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SUMMARY
In this paper we describe methods for predicting distributions of outcome gains in the framework of a latent
variable selection model. We describe such procedures for Student-t selection models and a finite mixture of
Gaussian selection models. Importantly, our algorithms for fitting these models are simple to implement in
practice, and also permit learning to take place about the non-identified cross-regime correlation parameter.
Using data from High School and Beyond, we apply our methods to determine the impact of dropping out
of high school on a math test score taken at the senior year of high school. Our results show that selection
bias is an important feature of this data, that our beliefs about this non-identified correlation are updated
from the data, and that generalized models of selectivity offer an improvement over the ‘textbook’ Gaussian
model. Further, our results indicate that on average dropping out of high school has a large negative impact
on senior-year test scores. However, for those individuals who actually drop out of high school, the act of
dropping out of high school does not have a significantly negative impact on test scores. This suggests that
policies aimed at keeping students in school may not be as beneficial as first thought, since those individuals
who must be induced to stay in school are not the ones who benefit significantly (in terms of test scores)
from staying in school. Copyright  2004 John Wiley & Sons, Ltd.

1. INTRODUCTION

Since the early 1970s, great strides have been made in the econometrics literature in the estimation
of ‘treatment–response’ or ‘selection’ models when the assignment to treatment is not random.
In recent work in this binary treatment/continuous outcome literature, considerable attention has
been given to the estimation of various treatment parameters such as the Average Treatment
Effect (ATE), the effect of Treatment on the Treated (TT), and the Local Average Treatment Effect
(LATE) (e.g., Heckman and Robb, 1985; Bjorklund and Moffitt, 1987; Heckman, 1990; Imbens
and Angrist, 1994; Dehejia, 1999; Dehejia and Wahba, 1999; Heckman and Vytlacil, 1999, 2000;
Heckman et al., 2002). These treatment parameters measure various expected outcome gains from
receipt of treatment for different subpopulations.

Despite the numerous and important advances made in the estimation of these parameters,
relatively little attention has been given to the estimation of quantities other than mean treatment
parameters for various subpopulations. In our view, the nearly exclusive focus on mean treatment
impacts is attributable to a non-identified parameter problem. That is, for every individual in the
sample, we will only observe his or her ‘treated’ or ‘untreated’ outcome, but never both, and
thus the correlation between the treated and untreated outcomes is not identified. As a result,
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distributions of quantities of interest, such as the outcome gain resulting from receipt of treatment,
will depend on this non-identified parameter, while means of these distributions will not. For this
reason, mean impacts have dominated the literature, while relatively little attention has been given
to characterizing distributions of outcome gains.

Several methods have been advanced for dealing with this non-identified parameter problem.
Heckman and Honoré (1990), Heckman et al. (1997), Heckman and Smith (1998),1 Chib and
Hamilton (2000) and Poirier and Tobias (2001) discuss the issue of estimating distributions of
outcome gains in the presence of this unidentified parameter. Using a Bayesian approach, Chib
and Hamilton (2000) discuss parametric within-sample distributions of outcome gains subject
to the restriction that the non-identified correlation parameter is equal to zero, and Chib and
Hamilton (2002) discuss semiparametric estimation of longitudinal data treatment effects under
this assumption. Poirier and Tobias (2001) discuss how this prior restriction can be relaxed, focus
on predictive distributions of outcome gains, but only obtain results for the ‘textbook’ Gaussian
selection model.

In the following sections, we go beyond previous work in this area and offer several contributions
to the existing literature. In so doing, we continue to advocate an estimation approach that places a
prior over the ‘full’ covariance matrix—despite the fact that the cross-regime correlation parameter
is not identified—and show that learning can take place about the non-identified correlation
parameter through information contained in the identified correlation parameters. In this sense, it
is unreasonable and unnecessary to fix this parameter in value a priori, as the data update our
beliefs about the values of this correlation. Additionally, we point out that when working with the
‘full’ covariance matrix, the resulting Markov Chain Monte Carlo algorithms are relatively easy
to implement as the complete conditionals can be easily sampled.

