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This chapter reviews Bayesian approaches and Markov chain Monte Carlo
(MCMC) methods for estimating treatment-response models. We begin by
reviewing the standard continuous outcome / continuous treatment specifi-
cation under normality and then move on to discuss procedures for handling
limited dependent treatment variables and outcomes within this framework.
We also discuss methods for relaxing the standard “Gaussian” assumptions
commonly made in textbook treatments of this class of problems and com-
monly seen in empirical applications. In so doing, we discuss issues of model
comparison in finite mixture models and conclude with references to some
recent work on this topic, including instrument imperfection.
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1.1 Introduction

In many fields in Economics - labor, public, industrial organization, inter-
national trade and development, to name but a few - the identification and
estimation of causal effects or treatment effects from observational data is a
central issue. In these instances the researcher is primarily interested in es-
timating the effect of some treatment variable, say x, on an outcome, say y,
but is concerned that a variety of unobserved factors (i.e., unobserved con-
founders) may be responsible for much of the observed correlation or partial
correlation between these variables. To provide a specific and well-studied
example, simple regressions of hourly wages (or their logarithm) on education
may not provide a good estimate of the causal effect of education on hourly
earnings since unobserved ability, motivation, and personality might simul-
taneously influence both educational attainment and earnings in the labor
market.

The dominant technique in the applied literature for estimating causal
effects with observational data is to employ instrumental variables (IV) or two-
stage least squares (2SLS). When such methods are employed, the researcher
identifies a set of variables which have a conditional impact on the treatment
variable x but, given x, are believed to have no other direct influence on the
conditional mean of y. Such variables, or instruments, serve to both identify
the model and can be exploited to consistently estimate the model parameters.

The IV exercise in practice is both an art and a science - conditioned on a
valid instrument, or a set of them, one can derive the asymptotic distribution
of the IV estimator, test for overidentifying restrictions, investigate inferential
consequences when instruments are weak - the usual fare of econometricians
and statisticians. Coming up with compelling instruments in actual applied
work, however, involves a great deal of imagination and creative skill on the
part of the researcher, and the success of such studies depends in no small part
on that researcher’s ability to form a compelling argument that the instrument
in question is plausibly excludable.

While IV / 2SLS and GMM in nonlinear settings remain the most common
approaches in literature, a comparably small but growing Bayesian literature
also exists for the estimation of treatment-response models and identification
of causal effects. It is our goal in this chapter to review some of these meth-
ods in a variety of different settings and to discuss estimation of the model
parameters via Markov chain Monte Carlo (MCMC) methods.

The outline of this paper is as follows. The following section begins with a
standard Gaussian linear treatment-response model and discusses identifica-
tion and MCMC implementation in that context. Section 1.3 extends these
ideas to nonlinear settings. Here we spend some time discussing the popular
Roy [57], [31] model and present a general treatment that nests a variety of
nonlinear treatment-response specifications. Section 1.4 discusses several de-
partures from these cases, including taking up the case of non-Gaussian errors,
model comparison and selection, and issues of instrument imperfection. An
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illustrative application is presented in Section 1.5, and the chapter concludes
with a summary in Section 1.6.

1.2 Linear Treatment Response Models Under Normality

To fix ideas, we begin by considering the following treatment-response model
for a continuous outcome y and continuous treatment variable x (throughout
using the convention of boldface to denote vectors and bold capitals to denote
matrices):

yi = βy,0 + xiβy,x + wiβy,w + εi (1.1)
xi = βx,0 + ziβx,z + ui, (1.2)

where[
εi

ui

] ∣∣∣∣W , Z
iid∼ N

[(
0
0

)
,

(
σ2

ε σεu

σεu σ2
u

)]
≡ N (0,Σ), i = 1, 2, . . . , n. (1.3)

The system in 1.1 and 1.2, and the type of model we consider throughout
this chapter, is triangular - meaning that x enters as a right-hand side variable
in 1.1, yet y does not enter as a right-hand side variable in 1.2. Thus, the
structure here seems appropriate for, say, joint modeling of post-schooling
wages (y) and schooling (x), but perhaps not for something like health and
income, since in the latter case, we might more naturally consider a fully
simultaneous system where health directly affects income, and, conversely,
income directly affects health. We also take up the case where there is a
single endogenous variable x in 1.1, although the case of several endogenous
variables represents a straightforward extension.

Equation 1.3 assumes that the errors are iid bivariate normal. This is a
common assumption, and serves as a useful starting point, although it may be
potentially inappropriate in many applications. We will take up the issue of
relaxing this assumption in Section 1.4. The primary parameter of interest in
virtually all cases is the causal effect βy,x, and unobserved confounders that
simultaneously associate with u (and thus x) and ε (and thus y) are captured
through the covariance parameter σεu, which is suspected as to be non-zero.
Finally, W and Z, both assumed exogenous, are n× kw and n× kz matrices
(respectively) constructed from the wi and zi vectors as follows:

W ≡




w1

w2

...
wn




, Z ≡




z1

z2

...
zn




.

In empirical work, the elements of wi and xi will likely have some degree
of overlap, meaning that many elements of w will also be contained in z. For
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example, if y represents earnings and x represents educational attainment, we
might believe that variables such as gender, race and ethnicity, test scores,
family characteristics, etc., should play a role in both equations. As shown
below, however, we will require the appearance of at least one column (or
variable) in Z that is not contained in W - these will be our instruments
which will serve to identify the model parameters and provide a means for
parameter estimation.

1.2.1 Instruments and Identification

To see why such an exclusion restriction (or instrument) is necessary in the
absence of any additional model structure, let us begin by letting θ denote all
the parameters of the model. We can decompose the bivariate error distribu-
tion into the product of a conditional times a marginal:

p(εi, ui|θ) = p(εi|ui, θ)p(ui|θ). (1.4)

Noting that the Jacobian of the transformation from (εi, ui) to (yi, xi) is unity
(given the triangularity of the model), we obtain

p(yi, xi|θ) = φ(yi|µyi|x, σ2
y|x) (1.5)

×φ(xi|βx,0 + ziβx,z, σ
2
u),

where

µyi|x ≡ βy,0 + xiβy,x + wiβy,w +
σεu

σ2
u

(xi − βx,0 − ziβx,z) (1.6)

σ2
y|x ≡ σ2

ε (1− ρ2
εu) (1.7)

ρεu ≡ σεu/[σεσu] (1.8)

and φ(s|µs, σ
2
s) is simply the notation denoting a normal density function for

the random variable s with mean µs and variance σ2
s .

