!

4. A ‘Small World’ of 16 Models

To illustrate our methods we first analyze a restricted set of models with only 4
optional variables, and thus allow for a total of 24¼ 16 possible models. As stated
previously, the ‘fixed’ variables include an intercept, indicators for residence in
the northeast, northcentral and south, an urban indicator, potential labor market
experience and its square, and a linear education term. Our four optional vari-
ables include ability, an ability-education interaction, and indicators for the
completion of at least 12 and 16 years of schooling (i.e I(Ed� 12) and
I(Ed� 16)), respectively. These are perhaps the key variables whose inclusion
has attracted the most attention in this literature, and thus investigation of
this restricted class of models provides a useful way to begin illustrating the
application of our methods.

4.1 Empirical Results

Presented in Table 2 are the posterior probabilities of including the optional
variables using a cross-section of 1990 data from the NLSY. In our model
averaging framework, these probabilities are obtained by finding all of the
competing models where the optional variable of interest appears, and summing
over all of the posterior probabilities associated with those models.

From the table, we see strong evidence in favor of the inclusion of the ability
variable, and modest evidence in favor of the inclusion of the ability-education
interaction and nonlinearity at the completion of 4 years of college education.
There is very little support for any premium paid for the completion of a high
school degree, as the posterior probability that we should include this variable in
our model is less than 2 percent.

4.2 Posterior Model Probabilities

In Table 3 below, we break our results down in more detail, and present the
posterior probabilities associated with each of our 16 different competing models.
In addition, we also present our point-predictions of the return to the receipt of a
four-year degree for each of these competing models.
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It is important to note from Table 3 that there is considerable evidence of
model uncertainty. No model of the 16 competitors is ever assigned more than
50 percent of the weight, and three models which include ability on its own,
an ability education interaction on its own, and both ability and a nonlinearity at
16 years of schooling consistently receive most (87 percent) of the weight. We also
note that the range of our point estimates of the return to a college education is
quite large – they imply that the receipt of a 4-year college education (relative to
12 years of schooling) increases hourly wages between 30–50 percent, depending
on the model employed. In particular, if we would have conditioned on the
specification containing only a nonlinearity at 16 years of schooling, we would
report that a four year college degree tends to increase wages by 50 percent. When
using a specification containing only ability and no interactions or nonlinearities,
we would report a 30 percent increase in hourly wages. Thus, we have preliminary
evidence that (1) different models can certainly give different predictions about

Table 2. Posterior Probabilities of Including Alternate Variables Using Different
Approaches.

Probability

Ability (A) 69.46
Ability*Ed 36.16
I(Ed� 12) 1.60
I(Ed� 16) 30.91
E (�16,12jData) .339
Std (�16,12jData) .067

Table 3. Posterior Model Probabilities and E (�16,12jMk) for 16 Candidate Models.

Variable Included? (Y/N) Model Probability
A Ed*A I12 I16 Pr(Mijy) E (�16,12jM,y)

N N N N .00 .407
Y N N N 40.7 .306
N Y N N 24.5 .314
Y Y N N 2.93 .306
N N Y N .00 .396
Y N Y N .58 .315
N Y Y N .33 .310
Y Y Y N .05 .316
N N N Y .00 .497
Y N N Y 22.1 .405
N Y N Y 5.59 .402
Y Y N Y 2.60 .413
N N Y Y .00 .476
Y N Y Y .44 .396
N Y Y Y .16 .387
Y Y Y Y .05 .406
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key parameters of interest, and (2) there is non-ignorable posterior uncertainty
regarding the appropriate specification of the earnings equation.

5. Empirical Results

Given the procedure just illustrated, we now turn these methods loose on an
elaborated design that includes 18 optional explanatory variables for a total of
218¼ 262,144 models.11 We employ these techniques to revisit the following
questions which have received attention in the schooling literature: (1) What are
the unconditional estimates of the return to a college education? (2) Which specifi-
cations are most favored by the NLSY data? (3) Does there appear to be evidence
of model uncertainty, or does the data tend to select one model with very high
probability? (4) Is there evidence of ‘sheepskin effects,’ or nonlinearities upon
degree completion? (5) Is measured cognitive ability an important determinant of
earnings, and do returns to schooling vary with this measure of ability? (6) Are
the returns to schooling increasing over time, and if so, is the increase experienced
primarily by those of highest ability?