Second, we extend the methods of Poirier and Tobias (2001) to include algorithms for fitting non-
Gaussian selection models, particularly Student-t models as well as a finite mixture of Normals.
For these generalized models we derive expressions for various posterior predictive distributions of
outcome gains resulting from the receipt of treatment. We link all of these predictive distributions to
conventional mean treatment effects often used in the program evaluation literature. This includes
the predictive distributions associated with the ATE, the TT, and the LATE.

Finally, and most importantly, we apply our methods to predict the impact of dropping out of
high school on a senior-year math test score using data from High School and Beyond (HSB).
We find that selection bias is an important feature of this data and that the widely-used Gaussian
selection model is inferior to the generalized selection models described in this paper. We find
preference for a two-component Normal mixture model and that within the component receiving
the majority of the weight, a substantial amount of learning takes place about the non-identified
correlation parameter.

Our results indicate that dropping out of high school has a large negative impact on senior-
year test scores for an ‘average’ individual. However, for those individuals who actually drop
out of high school, the act of dropping out does not have a significantly negative impact on test
scores. That is, the difference between the (counterfactual) test score dropouts would receive had
they stayed in school and the (observed) test score they receive after dropping out of school
seems nearly centred at zero. This suggests that policies aimed at keeping students in school

1 In the context of the Roy (1951) model based on outcome maximization, Heckman et al. (1997) and Heckman and
Smith (1998) move beyond mean effects and discuss non-parametric identification of the joint outcome distribution over
a given support of the explanatory variables, thus enabling non-parametric identification of the treatment effects.
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may not be as beneficial as first thought, since those individuals who need to be induced to stay
in school are not the ones who benefit significantly (in terms of test scores) from remaining in
school.

The outline of the paper is as follows. In Section 2 we introduce our standard model of potential
outcomes. In Section 3 we review and extend our theoretical analysis which shows how learning
can take place about the non-identified cross-regime correlation parameter. In Section 4 we briefly
describe our algorithms for fitting Student-t and Normal mixture selection models, and note
that since these algorithms work with the ‘full’ covariance matrix, the data can serve to update
our beliefs about this correlation parameter. Section 5 derives expressions for various predictive
distributions of outcome gains for both the Student-t and mixture models, and discusses methods
for calculating all of these predictive distributions. Section 6 describes the High School and Beyond
data used in our application, and Section 7 presents the empirical results. The paper concludes
with a summary in Section 8.

2. THE MODEL

In this paper, we focus on a standard model of potential outcomes with a binary treatment decision
(D), and a continuous outcome (Y ):2

DŁ D Z� C UD �1�

Y1 D Xˇ1 C U1 �2�

Y0 D Xˇ0 C U0 �3�

The last two equations are the outcome equations in the treated and untreated states, respectively,
where the 1 subscript is used to denote variables and parameters associated with the treated state
and the 0 subscript with the untreated state. We assume, without loss of generality, that the variables
appearing in X are constant across states.

In our potential outcomes framework, DŁ is a latent variable that generates an observed
dichotomous treatment decision D(Z ):

D�Z� D I�DŁ > 0� D I�Z� C UD > 0�

Here I�Ð� is an indicator variable equal to one if the statement within the parentheses is true and
zero otherwise, D�Z� D 1 implies receipt of treatment, and D�Z� D 0 implies non-receipt. The
latent variable DŁ has the interpretation as the net desire for receipt of treatment—individuals
take the treatment if DŁ > 0, but otherwise do not.

We also assume the existence of an exclusion restriction or instrument and let zŁ denote an
element of Z which is not contained in X. Though this assumption is not strictly required for
identification3 (given some set of distributional assumptions), the practical importance of such an
instrument has been widely documented. Further, the instrument itself will serve to define the

2 We discuss estimation, learning and prediction in the context of this model with separable errors. For more on
identification of treatment effects in models with non-separable errors, see, for example, Vytlacil (2000).
3 See, for example, Heckman et al. (1997) and Heckman and Smith (1998) who discuss non-parametric identification in
the context of the Roy (1951) model.
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LATE parameter (e.g., Imbens and Angrist, 1994; Heckman and Vytlacil, 1999, 2000), as we will
discuss in Section 5.