It is useful to pause and discuss identification in the context of this system
of equations. To this end, let us first consider the case where the set of
exogenous covariates are exactly common to both equations in the sense that
zi = wi. In this instance, 1.5 can be written as:

p(yi, xi|θ) = φ(yi|ψ0 + xiψ1 + wiψ2, σ
2
y|x) (1.9)

×φ(xi|βx,0 + ziβx,z, σ
2
u)

where

ψ0 = [βy,0 − βx,0
σεu

σ2
u

], ψ1 = [βy,x +
σεu

σ2
u

], ψ2 = [βy,w − βx,z

σεu

σ2
u

]. (1.10)

Some quick accounting, then, shows that the likelihood is completely de-
termined by 7 (blocks of) parameters:

βx,0, βx,z, σ2
u, ψ0, ψ1, ψ2 and σ2

y|x (1.11)
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whereas we seek to recover 8 “structural” parameters in θ:

βy,0, βy,x, βy,w, βx,0, βx,z, σ2
u, σ2

ε , and σεu. (1.12)

To summarize, the quantities in 1.11 are identified by the likelihood and con-
sistently estimable whereas the full set of structural parameters in 1.12 is not
identifiable. Importantly, observe that the “causal effect” βy,x - the object
that garners most attention in practice - is among the parameters that are
not identifiable when the set of covariates appearing in 1.1, and 1.2 are the
same. What is identifiable in this case is ψ1 = βy,x+σεuσ−2

u , the “total partial
effect” of x on y, which combines the desired causal effect βy,x with an effect
arising from unobserved confounding.

The mapping between the identified quantities and the structural param-
eters of interest also reveals the important role that instruments can play in
parameter identification. To see this, consider the case where there is at least
one variable in zi that is not contained in wi, say the jth element of zi, or
zj
i . Then observe that the jth element of βx,z, or βj

x,z, is clearly identified
from the reduced form linear regression in 1.2, and 1.6 reveals that the entire
term βj

x,zσεu/σ2
u can be identified as a parameter in the conditional mean

µyi|x. It follows that the coefficient on the unique element of z that is not
contained in w enables us to identify the term arising from unobserved con-
founding, σεu/σ2

u. Once this ratio is identified, all model parameters, including
the causal effect βy,x, can be recovered.

1.2.1.1 Posterior Simulation As discussed in the introduction to this section,
the most common and familiar approaches to estimating models like those in
1.1 and 1.2 employ IV and 2SLS methods. Given a description of the joint
distribution as in 1.3, however, a full likelihood-based analysis or Bayesian
analysis can also be conducted.

Below we therefore turn to discuss Bayesian estimation of the model pa-
rameters in 1.1, 1.2 and 1.3. We do so by employing the Gibbs sampler - an
iterative simulation method that successively draws from the complete condi-
tional posterior distributions of the model parameters. We do not review the
details of Gibbs or MCMC algorithms here, as they are extensively covered
elsewhere in this volume.

To begin, let us first stack the variables and parameters as follows:

[
yi

xi

]
=

[
1 xi wi 0 0

0 0 0 1 zi

]



βy,0

βy,x

βy,w

βx,0

βx,z




+

[
εi

ui

]
(1.13)

or succinctly,
ỹi = X̃iβ + ε̃i, (1.14)
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with ỹi, X̃i, β and ε̃i defined in the obvious ways. Once stacked in this form,
the parameters of this model consist of the vector β and the elements of the
covariance matrix Σ. A Gibbs sampling algorithm, then, will require us to
derive and sample from the posterior conditionals β|Σ, ỹ and Σ|β, ỹ. To this
end, suppose we are to employ priors of the forms:

β ∼ N (µβ, Vβ) (1.15)
Σ−1 ∼ W

(
[κR]−1, κ

)
, (1.16)

with N (·, ·) denoting a multivariate normal distribution with the given mean
and variance and W (·, ·) denoting a Wishart distribution, parameterized as
in Koop, Poirier and Tobias [41], page 339.

With this done, posterior simulation in our linear model with an endogene-
ity problem follows in a straightforward way. Specifically, a simple two-block
Gibbs algorithm can be employed that iteratively samples from

β|Σ,y, x ∼ N (Dβdβ,Dβ), (1.17)

where

Dβ =

(
V −1

β +
n∑

i=1

X̃i
′
Σ−1X̃i

)−1

, dβ = V −1
β µβ +

n∑

i=1

(
X̃i

′
Σ−1ỹi

)

(1.18)
and

Σ−1|β, y, x ∼ W




[
κR +

n∑

i=1

ε̃iε̃i
′
]−1

, κ + n


 . (1.19)

For the interested reader, details of these derivations can be found in Lindley
and Smith [48] or Koop, Poirier and Tobias [41].

A posterior simulator for this model proceeds by iteratively sampling from
1.17 and 1.19, always conditioning on the most recent parameters produced
from the sampling scheme. Once convergence to the posterior is determined
to have been achieved, the subsequent samples can be used to obtain point
estimates (e.g. posterior means), quantiles or entire posterior distributions
for objects of interest. We provide an illustrative application of how this is
done in Section 1.5. It is worth emphasizing, however, that estimation in this
linear treatment-response model is nearly as simple as IV or 2SLS: all that is
required is the generation of normal and Wishart variates, and the tiniest dose
of patience as one waits a few seconds for the software to return a suitable
post-convergence sample of parameters.

We close this section noting that the reader somewhat familiar with Bayes
might observe, and perhaps be puzzled by, the connection of the simulator
in 1.17 and 1.19 to the Gibbs algorithm one would obtain from a standard
system of equations analysis such as a seemingly unrelated regressions (SUR)
model. That is, one might find himself or herself asking: why does the sim-
ulator for this model with an endogeneity problem reduce to essentially the
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same simulator that would be used to estimate a bivariate SUR without any
endogeneity concerns? The connection here critically relies on the Jacobian of
transformation from (ε, u) to (x, y) being equal to one; such a result would not
be obtained for a purely simultaneous equations model that is not triangular
(e.g., the fully simultaneous income / health example mentioned previously).

1.3 Nonlinear Treatment Response Models

The previous section offered a model and estimation procedure for assessing
the causal effect of treatment when both the outcome y and treatment variable
x were continuous. In many (possibly most) cases, however, at least one of
these variables will be discrete in nature. To provide just a few observational
data examples, the treatment x might indicate participation in a job training
program, or high school graduation. In each of these cases, some modification
of the system in 1.1 and 1.2 is called for in order to properly account for the
binary nature of the treatment.