5.1 Summary of Model Exploration

For each year from 1985–1993, we obtain posterior probabilities associated with
each of our 262,144 candidate models.12 To summarize the results of this model
exploration, we present in Table 4 the posterior probabilities that the coefficients
on the optional variables are not equal to zero. In the limiting case where there is
no model uncertainty, the data will favor one particular specification, and those
variables appearing in that specification will be non-zero with probability one,
while those absent from the selected specification will be zero with probability one.

From Table 4 we see several important points which may help guide the
functional forms used in future research. First, we see strong and consistent
evidence for the inclusion of measured ‘ability’ across virtually all years studied
(fifth row), and that the returns to schooling vary with measured ability (sixth
row), since the Education-Ability interaction tends to receive large weight across
the years studied. We also note that the importance of the ability-education
interaction may call into question the structural assumptions used in twins
studies, where ‘ability’ or family endowments enter as separate additive terms,
and thus can be differenced out using data on twins or siblings. In order to
identify an education effect, such studies need education to differ across the
twins or siblings. However, if the true model also contains an ability-
education interaction, and if education varies across the twins, then the
differencing technique does not purge the model of the ability-education interac-
tion. Table 4 is suggestive of the empirical importance of this variable.

We also see that the evidence supporting the existence of nonlinearities upon
degree completion is strongest for those with at least 16 years of schooling, and
this effect also tends to be strongest at the later years of the sample. This finding
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may be consistent with the notion of ‘skill-biased technological change.’ For the
later years in the sample, the data reveals its preference for models with the
nonlinearity at 16 years of education, which is suggestive of a evolving U.S.
labor market which has changed to place a growing premium on those of the
highest skill, where skill is measured by years of schooling. Regardless of the
interpretation, the data suggest evidence of nonlinearities in the schooling-log
wage relationship, and that the attainment of a 4-year degree matters, while
simply completing your high school degree has much less of an effect.

What is clear from Table 4 is the data reveal a preference for models which
include measured ability, a marriage indicator, an ability-education interaction,
and a nonlinearity upon receipt of a 4-year college degree (at least for the later
years of the sample). The data seem to be less decisive on the inclusion of the
remaining variables. That is, there appears to be a considerable amount of model
uncertainty. In the absence of such uncertainty, the data would tend to select a
particular model with probability one, and thus the entries in Table 4 would either
be 100 or zero, and the ‘true’ specification would include all of the variables
whose probability of being non-zero were 1. Here, this is clearly not the case, and
we are not certain what is the ‘correct’ specification of the log wage equation.

In Tables 5a and 5b, we compare the performances of individual models and
determine the particular specifications that are most favored by the data. Speci-
fically, we find the top 10 of the 262,144 models using data from 1990, report their
posterior probabilities, and also determine how these 10 models ranked in the
remaining years of the sample. To save notation, we define the top ten models as

Table 4. Pr(�j 6¼ 0jData) as a Percentage: 1985–1993.

Year
Variable 1985 1986 1987 1988 1989 1990 1991 1992 1993

I(Ed� 12) 8.18 9.63 16.65 1.97 4.14 2.45 2.80 21.95 4.60
I(Ed� 16) 3.01 4.97 1.60 1.64 4.07 35.58 75.88 63.41 66.16
Ed*I(Ed� 12) 7.68 9.27 18.07 2.38 4.37 3.10 3.38 36.46 6.51
Ed*I(Ed� 16) — — 1.61 1.63 4.43 23.38 61.16 45.77 47.68
A 59.56 81.38 42.20 18.66 58.52 69.17 74.66 80.18 71.51
A*Ed 41.46 37.21 31.87 43.31 44.09 33.82 41.73 28.48 37.26
A*I(Ed� 12) 6.27 11.94 9.02 45.41 5.36 7.32 8.93 8.64 9.06
A*I(Ed� 16) 3.80 5.17 1.35 1.56 2.02 4.44 21.85 4.93 14.47
Married 100.00 98.29 99.99 99.98 91.84 98.80 99.99 100.00 100.00
Hgcmom 1.41 3.20 1.52 1.47 2.16 1.30 1.45 1.46 2.87
Hgcdad 1.48 4.05 1.40 1.63 3.18 5.31 4.05 11.91 38.63
Ed*Hgdmom 1.88 4.24 2.23 2.27 2.82 1.96 2.15 2.26 3.51
Ed*Hgcdad 1.84 4.13 1.81 2.10 5.10 4.84 4.73 10.89 27.30
Ed*Neast 16.83 11.09 8.03 9.26 12.79 6.52 6.73 7.86 10.32
Ed*NCent 9.78 48.52 29.16 15.91 7.94 6.38 8.71 19.25 6.17
Ed*West 23.24 10.63 10.74 8.33 8.67 8.81 11.47 7.81 6.35
Ed*Urban 36.14 14.73 2.02 5.09 3.24 7.12 2.80 1.15 2.56
Ed*Urate 11.55 9.76 22.18 9.72 12.95 7.28 7.00 7.97 9.21
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models M1!M10, (using 1990 data). Table 5A shows the variables included in
these top 10 models, while Table 5B compares their performance for the remain-
ing years of the sample.