For a given individual, we observe either their treated or untreated outcome, but never both.
Letting Y denote the observed outcome, we can write:

Y D DY1 C �1 � D�Y0

To characterize the effectiveness of the program or treatment, we would like to learn about
the outcome gain resulting from the receipt of treatment (i.e.,  � Y1 � Y0). Immediately, one
recognizes that distributions associated with  depend on the non-identified correlation parameter
�10 � Corr�U1, U0�, though the means of these distributions will not. In the following section, we
show that learning takes place about �10 and will use this learning to calculate various predictive
outcome gain distributions.

3. LEARNING ABOUT THE NON-IDENTIFIED CORRELATION PARAMETER

In this section, we review and extend the arguments of Vijverberg (1993), Koop and Poirier
(1997), Poirier (1998) and Poirier and Tobias (2001) to show how learning takes place about the
non-identified correlation parameter through information learned from the identified correlation
parameters. When proceeding we will work with the correlation parameters, letting �10 denote the
non-identified correlation, and �1D and �0D the identified correlations:

�10 � Corr�U1, U0�, �1D � Corr�U1, UD�, �0D � Corr�U0, UD�

We let  denote the covariance matrix associated with the 3 ð 1 disturbance vector from (1)-(3)
and write:

 D
[ 1 �1D�1 �0D�0

�1D�1 �2
1 �10�1�0

�0D�0 �10�1�0 �2
0

]

We will also let � denote all remaining parameters of this model. We begin by noting that

jj D �2
1�2

0 [�1 � �2
1D��1 � �2

0D� � ��10 � �1D�0D�2] �4�

It follows that the covariance matrix  is positive definite iff this determinant is positive. This
requires us to choose a prior for the non-identified correlation �10, denoted p��10j�1D, �0D�, which
is not independent of the other correlation parameters, but instead is defined over the support4

�
10

� �10 � �10 where:

�
10

D �
10

��1D, �0D� D �1D�0D � [�1 � �2
1D��1 � �2

0D�]1/2 �5�

�10 D �10��1D, �0D� D �1D�0D C [�1 � �2
1D��1 � �2

0D�]1/2 �6�

4 In a similar spirit, Manski (1990, 1994) uses bounds on the outcomes and properties of the instrument to bound ATE.
Here the source of the bounding is different, as it arises from the imposed positive definiteness of the covariance matrix.
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As shown in Koop and Poirier (1997) and further described in Poirier and Tobias (2001),
conditioned on the values of the identified correlations and remaining parameters, no learning
takes place about the non-identified correlation parameter �10. That is,

p��10j�1D, �0D, �, Data� D p��10j�1D, �0D, �� D p��10j�1D, �0D� �7�

However, the marginal priors and posteriors of �10 can be quite different. To further describe
this point and separate the contributions of the data and the prior in affecting the behaviour of
the marginal posterior for �10, first let R��10� ² [0, 1] ð [0, 1] denote the conditional support of
��1D, �0D� given �10, defined as the set of all ��1D, �0D� such that (4) is positive given �10. It
follows that:

p��10jData� D
∫

R��10�

∫
�
p��10, �1D, �0D, �jData�d�1Dd�0Dd�

D
∫

R��10�

∫
�
p��10j�1D, �0D�p��1D, �0D, �jData�d�1Dd�0Dd�

D
∫

R��10�

∫
�
p��10j�1D, �0D�p��j�1D, �0D, Data�p��1D, �0DjData�d�1Dd�0Dd�

D
∫

R��10�
p��10j�1D, �0D�p��1D, �0DjData�d�1Dd�0D

This second line factors the joint posterior into the conditional for �10 times the marginal, and
uses the result above—that the conditional priors and posteriors of the non-identified correlation
are identical. The last line of this derivation suggests that as the identified correlation parameters
asymptotically ‘collapse’ around some limiting values, the marginal posterior for �10 would reduce
to the conditional prior for �10 evaluated at those values of the identified correlations.