If the outcome y in these cases (like a log wage) remains continuous, while
the treatment x is binary, an extension of 1.2 and 1.1 would be to consider:

yi = βy,0 + xiβy,x + wiβy,w + εi (1.20)
x∗i = βx,0 + ziβx,z + ui, (1.21)
xi = I(x∗i > 0). (1.22)

A key feature of the model in 1.20 and 1.21 is the addition of latent data (in
this case x∗i ), and the adoption of a model that, like 1.1 and 1.2, is linear, but
now is represented as linear in the latent-data x∗i as opposed to the observed
outcome xi . In the above example one might interpret x∗i as the (unobserved
by the econometrician) net desire for receipt of treatment. The observed
binary outcome xi takes the value of one if this net desire is positive, and
otherwise equals zero. This mapping between the latent construct x∗i and the
observed outcome xi is formalized in 1.22 - the agent takes the treatment if
her net desire for doing so is positive, and otherwise is left untreated.

The system in 1.20, 1.21 and 1.22 offers just one example of a nonlinear
treatment-response system where y is continuous and x is binary. There are a
variety of other cases, however, for us to consider - for example, the outcome yi

may be binary rather than continuous, leading us to consider a latent-variable
version of 1.20 and adding another link between observed and latent outcomes,
as in 1.22. Other cases that arise commonly in empirical work include ordinal
outcomes. Below we consider a fairly generic nonlinear treatment-response
system, applicable to a variety of data types.

1.3.1 A General Nonlinear Representation

We begin by defining the vectors: ỹ∗i = [y∗i x∗i ]
′ and ỹi = [yi xi]′, which

represent a 2×1 latent data vector and 2×1 observed data vector, respectively.
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With these definitions in place, a reasonably general nonlinear treatment-
response system can be described as follows:

ỹ∗i |X̃, β
ind∼ N

(
X̃iβ,Σ

)
(1.23)

ỹi|ỹ∗i = g(ỹ∗i , α), i = 1, 2, . . . , n. (1.24)

Equation 1.23 represents a latent-variable version of 1.14. Equation 1.24 then
links the latent data to the observed outcome pair ỹi through the function g(·)
and, potentially, a vector of parameters α. For example, if both the outcome
yi and treatment xi are binary, 1.24 would become:

yi = I(y∗i > 0), xi = I(x∗i > 0).

If yi was instead a positive variable censored at zero (such as expenditure or
wages, for example) while xi remained binary, we could write:

yi = max{0, y∗i }, xi = I(x∗i > 0).

As a final example, if both xi and yi were ordinal responses, we could specify

yi = j if α
(y)
j < y∗i ≤ α

(y)
j+1, j = 1, 2, . . . , Jy

xi = l if α
(x)
l < x∗i ≤ α

(x)
l+1, l = 1, 2, . . . , Lx.

In this final case, unlike the binary and censored cases, the link function g in
1.24 depends on a vector of cutpoint parameters α. In specifications where
these parameters are present, additional steps will be added to the posterior
simulator in order to generate α samples.

1.3.1.1 Gibbs Implementation Let θ = [β′ vec(Σ)′ α′]′ denote all the pa-
rameters in this specification. We will assume prior independence among
these components, continue to use a multivariate normal prior for β: β ∼
N (µβ,Vβ), as in 1.15 and a Wishart prior for Σ−1: Σ−1 ∼ W ([κR]−1, κ) as
in 1.16 and leave the prior for α generically specified as p(α).

In order to implement a Gibbs algorithm for this model, we need to derive
and sample from the complete conditional posterior distributions of the model
parameters. If the ỹ∗i were “known,” posterior inference could proceed very
similarly to the continuous outcome model presented in 1.1 and 1.2. That is,
β|ỹ∗,Σ would be multivariate normal, and Σ−1|β, ỹ∗ would remain a Wishart
distribution, although possibly with some restrictions on its elements.

Given these appealing conveniences afforded by conditioning on ỹ∗, a pos-
sible approach is to augment the posterior distribution with the latent data ỹ∗

and sample the latent data vectors in the course of our posterior simulation
[e.g., Tanner and Wong [59] and Albert and Chib [1]]. We therefore consider
the augmented posterior p(θ, ỹ∗|ỹ). A Gibbs implementation, then, requires
us to derive and sample from the four posterior conditionals for β, Σ−1, ỹ∗

and α (and the last of these only when required).
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The first two conditionals, as suggested earlier, are easily sampled condi-
tional on the latent data:

β|Σ, ỹ∗, ỹ ∼ N (Dβdβ, Dβ) (1.25)

where

Dβ ≡
[(

n∑

i=1

X̃
′
iΣ

−1X̃i

)
+ V −1

β

]−1

, dβ ≡
(

n∑

i=1

X̃
′
iΣ

−1ỹ∗i

)
+ V −1

β µβ,

(1.26)
and

Σ−1|β, ỹ∗, ỹ ∼ W




[
κR +

n∑

i=1

(ỹ∗i − X̃iβ)(ỹ∗i − X̃iβ)′
]−1

, κ + n


 .

(1.27)
Note that, in terms of our coding, we act as if the latent data ỹ∗ are observed,
and will simply update this vector at each step in our sampler. To complete
a description of our posterior simulator, we note that the joint posterior dis-
tribution for the latent ỹ∗ and vector of parameters α is given as:

p(ỹ∗,α|ỹ, β,Σ) ∝ p(α)
n∏

i=1

φ(ỹ∗i |Xiβ,Σ)I [ỹi = g(ỹ∗i , α)] . (1.28)

To fix ideas and provide a little clarity to 1.28, consider the case discussed
at the outset of this section where y is continuous and x is binary. In this
instance, there are no parameters in α, and y∗i is not needed, since that
component of the model is fully observed. It remains, then, to sample just
the latent data x∗i . We do so by noting that 1.28 reduces to:

p(x∗i |β,Σ, x, y) ∝ φ(x∗i |µx∗i |y, σ2
x|y)× (1.29)

[I(x∗i > 0)I(xi = 1) + I(x∗i ≤ 0)I(xi = 0)] ,

for i = 1, 2, . . . , n, where

µx∗i |y = βx,0 + ziβx,z +
σεu

σ2
ε

[
yi − βy,0 − xiβy,x −wiβy,w

]
(1.30)

σ2
x|y = σ2

u(1− ρ2
uε). (1.31)

The structure of 1.29 clearly reveals that the sampling of each x∗i can be con-
ducted by generating draws from univariate truncated normal distributions.
Simulations from the truncated normal are easily obtained, and can be pro-
duced directly via the method of inversion (see, e.g., Koop, Poirier and Tobias
[41], exercise 11.20).