As suggested by Table 4 and further illustrated in Table 5A, the top models in
1990 always contain the marriage variable, and typically contain ability, an
ability-education interaction, and nonlinearities at 16 years of education. Of
these top 10 models, the data tend to reveal its preference for parsimonious

Table 5A. Top 10 Models in 1990 and Their Included
Variables.

M1 A, Married
M2 A, Ed� 16, Married
M3 (Ed*A), Married
M4 A, I(Ed� 16) * Ed, Married
M5 A, I(Ed� 16), I(Ed� 16)*Ed, Married
M6 (Ed*A), I(Ed� 16), Married
M7 (Ed*A), I(Ed� 16)* Ed, Married
M8 (Ed*A), I(Ed� 16), I(Ed� 16)* Ed, Married
M9 I(Ed� 12)*A, Married
M10 A, West*Ed, Married

Table 5B. Model Rank and Pr(MjjData). Top 10 Models in 1990.

Model (Mj) Year
[Pr (MjjData)] 1985 1986 1987 1988 1989 1990 1991 1992 1993

Rank M1 1 1 1 3 1 1 70 119 31
[(Pr(M1jData)] [12.40] [12.53] [10.22] [6.81] [23.40] [13.05] [.17] [.12] [.53]

Rank M2 36 21 99 77 26 2 3 1 1
[(Pr(M2jData)] [.42] [.56] [.13] [.09] [.58] [9.72] [8.68] [7.92] [5.71]

Rank M3 2 5 3 2 2 3 82 214 43
[(Pr(M3jData)] [9.28] [3.18] [6.51] [19.10] [15.39] [8.50] [.13] [.06] [.35]

Rank M4 36 21 98 78 24 4 5 3 6
[(Pr(M4jData)] [.42] [.56] [.13] [.09] [.63] [6.98] [2.92] [4.50] [2.55]

Rank M5 – – 272 208 50 5 1 6 2
[(Pr(M5jData)] [.00] [.00] [.03] [.02] [.22] [3.46] [15.64] [2.16] [4.75]

Rank M6 50 95 132 45 27 6 7 18 12
[(Pr(M6jData)] [.24] [.11] [.09] [.25] [.56] [2.60] [1.72] [.90] [1.33]

Rank M7 50 95 130 46 24 7 28 36 27
[(Pr(M7jData)] [.24] [.11] [.09] [.25] [.63] [1.81] [.54] [.44] [.55]

Rank M8 – – 357 101 46 8 2 35 5
[(Pr(M8jData)] [.00] [.00] [.02] [.06] [.26] [1.46] [8.81] [.45] [2.57]

Rank M9 16 227 18 1 25 9 208 417 170
[(Pr(M9jData)] [1.02] [.05] [1.04] [21.81] [.60] [1.25] [.04] [.02] [.08]

Rank M10 5 9 16 19 7 10 342 701 308
[(Pr(M10jData)] [3.75] [1.67] [1.12] [.67] [2.24] [1.22] [.02] [.01] [.04]
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specifications. None of these ten models contain more than four optional
variables, and the most favored model contains only two optional variables. It
is also important to observe that the most favored model in 1990 is only preferred
over the model ranking 2nd by a factor of 1.34 to 1, the model ranking 4th by a
factor of 2 to 1, and the model ranking 10th by a factor of approximately 10.7 to
1. Given this, it seems unreasonable – and in fact misleading – to condition on one
such specification and report estimates of the returns to a college degree using
only that specification. The data have not revealed its preference for one parti-
cular model, and our point estimates of parameters of interest should incorporate
this fact.