That is, if the joint posterior for �1D and �0D is highly informative or ‘tight’ about some point
� O�1D, O�0D� then

p��10jData� ³ p��10j�1D D O�1D, �0D D O�0D�, Pr��̂
10

� �10 � �̂10jData� ³ 1 �8�

Information conveyed from the data regarding the identified correlation parameters �1D and �0D

spills over and revises our beliefs about the conditional support of �10. Thus, in general, the
marginal priors and posteriors will differ, suggesting that learning has taken place. However,
within these conditional support bounds, the prior clearly matters. In fact, the above derivation
suggests that if the joint posterior for �1D and �0D was degenerate, then the marginal posterior
of �10 would simply be the conditional prior evaluated at those limiting values of �1D and �0D.
Though �10 is not identified, and its posterior will not collapse asymptotically, it is important to
recognize that we still update our beliefs regarding this parameter through the p.d. restriction. The
upper and lower conditional support bounds implied by this restriction are identified, and will
serve to limit the conditional support of �10.5

5 Interestingly, note that if treatment were randomly assigned in the sense that �1D D �0D D 0, the conditional support
bounds would be completely uninformative. Intuitively, this makes sense as we learn about �10 ‘indirectly’ through
the outcomes correlations with the treatment decision. That is, if the outcome unobservables move together sufficiently
with the selection unobservables, then to some degree they must also move together with each other. In randomized
experiments, the design itself breaks the outcomes association with the treatment decision, and thus provides no vehicle
for learning about �10.
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4. ESTIMATION IN NON-GAUSSIAN SELECTION MODELS

The model described in (1)–(3) is estimated using the Gibbs sampler, and we describe the details
of our algorithm in the appendix. To generalize our previous algorithm (Poirier and Tobias, 2002)
which assumed Normality, we employ standard computational ‘tricks’ to extend our analysis to
multivariate Student-t errors (e.g., Carlin and Polson, 1991; Albert and Chib, 1993; Geweke, 1993)
or to a finite mixture of Normals (e.g., Chib and Hamilton, 2000; McLachlan and Peel, 2000).

What is important to recognize is that the algorithms we describe work with the ‘full’ 3 ð 3
covariance matrix, and as such, permit learning to take place about �10. The resulting algorithms
when working with the ‘full’ covariance matrix also turn out to be quite simple to implement
(as described in the appendix), since all of the complete conditionals are easily sampled and no
Metropolis–Hastings substeps are required.

5. PREDICTIVE DISTRIBUTIONS OF OUTCOME GAINS

Since our goal is to use the given data to predict distributions of outcome gains for future
populations, it remains to discuss how the predictive distributions are calculated in our generalized
selection models.

To these ends, suppose the model in (1)–(3) applies to our future population, and define

f � Y1f � Y0f, 	1 � �1D � �0D, 	2 � �2
1 C �2

0 � 2�10

where the f subscript is used to denote future, as yet unobserved outcomes. We also let xf and
zf denote the future covariates in the outcome and selection equations, respectively.

We focus on describing methods for obtaining three different predictive distributions of outcome
gains and tie these into the previous program evaluation literature. Specifically, we wish to
characterize

p�fjxf, Data� �9�

p�fjxf, zf, Df�zf� D 1, Data� �10�

p�fjxf, zf, Qzf, Df�Qzf� D 1, Df�zf� D 0, Data� �11�

The first density describes the predictive distribution of outcome gains for a random person, the
second describes the distribution for those taking the treatment at zf, and the third describes the
distribution for those taking the treatment at Qzf but not at zf.6 The means of these distributions
correspond to the ATE, the TT (e.g., Rubin, 1978; Heckman and Robb, 1985), and the LATE (e.g.,
Imbens and Angrist, 1994) predictive parameters, respectively, widely reported in the program
evaluation literature.