When α remains a component of the posterior simulator, owing to the
consideration of, for example, ordinal data, an additional sampling step is re-
quired. While one could potentially proceed by sampling from {ỹ∗i |α, β,Σ, ỹ}n

i=1
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and α|ỹ∗,β,Σ, ỹ, this is usually not advisable given the high degree of corre-
lation between the latent data ỹ∗ and the parameters in α. In this situation,
ỹ∗ can often be integrated out of 1.28, α can then be drawn from the re-
sulting marginalized conditional, and finally the latent data can be drawn
independently from its complete conditional:

p(ỹ∗i |β,Σ,α, ỹ) ∝ φ(ỹ∗i |Xiβ,Σ)I[ỹi = g(ỹ∗i ,α)], i = 1, 2, . . . , n,

which typically amounts, again, to truncated normal sampling. Jeliazkov
et al. [35] discuss a number of important issues related to identification of
univariate and multivariate ordinal models and evaluate the performances of
alternate schemes for sampling (α, ỹ∗) in such models.

An important issue that, to this point, has only been briefly and casually
referenced, concerns restrictions on elements of the covariance matrix Σ. For
example, in the case of binary observed outcomes, a common identification
restriction is to impose that the diagonal elements of Σ are unity. In this case,
the sampling of Σ−1 is not from 1.27, but rather, from 1.27 with restrictions
on the main diagonal.

A few alternatives exist for dealing with this problem. Reparameterizations
(e.g., Li [43] and McCulloch, Polson and Rossi [49]) are sometimes possible
which allow the researcher to essentially sidestep the restrictions, sampling
elements of Σ in blocks while preserving the positive definiteness of the co-
variance matrix. In the case of a single diagonal restriction, as would be the
case if only one of the outcomes were binary, Nobile [54] comments on the
reparameterization scheme of McCulloch, Polson and Rossi [49], and provides
a way to directly sample from a Wishart, given a restriction on a diagonal
element. Chan and Jeliazkov [4] provide additional details regarding sampling
from restricted covariance matrices. Finally, and consistent with our presen-
tation in this chapter, one can choose to simply ignore the restrictions that are
in place when implementing the simulator and post-process the simulations to
focus on identified quantities. That is, one can simply sample Σ−1 as in 1.27
and appropriately adjust those simulations at each iteration of the sampler
to calculate quantities that are identifiable. Rossi, Allenby and McCulloch
[56], particularly in chapters 3 and 4, discuss applications of this approach
and compare performances of samplers that navigate through identified and
non-identified parameter spaces.

1.3.1.2 The Roy Model A popular specification in treatment-response mod-
eling, and a slight generalization of the system in 1.20 and 1.21, is the Roy
[57] model or model of potential outcomes (see also Heckman and Honoré [31]
). This specification again considers the case of a binary treatment, (and as
such 1.21 and 1.22 remain unchanged), but adds to 1.20 by explicitly modeling
outcome equations for both the treated and untreated regimes. Specifically,
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we might represent a slightly generalized version of the Roy model as:

y
(1)
i = β

(1)
y,0 + wiβ

(1)
y,w + ε

(1)
i (1.32)

y
(0)
i = β

(0)
y,0 + wiβ

(0)
y,w + ε

(0)
i (1.33)

x∗i = βx,0 + ziβx,z + ui. (1.34)

Variables and parameters associated with the treated state have been assigned
a superscript of (1) in 1.32, while those associated with the untreated state
are assigned a superscript of (0) in 1.33. Treatment effects are summarized
by the outcome gain (or loss) resulting from receipt of treatment, denoted
as y(1) − y(0), and trivariate normality among [ε(1)i ε

(0)
i ui]′ is assumed as a

starting point, with the methods described in the following section used to
relax this assumption, when needed.

In terms of posterior simulation, simple generalizations of the sampling
steps used for the estimation of 1.20 and 1.21 can be employed to fit this
model. Specifically, given the complete data, the posterior conditional for
the stacked vector of parameters β will again remain normal with a structure
identical to 1.25, while that for Σ−1 will remain Wishart, as in 1.27, with a
diagonal restriction that sets σ2

u = 1. As discussed previously, this sampling
step for Σ−1 can either be performed via a reparameterization, or a draw
from a restricted Wishart can be directly obtained (e.g., Nobile [54]), or the
restriction can be ignored and the simulations post-processed to focus on
identifiable quantities. As for the sampling of the latent data, the x∗i are again
sampled independently from their conditional truncated normal distributions,
readily derived from the trivariate system of equations.

We also observe that for each observation i, either the treated or the un-
treated outcome is observed for each agent (but never both), and as such the
observed outcome yi can be expressed as

yi = xiy
(1)
i + (1− xi)y

(0)
i .

Thus, the treatment effect ∆ ≡ y(1) − y(0) involves a counterfactual - the
outcome the agent would have received had he or she made a different decision
regarding the receipt of treatment. For every individual, then, exactly one of
the y(j), j = 0, 1, is missing while the other is observed. In the spirit of data
augmentation, we can thus add this missing outcome as an element of the joint
posterior, and in the course of implementing the posterior simulator, sample
the“missing” outcome for each i from its conditional normal distribution.
Conditioned on this missing data - which is updated at every iteration of the
sampler - the sampling of β and Σ proceeds as if we were faced with a fully
observed system of linear equations (e.g., a seemingly unrelated regressions
model). Full details regarding a Gibbs algorithm for this model are provided
in Chib and Hamilton [11] and Koop, Poirier and Tobias [41], exercise 14.11,
and thus are not repeated here.

A final interesting issue arises in the Roy model setting, and is related
to the potential outcomes structure it embraces. Since only y(1) or y(0) is
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observed for each individual, the correlation parameter between the errors
of the treated and untreated equations, which we could denote as ρ10 to fix
ideas, does not enter the likelihood function for the observed data and thus
is not identified. Despite this, Vijverberg [60] notes the possibility of learning
about ρ10, an idea formalized in the Bayesian setting by Koop and Poirier [39].
These authors clearly illustrate that the marginal priors and posteriors for ρ10

will not be the same, in general, even though this parameter is not identified
by the likelihood function. The vehicle for this updating of marginal prior
beliefs is prior dependence - information learned about identified correlation
parameters, coupled with restrictions that Σ must be positive semidefinite,
creates a knowledge spillover which restricts the conditional support of ρ10.
Chib and Hamilton [11] address the non-identification of the cross-regime
correlation ρ10 by setting it equal to zero and fitting the model subject to that
restriction, while Poirier and Tobias [55] and Li, Poirier and Tobias [47] allow
for learning about this parameter and provide several applications. In a recent
statement on this issue, Chib [8] recommends working directly in the identified
model space as opposed to the augmented potential outcomes space, as doing
so improves the mixing properties of the posterior simulator and frees the
researcher of the need to worry about the influence of the conditional prior for
ρ10- whose influence on posterior results does not vanish even asymptotically.