5.2 Are there Nonlinearities in the Education-Log Wage Relationship?

The results presented in Table 4 suggested that nonlinearities at 16 years of
education were often present in the data, and also suggested a smaller role for
nonlinearities upon completion of a high school degree. In Figure 1 below, we
further investigate the existence of such ‘sheepskin effects’ in our model averaging
framework. We provide OLS estimation results from two particular models in
Figure 1A and 1B, and those obtained from our model averaging approach in
Figure 1C.

The first graph (Figure 1A) plots the posterior mean of the expected log wage
over different values of education using the baseline regression model that
includes no ‘optional’ variables. Figure 1B adds two indicators capturing non-
linearities upon the completion of high school (Ed� 12) and college (Ed� 16),
and Figure 1C contains the model averaged results. What we see from Figure 1B
is that the model which includes nonlinearities in the regression specification
clearly suggests ‘kinks’ at 12 and 16 years of schooling. These kinks are suffi-
ciently important to clearly differentiate the shape of the education-log wage
profile from the baseline regression estimate in Figure 1A. The point estimates
themselves suggest rather strong effects, since the jump from 11 to 12 years of
education results in an expected wage increase of approximately 8 percent. Given
this, one might decide to label both of the nonlinearities as empirically import-
ant13 and thus report Figure 1B as an estimate of the education-log wage surface.

Of course, the results in Figures 1A and 1B are conditioned on particular
models, and we could imagine many possible models – both nested and non-
nested – which would suggest different profiles for the schooling – log wage
relationship. To account for this, we plot our model averaged results in Figure
1C, which considers the set of all possible regressions with the 18 included
variables.

We see at least two important points when comparing the figures. First, the
model averaged results incorporate the data’s preference for a nonlinearity at 16
years of schooling. The nonlinearity at 12 years is assigned small enough weight
so that education-log wage relationship is virtually linear over the interval to the
left of 16 years of schooling. Second, the model averaged results have standard
errors which are typically twice as large as those obtained from a particular

168 TOBIAS AND LI

# Blackwell Publishing Ltd. 2004



model. This source of uncertainty is automatically incorporated into the precision
with which we are estimating our parameters of interest. Though not shown in the
figure for the sake of brevity, results for the remaining years are quite similar, and
continue to suggest a much larger role for the inclusion of a nonlinearity upon
receipt of a four year degree.

4

3.8

3.6

3.4

3.2

3

2.8

2.6

2.4

2.2

2

4

3.8

3.6

3.4

3.2

3

2.8

2.6

2.4

2.2

2
10 12 14 16

1A: Years of Ed (Baseline)

1C: Years of Ed (Model Averaged)

1B: Years of Ed (Ed ≥ 12, Ed ≥ 16)
18 20 10 12 14 16 18 20

10

4

3.8

3.6

3.4

3.2

3

2.8

2.6

2.4

2.2

2
11 12 13 14 15 16 17 18 19 20

+1 Std. Err

+1 Std.Err

+1 Std. Err

Post. Mean

Post. Mean

Post. Mean

–1 Std. Err

–1 Std. Err
–1 Std. Err

E
(lo

g 
y 

 
E

d)
E

(lo
g 

y 
 

E
d)

E
(lo

g 
y 

 
E

d)

Figure 1. Posterior Means of Expected Log Wage Across Different Years of Schooling

Using 1990 Data. Baseline Regression (1A), Nonlinearities at 12 and 16 (1B), and Model

Averaged (1C) Results.
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5.3 Have Returns to Schooling Increased Over Time?

It has become a stylized fact in this literature that returns to schooling in the U.S.
increased over the period of the 1980’s (e.g. Blackburn and Neumark (1993),
Murnane, Levy and Willett (1995), Grogger and Eide (1995), Heckman and
Vytlacil (2001), Taber (2001)). To suggest a similar conclusion using our NLSY
data, we present in Figures 2A and 2B posterior means and standard deviations of
�16,12 over the period 1985–1989 (which overlaps with the years of study in
the articles above). The results in Figure (2A) are obtained from the baseline
regression model and the results in Figure 2B also contain an ability term (2B). In
general, estimated returns to schooling are increasing over the time period, though
the increase is very modest. If we were to regress the point estimates in Figure 2B
on an intercept and a time trend, then we would predict that the receipt of a college
degree increased wages by about 36 percent in 1985, and increased by .65 percent
each year over the period.14 Further, we note that the estimate of the return to
education is much smaller after including the ability variable, as the estimates
obtained from Figure 2B are much smaller than those obtained in Figure 2A.