1.4 Other Issues and Extensions: Non-Normality, Model Selection
and Instrument Imperfection

1.4.1 Non-Normality

The reader may have observed that all the analysis to this point has been
conducted based on the assumption of joint normality of the error terms.
While the assumption of normality does serve as a useful starting point, and
may suffice as an adequate description of the data in some cases, it is necessary
nonetheless to have a modeling framework allowing for significantly greater
flexibility.

When seeking out these more general treatments, it seems prudent to keep
in mind a desire to keep things computationally tractable. What has been
evident from our previous examples is that normal likelihoods combine nicely
with conditionally conjugate normal / Wishart priors to yield conditional pos-
terior distributions that are easily sampled, thus facilitating Gibbs estimation.
These computational conveniences of normality are something we would like
to retain when considering more general specifications to take to the data.

One possibility, as noted by Carlin and Polson [3] and Geweke [24], and
illustrated for the case of treatment-response modeling by Chib and Hamilton
[11], is to consider a class of Student-t sampling models by representing them
as a scale mixture of multivariate Gaussian distributions. Specifically, one can
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generalize 1.23 by assuming

ỹ∗i
ind∼ N (X̃iβ, λiΣ) (1.35)

λi
iid∼ IG

(
ν

2
,
2
ν

)
⇒ p(λi) ∝ λ

−([ν/2]+1)
i exp

(
− ν

2λi

)
, (1.36)

where IG denotes an inverse gamma distribution, whose density function is
provided up to proportionality.

When 1.35 is marginalized over the scale mixing variables λi, whose prior is
given in 1.36, a multivariate-t sampling model (with ν degrees of freedom) for
ỹ∗i is produced. This extension thus allows the researcher to address issues of
fat tails beyond those allowed by the normal distribution, and the conditional
normal representation of the sampling model leads to tractable conditional
posteriors amenable to Gibbs sampling.

Gibbs implementation in the Student-t sampling model is fully described
in Chib and Hamilton [11] and we briefly overview those details here. Condi-
tioned on λ = [λ1, λ2, · · · , λn]′, the sampling of ỹ∗, β, Σ and α follow similarly
to what was described in the previous section. Specifically, the sampling of β
and Σ will involve the simulation of normal and (possibly restricted) inverse
Wishart variates, respectively, while the sampling of ỹ∗ in many cases will
involve truncated normal sampling. The posterior conditional for each λi can
be shown to be of the inverse gamma form, and draws from the inverse gamma
can simply be obtained by inverting gamma random variates. Thus, exten-
sion to the Student-t case just adds an additional step to the Gibbs algorithm
for the standard Gaussian model, and the conditional normal scale mixture
representation of the Student-t in 1.35 and 1.36 retains the computational
conveniences afforded by normality.

A more general representation that also allows for possible skewness or
multimodality in the error distribution is to consider a finite mixture sampling
model for the augmented data:

ỹ∗i |ci ∼ N
(
β0ci

+ X̃iβ̃,Σci

)
, (1.37)

Pr(ci = g|π) = πg, g = 1, 2, . . . , G,

G∑
g=1

πg = 1, πg > 0 ∀g, (1.38)

where β0ci
= [βy,0ci , βx,0ci ]

′ denotes component specific intercepts and β̃
represents slope coefficients that are common to all components. The vari-
able ci is an integer-valued component labeling variable with support over
g = 1, 2, · · · , G, representing which mixture component observation i is gen-
erated from. The vector π = [π1, π2, · · · , πG]′ is a vector of component prob-
abilities, and marginalized over ci, the sampling model for ỹ∗i is easily seen
as a mixture (or average) of multivariate normal models. To complete the
model, a Dirichlet prior for π is commonly assumed.

In terms of posterior simulation, the sampling of β ≡ [β′01,β
′
02, · · · ,β′0G, β̃

′
]′

and Σ−1 ≡ [Σ−1
1 ,Σ−1

2 , · · · ,Σ−1
G ], follow essentially the same as in 1.25 and
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1.27, although only the subset of observations currently assigned to the gth

component are used in the respective inference for the component specific
intercepts and covariance matrices. The component labeling variables them-
selves are drawn from a discrete distribution with support over g = 1, 2, · · · , G,
and the component probabilities are sampled from a Dirichlet. Details of these
calculations are provided in Chib and Hamilton [11] and Li, Poirier and Tobias
[47], and are not repeated here for the sake of brevity.

Finite mixture models are quite flexible and can adapt to capture a variety
of features of the data distribution, including skewness and multimodality.
In some cases, prior knowledge of the problem at hand suggests that the
population of interest consists of distinct groups, whose responses are likely
to be homogeneous within each group but potentially different across groups.
In this case it is natural to adopt a finite mixture model and to interpret its
parameters. In other (perhaps most) cases, finite mixtures are simply used as
a flexible modeling device to allow for departures from normality, and any ex-
post interpretation of results as evidence for the existence of discrete “groups”
in the population should be made with caution.

In practice, use of finite mixtures can produce concerns regarding parameter
and component identification (i.e., the model parameters are not identified
up to a relabeling of the components and the simulator can exhibit label-
switching). Furthermore, the choice of the number of mixture components is
a question that should be addressed, and we take up this issue in the following
section.

Finally, an even more general approach, as described in Conley, Hansen,
McCulloch and Rossi [17], is to consider an analysis based on Dirichlet pro-
cess (DP) priors. In this approach, parameters are observation-specific, and
assumed to be generated from a common distribution. A prior is placed over
this common distribution, centered around an overall base measure. Although
this approach avoids explicit selection of the number of components, one can
think of this as being handled endogenously, as new parameter values (quite
similar in spirit to components) are “born” when needed, “die” when un-
needed, and are lumped together when appropriate to retain parsimony. Neal
[53] provides a number of useful details related to posterior simulation in DP
models.

1.4.2 Model Comparison

As discussed in the previous section, when finite mixture models are adopted,
there is a need to determine the appropriate number of mixture components.
Chib [7] and Chib and Jeliazkov [16] offer very useful, general-purpose meth-
ods for model comparison, model averaging and marginal likelihood calcula-
tion in a Bayesian setting. Below we discuss an alternative approach to this
problem based on the bridge sampling technique.
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A special case of the bridge sampling method is the reciprocal importance
sampling approach utilized in Gelfand and Dey [23]:

p(ỹ) ≈
[
M−1

M∑
m=1

q(θ(m))

p(θ(m))p(ỹ|θ(m))

]−1

(1.39)

where θ(m) is the mth draw of θ = [β′, vec(Σ)′, α′, π′]′ from a Gibbs al-
gorithm for the model in 1.37 and 1.38. The denominator in the above,
p(θ(m))p(ỹ|θ(m)), is an evaluation of the non-normalized posterior distribu-
tion of θ, which is the product of the prior distribution p(θ) and the likelihood
function p(ỹ|θ) marginalized over the latent outcomes ỹ∗ and component la-
beling variables c = [c1, c2, · · · , cn]′. The numerator in the sampling average
q(θ(m)) is an evaluation of the importance density q(θ). In the rare case
where the posterior distribution p(θ|ỹ) has a known exact analytical form
with an explicit expression of the normalizing constant, the posterior distri-
bution p(θ|ỹ) serves as the best candidate for q(θ). In fact, in such a case,
it is not even necessary to make the sampling average over the M draws of
θ(m) and 1.39 holds exactly even for M = 1. Chib [7] and Chib and Jeliazkov
[16] follow this strategy and make use of the Gibb algorithm to produce an
accurate evaluation of the posterior distribution p(θ|ỹ) at a particular draw
θ(m).