So again, the question arises: which model is the appropriate one to use? In
Table 2 we provided evidence which suggested not only model uncertainty, but also
some evidence that the data favored different models across the different years of
study. These facts should be incorporated into our estimates of the return to
education and the reported precision with which we are estimating these effects.

In Figure 2C, we provide year-by-year model averaged estimates of the return
to education for 1985–1993. These point estimates suggest that returns to school-
ing were indeed increasing over the period until 1991, but then tend to fall over
the last years of the sample. It is important to note that these estimates are not
conditioned on particular specifications, but are obtained by letting the data
decide how to weight the predictions obtained from a family of possible regres-
sions. Overall, the results suggest that the return to a college degree increased
wages from roughly 30–40 percent, and the highest returns were found in the early
90’s. We also note that the posterior means are bounded away from zero, even
after formally accounting for uncertainty in the model specification.

5.4 Are returns to schooling concentrated among the most able?

Some studies, such as Blackburn and Neumark (1993), Murnane Levy and Willett
(1995), Grogger and Eide (1995) and Heckman and Vytlacil (2001) have investi-
gated whether the increase in return to schooling over this period is attributable
to a reward for additional schooling, or a changing premium for measured ability.

The typical approach in these studies is to allow for ability-education and
ability-education-time interactions to determine if the growing return to educa-
tion has been experienced primarily by those of highest ability. The general
conclusion has been that after controlling for ability, the growth in the college
wage premium is more modest, and Heckman and Vytlacil (2001) report that the
college wage gap has been growing only for those in the highest ability quartile.
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In Figure 3 we plot posterior means and standard errors of�16,12 for those with
ability equal to mean values, and those with ability values both one standard
deviation below and one standard deviation above the mean. As evident from the
figure, the posterior means can be ordered from year to year according to the
ability values. That is, the highest ability individuals always have the highest
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values of the expected return to a college education for each year studied.
Further, we do not see convincing evidence that the gap is widening over time,
but rather, it contracts and expands somewhat randomly across the different
years.

Using our methods, we are also able to compute year-by-year posterior
probabilities that returns to schooling are concentrated among the more able.
These probabilities are reported in Table 6 below.
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It is important to note that the probabilities reported in Table 6 incorporate the
uncertainty in the model specification as well as parameter uncertainty within
each model. When we incorporate this source of uncertainty, the probabilities
exceed .5, though the largest in any year is .743. Thus, we have evidence that
higher-ability individuals benefit more from a four year degree than those of
average ability, though the posterior probability that this statement is true is
clearly not overwhelming. When conditioning on one particular specification – as
been done frequently in previous work – the probabilities could certainly be quite
different than those in Table 6, and may suggest much stronger evidence that
returns to schooling are concentrated among the most able. After accounting for
uncertainty in the model itself, we also find evidence supporting the claim that
returns to schooling are concentrated among the more able, though we can not
make such a statement with strong confidence.

6. Conclusion

In this paper we investigated the effect of model uncertainty on estimates of the
economic return to a college education. In so doing, we reviewed some of the
previous literature on both estimation of the economic returns to schooling as
well as Bayesian model selection. Since researchers have employed different
specifications in the returns to schooling literature, and these different specifica-
tions yield different predictions about parameters of interest, our idea was to
unite and review both of these literatures to obtain new and robust estimates of
the economic return to a college degree.

Using these methods, we found that the NLSY data from the U.S. does not
unanimously favor a particular model, and thus it is important to account for
model uncertainty when estimating the returns to education. Specifically, we
found that the data tend to favor the inclusion of a marriage indicator, a measure
of cognitive ability, an ability-education interaction and a nonlinearity in educa-
tion at 16 years of schooling. This nonlinearity at 16 years of education is most
pronounced at the latter years of the sample, which is perhaps consistent with the
notion of skill-biased technological change. The data are much less clear regard-
ing the inclusion of the remaining variables which have occasionally appeared in
previous work. Our approach, then, was to take the predictions from all models,
weight each prediction by the posterior probability of that model, and average
over the results to ‘integrate out’ the uncertainty in the model.