Often the importance density q(θ) chosen by a researcher has fatter tails
than the posterior distribution p(θ|ỹ), making the reciprocal importance sam-
pling method not very reliable. Various researchers, including Geweke [25],
Meng and Wong [50] and Frühwirth-Schnatter [22], have proposed important
improvements over the reciprocal importance sampling method. For example,
the bridge sampling technique examined and applied in Meng and Wong [50]
and Frühwirth-Schnatter [22] generalize and replace 1.39 with

p(ỹ) ≈ L−1
∑L

l=1 α(θ̃
(l)

)p(θ̃
(l)

)p(ỹ|θ̃(l)
)

M−1
∑M

m=1 α(θ(m))q(θ(m))
(1.40)

where θ̃
(l)

, for l = 1, 2, · · · , L, are L independent draws from the importance
density q(θ). Various choices of the function α(θ) result in different versions of
the bridge sampling method. For example, the reciprocal importance sampling
approach in 1.39 is a special case of the bridge sampling method with α(θ) =
[p(θ)p(ỹ|θ)]−1.

Meng and Wong [50] propose an asymptotically optimal choice of α(θ)
under certain conditions:

α(θ) ∝ 1
Lq(θ) + Mp(θ|ỹ)

. (1.41)

Since the exact form of the posterior distribution p(θ|ỹ) = [p(θ)p(ỹ|θ)]/p(ỹ)
in turn depends on the knowledge of the marginal likelihood p(ỹ), in practice,
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Meng and Wong [50] suggest using some starting value of p(ỹ) such as the
output from the reciprocal importance sampling approach in 1.39:

p0(ỹ) =

[
M−1

M∑
m=1

q(θ(m))

p(θ(m))p(ỹ|θ(m))

]−1

,

and then, for t = 1, 2, · · · , T , iteratively updating the values of pt(θ|ỹ) and
pt(ỹ) using the following two steps which can converge rather quickly to the
bridge sampling estimate of p(ỹ) with an asymptotically optimal choice of
α(θ):

pt(θ|ỹ) =
p(θ)p(ỹ|θ)

pt−1(ỹ)
(1.42)

pt(ỹ) =

[
L−1

L∑

l=1

p(θ̃
(l)

)p(ỹ|θ̃(l)
)

Lq(θ̃
(l)

) + Mpt(θ̃
(l)|ỹ)

]
(1.43)

×
[
M−1

M∑
m=1

q(θ(m))

Lq(θ(m)) + Mpt(θ(m)|ỹ)

]−1

.

Meng and Wong [50] and Frühwirth-Schnatter [22] show many advantages
of the bridge sampling method over the reciprocal importance sampling ap-
proach. However, for various finite mixture models, including the one in 1.37
and 1.38, the choice of the importance density q(θ) remains critical. It is well
known that the finite mixture models suffer from an identification problem
in the sense that both the prior p(θ) and the likelihood function p(ỹ|θ) in
most cases are labeling-invariant. In such cases, the posterior distribution
p(θ|ỹ) which is proportional to p(θ)p(ỹ|θ) also will not change if we relabel
all the G components completely. Unless there exist some restrictions, such
as βx,01 > βx,02 > · · · > βx,0G, imposed on the prior p(θ), the likelihood func-
tion itself does not distinguish among all the G! different ways of component
labeling. Related to this identification problem, a typical Gibbs algorithm for
finite mixture modeling also suffers from a slow mixing problem. In theory,
the Gibbs sampler should converge to draws from the posterior distribution
p(θ|ỹ) by visiting each of the G! labeling subspaces. But in practice, as ex-
plained in Frühwirth-Schnatter [21], [22] and Geweke [27], the Gibbs draws
tend to stick in only one of the G! labeling subspaces even with a large number
of draws.

To combat the above mentioned identification problem in finite mixture
modeling directly, Frühwirth-Schnatter [21] proposes a random permutation
method to force the Gibbs sampler to visit each of the G! labeling subspaces.
For the model in 1.37 and 1.38, this random permutation approach is achieved
by, at the end of the mth draw of the Gibbs algorithm, reassigning the values
of the parameters in c(m), π(m), β(m) and Σ(m) that are component-specific to
one of the G! labeling schemes that is randomly chosen. In this way, each of the
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G! subspaces is visited with a probability of exactly 1/G!. Correspondingly,
to compute the marginal likelihood in (1.43), one can choose an importance
density following the suggestions in Frühwirth-Schnatter [22] and Kaufmann
and Frühwirth-Schnatter [36]:

q(θ) =
1
S

S∑
s=1

p(π|c(s))p(β|c(s),Σ(s−1), ỹ∗(s−1)) (1.44)

×p(Σ|c(s), β(s), ỹ∗(s−1))q(α|c(s), β(s),Σ(s), ỹ∗(s−1), ỹ)

where p(π|·), p(β|·), p(Σ|·) and q(α|·) correspond to the Gibbs steps of draw-
ing π, β, Σ and α, respectively. Often Metropolis-Hastings steps are used in
the sampling of parameters such as α. In such a case, following Kaufmann
and Frühwirth [36], q(α|·) now instead corresponds to the proposal density for
drawing α in a Metropolis-Hastings step. Assuming that we draw c, π, β, Σ,
α and ỹ∗ sequentially in the Gibbs algorithm, the values c(s), β(s) and Σ(s) in
1.44 correspond to the sth draw and Σ(s−1) and ỹ∗(s−1) the (s− 1)th draw of
the Gibbs algorithm. Frühwirth-Schnatter [21] demonstrates that the random
permutation step forces the Gibbs algorithm to visit each of the G! labeling
subspaces. As a result, the importance density in (1.44) is a sampling average
of densities with underlying parameters visiting all the G! labeling subspaces.
Without the random permutation step, the importance density in (1.44) may
depend on parameters sticking in only one of the G! labeling subspaces.