We found that over the period 1985–1993, the receipt of a Bachelor’s degree
relative to a high school degree tended to increase hourly wages between 30–40

Table 6. Pr(�16,12jA¼ 1>�16,12jData).

1985 1986 1987 1988 1989 1990 1991 1992 1993

.717 .601 .629 .739 .672 .635 .743 .561 .674
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percent. We also found that point predictions of the return to a college education
were highest for those of highest ability for all years studied.

Notes

1. These include the American Economic Review, Econometrica, Economic Journal, Jour-

nal of Economic Literature, Journal of Economic Perspectives, Journal of Political

Economy, Quarterly Journal of Economics, Review of Economic Studies and Review of

Economics and Statistics.

2. No titles were found to contain both words, and thus there are 229 citations to articles

containing either ‘education’ or ‘schooling.’

3. When studies included, say a quadratic or polynomial in education, we recorded these

as controlling for the nonlinearities.

4. This approach is vaguely similar to ‘meta-analysis’ which is usually employed to

average point estimates across studies by weighting the study-specific estimates by a

function of their standard error (see Harmon et al. (2003), section 3.7 for a nice

illustration). In this paper, we address a different question and examine the impact

of specification uncertainty within a given study rather than across studies.

5. In this paper, we do not take up the issues of measurement error in schooling or the

endogeneity of education and focus our attention on the issue of specification uncer-

tainty in the context of the model above. Using the same NLSY data, Blackburn and

Neumark (1995, p. 228) have addressed these issues and state, ‘. . .Once test scores are

included in the regression, specifications tests provide little evidence that schooling is

either endogenous or measured with error, or that ability is measured with error by the

test scores.’

6. See section 2 of Harmon et al. (2003) for a nice description and derivation of this

Mincer specification.

7. The reason for requiring that the variables in W must always appear in our analysis is

to (1) limit the dimension of the problem to enable analytic calcuation, and (2) use the

theory of Mincer (1974) as a starting point which specifies the log wage is a linear

function of education and a quadratic function labor market experience. Since all

empirical studies use this Mincerian framework as a starting point (and the set of

core variables in W would be included with probability approaching one anyway), we

simply impose that the variables in W must be contained in all of our competing

models.

8. See, for example Raftery, Madigan and Hoeting (1997) for a full description of the

details. These details are also reviewed in the appendix of this paper.

9. Leamer (1978) first pointed out the important observation that model averaging also

formally accounts for the uncertainty in the model specification.

10. Using quantile regression methods, Mwabu and Schultz (1996) document a similar

finding, and report that ‘ability’ effects appear to vary over the education support,

where ‘ability’ was not measured directly, but was captured in their residual.

11. This methodology of section 2 imposes the assumptions of normality and homo-

scedasticity, though some might question the appropriateness of such assumptions,

particularly given the existing evidence on heavy-tailed wage distributions (e.g. Lydall

(1968) and Heckman and Sedlacek (1990)). Though we do not discuss the details here,

it is important to recognize that these assumptions can be relaxed using methods

described in Carlin and Polson (1991), Geweke (1993), Albert and Chib (1993),
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Wakefield et al. (1994), Tobias (2002) and Tobias and Li (2003), among others. When

permitting departures from normality, no substantive differences were produced.

Finally, we also examined how our results were affected by specifying priors that did

not allow for the inclusion of higher-order interaction terms if the linear variables

themselves did not appear in the model. Again, the substantive conclusions of our

analysis were not substantially changed.

12. In 1985 and 1986, no observations contained in our sample completed more than

16 years of schooling, and thus Ed*I(Ed� 16) is omitted from the set of optional

variables.

13. The t-statistics for the nonlinearities at 12 and 16 were 1.40 and 2.62, respectively.

14. The t-statistic associated with the trend was 1.26.

15. Loosely, you can think of point estimates of these quantities as being similar to the

OLS estimates obtained from the given model.
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Appendix: Model Averaging Details

From (2), the problem faced in this paper is a standard problem of variable
selection in the context of a typical log-wage equation:

y ¼ W�þ X� þ "; " � Nð0; �2INÞ; ð4Þ

with W denoting a fixed set of explanatory variables and X denoting an n� k
matrix of k ‘optional’ covaraites.