1.4.3 Instrument Imperfection

Procedures such as 2SLS and IV are commonly labeled as purely “classical”
or “frequentist” and regarded as objective, free of the influences of priors.
Despite this pervasive view, one can argue that such methods are, in fact,
quite subjective and that beliefs surrounding the validity of such methods are
rather personal.

To see this, consider a version of 1.1 and 1.2 where both w and z appear
in the outcome and treatment equations:

yi = βy,0 + xiβy,x + wiβy,w + ziβy,z + εi (1.45)
xi = βx,0 + wiβx,w + ziβx,z + ui. (1.46)

As argued in our introductory section, the model parameters are not fully
identified without some form of additional structure. The approach behind
instrumental variables is to determine a z or set of z for which βy,z = 0, and
to achieve identification as a consequence of that restriction. In practice, we
distinguish w from z via this belief.

What the IV-minded researcher does in practice, then, is to think carefully
about the problem at hand and find a set of instruments which seem plausibly
excludable. In papers of this type, an inordinate amount of time is spent in
trying to convince the audience that it is reasonable to share his / her belief
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regarding this exclusion. But a belief is exactly what is being expressed here
- an opinion of the investigator that an appropriate prior for the problem at
hand is the dogmatic one in which βy,z = 0.

When thinking carefully about virtually all pursuits of this type based upon
observational data, one can often come up with stories which undermine the
perfect excludability of z from 1.45. For example, even quarter of birth, often
used in past work to assess the causal impact of education on earnings, has
recently been questioned as a legitimate instrument given its demonstrated
correlation with maternal characteristics (Hungerman and Buckles [34]). This
leads researchers to instead consider a system like 1.45 and 1.46, and to see
what we might learn about the causal effect βy,x when βy,z is allowed to be
“small” but non-zero. Recent work by Kraay [40] and Conley, Hansen and
Rossi [18] discuss approaches based on this idea.

When allowing for instrument imperfection (that is, failing to impose βy,z =
0), it is important to keep in mind the model becomes only partially identified.
Given this partial identification, Chan and Tobias [5] note that, when even
moderately weak priors on βy,z are employed, standard Gibbs algorithms
for this model can mix extremely poorly - in some cases millions or even
billions of simulations may be required in order to obtain a desired level of
numerical accuracy. To circumvent this problem, they outline a semi-analytic
approach to the calculation of marginal posterior moments that even offers
an improvement over the gold standard of iid sampling from the posterior.

Although generalized treatment-response models like 1.45 and 1.46 have
substantial appeal, given the reality that instruments chosen in practice are
not likely to be perfectly excludable, the resulting partial identification implies
that the priors employed can have considerable influence. In fact, asymptoti-
cally, the conditional posterior for the non-identified structural parameters -
like the causal effect βy,x - will reduce to the conditional prior (e.g., Moon
and Schorfheide [51]), clearly revealing that the influence of the prior will
not vanish as we acquire more data. As a result, it is incumbent upon the re-
searcher to think very carefully about the priors selected, and perhaps to offer
a menu of posterior results under a variety of different priors (one of which
could be the common dogmatic choice βy,z = 0), in order to comprehensively
document posterior sensitivity to different and reasonably maintained prior
beliefs.

1.5 Illustrative Application

To illustrate how Bayesian methods can be used to estimate a treatment-
response model, and how different models can be compared within that set-
ting, we consider a version of the application conducted by Li, Mumford and
Tobias [46].

This application considers analysis of data provided by an online payday
loan lender, in operation across 38 different U.S. states. The variables to
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be modeled consist of the amount borrowed (typically around $300, with
payment in full due within two weeks), as well as whether or not the borrower
ultimately defaults on the loan. Default is a common phenomenon in this
industry, and happens in approximately 30% of the loans in our data. We
consider a triangular system in which the agent chooses an amount to borrow
(perhaps to cover an emergency or unanticipated expense), and subsequently,
the amount borrowed may have a causal effect on the decision to default.

States regulate a number of the terms of such loans, including the maximum
interest rate that can be charged (Rate, and in practice, our lender generally
follows the strategy of charging a rate equal to the state maximum rate), the
maximum amount that can be borrowed (StateMAX), penalties that can be
assessed on borrowers defaulting on a $300 loan (StatePenalty) as well as how
long the lender (or collection agency) has to collect on the debt (StatueLimit).
We use this variation in state policy to aid in identifying the parameters of
our treatment-response model. Other variables used consist of the term of the
loan (denoted Term, typically 14 days, as most borrowers in the sample are
paid bi-weekly), and the monthly rent paid by the individual (Rent).

The specification we consider is given below:

LogAmt∗i = βA,0ci + βA,1Ratei + βA,2Termi + (1.47)
βA,3LogRenti + βA,4LogStateMAXi + εi

LogAmti = min{LogAmt∗i , LogStateMAXi} (1.48)
Default∗i = βD,0ci + βD,1LogAmti + βD,2Ratei + βD,3Termi +

βD,4LogRenti + βD,5LogStatePenaltyi + (1.49)
βD,6StatuteLimiti + vi

Defaulti = I(Default∗i > 0) (1.50)(
εi

vi

)∣∣∣∣·
ind∼ N

[(
0
0

)
, Σci =

(
σεεci σεvci

σvεci σvvci = 1

)]
(1.51)

Pr(ci = g) = πg, for g = 1, 2, · · · , G and
G∑

g=1

πg = 1. (1.52)

Equation 1.47 can be interpreted as the amount that the agent would like
to borrow, which is modeled as a function of the state-level interest rate, loan
term, rent paid by the individual as well as the state-established maximum
amount that can be borrowed. The desired amount is then linked to the
observed (log) loan size through the restriction in 1.48 - actual amounts cannot
exceed the state-established maximum, but otherwise are assumed to equal
the desired loan size. (Provided the borrower meets a residency condition, a
monthly income requirement, furnishes checking account information, and is
not found to be present in a database of known defaulters, the requested loan
amount is essentially approved by the lender).
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Equation 1.49 can be interpreted as the net desire to default on the loan.
The default decision is presumed to depend on loan size, the interest rate
charged, the monthly rent paid by the individual and state-level penalties
and collection terms on defaulting borrowers.

As discussed in our section on non-normality, we consider a finite mixture
model, but allow only the intercepts and covariance matrices to vary across
mixture components in order to avoid parameter proliferation. The notation
above allows for G different mixture components; in practice we estimate spec-
ifications with up to 4 such components. Finally, note that the specification
above represents a special case of the model described in 1.37 and 1.38, and
as such, the Gibbs algorithm for that model can be readily applied here as
well.

To determine the number of components to be included in the mixture mod-
eling, we utilize the bridge sampling method explained in the previous section.
In Table 1.1, we calculate the log marginal likelihood ln[p(ỹ|G-component)]
of a G-component mixture model, for G = 1, 2, 3, 4, and the Bayes factor
p(G-component|ỹ)

p(H-component|ỹ)
of a G-component model as opposed to an H-component

model, for H = 1, 2, 3, 4. The Bayes factors strongly suggest that the 2-
component model is most favored by our payday loan data.

[Table 1 about here.]

Given this strong preference for a two-component specification, we focus our
attention in the remainder of this discussion on parameter estimates obtained
from this model. Posterior summary statistics for all model parameters are
provided in Table 1.2.

Specifically, for each parameter, we report the posterior mean E(θj |ỹ), the
posterior standard deviation Std(θj |ỹ), the posterior probability that the coef-
ficient is positive Pr(θj > 0|ỹ), the numerical standard error (NSE) associated
with the posterior mean and the marginal effect (ME) of the covariate associ-
ated with the parameter. These ME’s are calculated for every observation in
the sample and then averaged across those observations. For variables mea-
sured in dollars, the ME’s represent changes resulting from a $100 increase in
the level of the given variable.

[Table 2 about here.]

These marginal impacts reveal interesting, and mostly expected results. For
example, an increase in monthly rent of $100 raises the expected loan amount
by a modest $1.39, while a similarly-sized $100 increase in state borrowing
limit leads to a much larger expected loan amount increase of $11.10. The
interest rate charged on the loan is found to have little effect on loan size, as
the marginal posterior distribution of βA,Rate is nearly centered at zero with
Pr(βA,Rate > 0|ỹ) ≈ .49. This result is arguably consistent with the borrowers
in our data seeking loans for emergency purposes, as that aspect of the loan
seems to have little effect on loan size.



CONCLUSION 21

We also find that large loans are more likely to end in default, as a $100 in-
crease in the amount borrowed raises the default probability by approximately
3 percentage points. Loans with higher interest rates are also associated with
increased incidences of default, as a 0.1 increase in the interest rate increases
the default probability by 4.84 percentage points. A $100 increase in monthly
rent paid reduces the default probability by 1.04 percentage points, which is
sensible given that individuals paying more in rent should be more likely to
have the resources to pay off the loan when due. Finally, borrowers are sen-
sitive to penalties associated with default; increasing the state-level penalty
on default on a $300 loan by $100 decreases the default probability by 4.51
percentage points.

To focus on the “causal” effect of the amount borrowed on default prob-
ability, in Figure 1.1, we plot this marginal effect over the range of amount
borrowed.

[Figure 1 about here.]

While the solid line represents the point estimates of the marginal effects, the
dashed lines correspond to the posterior means plus and minus two times the
posterior standard deviations. Note that the standard deviations are easy to
calculate given the post-convergence simulations from the Gibbs sampler: for
every point in the loan amount space, we obtain a collection of marginal effect
values, one for each post-convergence simulation. This collection represents
a sample from the induced marginal effect posterior distribution, from which
standard deviations are easily calculated.

1.6 Conclusion

This chapter has provided a brief overview of parametric Bayesian methods
for treatment response modeling. We first considered the fully linear trian-
gular model and discussed MCMC implementation in that context. We then
extended this to allow for discrete possibilities among both the treatment and
response, illustrating the value of data augmentation and the connection be-
tween posterior simulators for linear models and those for nonlinear models
conditioned on the latent data. We reviewed standard procedures for extend-
ing models beyond the usual Gaussian case and discussed a procedure for
model comparison and selection. Finally, we illustrated how Bayesian calcu-
lations are performed and interpreted, using data from an online payday loan
lender.

Applications of these methods abound in the literature, including, for ex-
ample, Li [43], Li and Poirier [44], Munkin and Trivedi [52], Poirier and Tobias
[55], Li, Poirier and Tobias[47], Deb, Munkin and Trivedi [19], [20], Hooger-
heide, Kaashoek and van Dijk [33], Chib and Jacobi [13], [14], [15], Conley,
Hansen and Rossi [18], Kline and Tobias [37], Hoogerheide, Block and Thurik
[32] and Block, Hoogerheide and Thurik [2], among many others. Further-
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more, endogeneity and causality in Bayesian economic modeling is discussed in
many recent Bayesian textbooks, including Koop [38], Lancaster [42], Geweke
[26], Rossi, Allenby and McCulloch [56], Koop, Poirier and Tobias [41], and
Greenberg [29].
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Figure 1.1: Marginal effects of loan amount on default probability
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Table 1.1: Log marginal likelihoods and Bayes factors of G-component mix-
ture models, for G = 1, 2, 3, 4

G ln[p(ỹ|G)] p(ỹ|D)
p(H=1|ỹ)

p(G|ỹ)
p(H=2|ỹ)

p(G|ỹ)
p(H=3|ỹ)

p(G|ỹ)
p(H=4|ỹ)

1 -3338.8 1 8.7407× 10−11 1.3620× 10−8 5.4111× 10−6

2 -3315.6 1.1441× 1010 1 155.82 61907

3 -3320.7 7.3422× 107 0.0064176 1 397.29

4 -3326.7 1.8481× 105 1.6153× 10−5 0.002517 1
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Table 1.2: Posterior summary statistics from the two-component model

Parameter (θj) E(θj |ỹ) Std(θj |ỹ) Pr(θj > 0|ỹ) NSE ME

βA,Rate -0.00506 0.298 0.492 0.00161 -0.0727

βA,Term 0.00212 0.00223 0.83 1.23e-005 0.543

βA,LogRent 0.0483 0.0283 0.957 0.000157 1.39

βA,LogStateMAX 0.0712 0.0297 0.992 0.000162 11.1

βD,LogAmt 0.382 0.266 0.929 0.00706 0.0296

βD,Rate 1.91 0.905 0.982 0.00758 0.0484

βD,Term 0.0189 0.00768 0.994 8.01e-005 0.00453

βD,LogRent -0.384 0.101 5e-005 0.00102 -0.0104

βD,LogStatePenalty -0.194 0.0493 0 0.000875 -0.0451

βD,StatuteLimit -0.00928 0.0124 0.226 9.04e-005 -0.00221

π1 0.363 0.043 1 0.00156

βA,01 4.42 0.271 1 0.00147

βD,01 0.996 1.36 0.773 0.0273

σεε1 0.103 0.0103 1 0.000244

ρεv1 = σεv1/
√

σεε1 0.0312 0.0865 0.644 0.00136

π2 0.637 0.043 1 0.00156

βA,02 5.02 0.276 1 0.00164

βD,02 -0.62 1.57 0.352 0.036

σεε2 0.285 0.0207 1 0.000518

ρεv2 = σεv2/
√

σεε2 0.0934 0.116 0.79 0.00254