Let us entertain T different competing models, and let M ¼ fM1;M2; � � � ;MTg
be the set of all of these competing models. In our particular application, we think
of the set of all possible models as simply the set of all possible regressions we
could run with k potential explanatory variables. Finally, let � be some parameter
of interest whose interpretation is constant across our models. From the law of
total probability,

pð�jyÞ ¼
XT
i¼ 1

pð�jMi; yÞPrðMijyÞ; ð5Þ

where Mi indexes the different models, p generically refers to a density function
and y denotes the observed data.

The above equation states that the posterior distribution of � which is not
conditioned on a particular model is simply obtained as a weighted average of the
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model-specific posterior distributions p(�jMi, y), where the terms Pr(Mijy) serve
as the weights. These weighting terms are called model probabilities, as they simply
give the posterior probability in support of model Mi among the class of compet-
ing models in M.

The model-specific posterior distributions p(�jMi, y) are easily obtained from
standard Bayesian procedures (see, e.g. Poirier (1995)).15 To obtain these poster-
iors it is necessary to discuss the priors employed. We first standardize all vari-
ables to have mean zero and unit variance and then choose conjugate prior
specifications of the form:

� � Nð��; �
2V�Þ;

v�

�2
� 	2

v ;

with N(a,b) denoting a normal density with mean a and variance b, and 	2
v

denoting a Chi-square density with v degrees of freedom. The parameters ��,
V�, v and � are hyperparameters to be chosen by the researcher.

Values for the hyperparameters are chosen in a manner similar to the recom-
mendation of Raftery, Madigan and Hoeting (1997) (denoted RMH). Once the
variables are standardized, these authors list a set of desired results that the prior
should satisfy, and consequently we arrive at the use of the following values:

V� ¼ 2:852Ik; � ¼ :28; v ¼ 2:58; �� ¼ 0:

In generated data experiments, RMH show that this prior produced model
averaged results that were quite successful at identifying the true model when it
was contained as a competing model (pg. 188), and also had better predictive
performance than any individual model that could have reasonably been chosen
(section 5.2). Alternate benchmark prior specifications, based on the use of g-
priors (Zellner (1986)) have been recently proposed by Fernandez, Ley and Steel
(2001b). We found that results obtained from the RMH prior were robust in the
sense that we arrived at similar conclusions using a variety of different reasonable
prior selection rules, including a g-prior based on a hold-out sample, as well as
specifying prior hyperparameters using estimation results obtained after fitting
the same model on a sample of black males.

Getting back to the posterior model probabilities on the right-hand side of (5),
we note that these can be obtained as follows:

PrðMijyÞ ¼
pðyjMiÞpðMiÞ

pðyÞ ¼ pðyjMiÞpðMiÞPK
k¼ 1 PrðyjMkÞpðMkÞ

: ð6Þ

The terms p(yjMi) on the right-hand side of (6) are called marginal likelihoods,
as they can be interpreted as the marginal density for the data that does not
depend on any of the regression parameters. The terms p(Mj) are simply prior
model probabilities. A default choice (which is the one employed throughout this
paper) is to simply assume that all of the competing regression models are equally
probable a priori and thus p(Mi)¼ p(Mj)¼ 1/T.
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The marginal likelihoods can be calculated using a variety of different methods.
Fortunately for this particular regression application, it turns out that the mar-
ginal likelihoods have a simple closed-form solution. The explicit expression for
the marginal likelihoods in this context is (e.g. RMH (1997, page 178))

pðyjMÞ¼ cðv;�;V�;XÞ �vþðy�X��Þ0ðInþXV�X
0Þ�1ðy�X��Þ

� ��ðvþnÞ=2
; ð7Þ

where

cðv; �;V�;XÞ ¼ �½ðvþ nÞ=2�ðv�Þv=2


n=2�½v=2�jIn þ XV�X 0j1=2
:

It is important to recognize that the design matrix X, the covariance matrix V�

and the prior mean vector �� will change across the different models as different
optional variables are included or excluded.

Thus, to summarize, the marginal likelihoods as in (7) are calculated for each
model, thus enabling us to determine the posterior model probabilities as in (6).
These probabilities are then used to weight the model-specific predictions to
obtain our model averaged results.
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