We will calculate these predictives by marginalizing the conditional predictive densities over
the joint posterior:

p�fjxf, Data� D
∫



p�fjxf, 
, Data�p�
jData�d


6 The change from zf to Qzf results from a change in the instrument from zŁ to QzŁ. We assume that Qzf� > zf�, or that the
change in instrument leads to a higher propensity for the individual to take the treatment.
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p�fjxf, zf, Df�zf� D 1, Data� D
∫



[p�fjxf, zf, Df�zf� D 1, 
, Data�

ð p�
jzf, Df�zf� D 1, Data�]d


p�fjxf, zf, Qzf, Df�Qzf� D 1, Df�zf� D 0, Data�

D
∫



[p�fjxf, zf, Qzf, Df�Qzf� D 1, Df�zf� D 0, Data, 
�

ð p�
jzf, Qzf, Df�Qzf� D 1, Df�zf� D 0, Data�]d


where 
 denotes all of the parameters in the model. In the above, we are careful to recognize
that the events QDf D 1, Df D 1 or Df D 0 involve elements of the parameter vector 
, and so the
distribution we average over in the expressions above must also condition on these restrictions. It
is straightforward to show that

p�
jzf, Df�zf� D 1, Data� / Pr�Df�zf� D 1jzf, 
�p�
jData� �12�

p�
jQzf, zf, QDf�Qzf� D 1, Df�zf� D 0, Data� / Pr� QDf�Qzf� D 1, Df�zf� D 0jQzf, zf, 
�

ð p�
jData� �13�

These results can be substituted into the expressions above so that in all cases we perform the
integration over the joint posterior p�
jData�. Expressions for the terms Pr�Df�zf� D 1jzf, 
� and
Pr� QDf�Qzf� D 1, Df�zf� D 0jQzf, zf, 
� are easily obtainable from each model. For example, if we
were assuming a Gaussian model, these would be �zf�� and �Qzf�� � �zf��, respectively.

5.1. Student-t Predictives

With a bit of work, we can derive expressions for the conditional predictives above within our
model with Student-t errors:

[ATE] � pt�fjxf, 
� ¾ tv�xf�ˇ1 � ˇ0�, 	2�

where tv�a, b� denotes a Student-t density with v degrees of freedom, mean a and variance vb/�v �
2�. To obtain the densities for TT and LATE, we first need to define the following variables:

�DŁ jf�xf, zf, f, 
� � zf� C �	1/	2�[f � xf�ˇ1 � ˇ0�]

DŁ jf�xf, f, v, 
� �
[
v C �f � xf�ˇ1 � ˇ0��2

	2

] (
1

v C 1

) (
1 � 	2

1

	2

)

Given this notation, we obtain the following conditional predictives:

[TT] D p�fjxf, zf, Df�zf� D 1, 
� D
(

pt�fjxf, 
�

Tv�zf��

)
TvC1

 �DŁ jf�xf, zf, f, 
�√
DŁ jf�xf, f, v, 
�


[LATE] D p�fjxf, zf, Qzf, Df�zf� D 0, Df�Qzf� D 1, 
�
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D
(

pt�fjxf, 
�

Tv�Qzf�� � Tv�zf��

) [
TvC1

 �DŁjf�xf, Qzf, f, 
�√
DŁjf�xf, f, v, 
�


� TvC1

 �DŁjf�xf, zf, f, 
�√
DŁjf�xf, f, v, 
�

 ]

In the expressions for TT and LATE, pt�fjxf, 
� refers to the ATE density for the Student-t
model as derived above.

Since the conditional predictives have the above closed-form solutions, we can obtain the
unconditional predictives via ‘Rao-Blackwellization’. That is, taking the ATE density as an
example, we can use

Op�0
fjxf, Data� D 1

m

m∑
iD1

p�0
fjxf, 
 D 
i, Data�

where 
i is the i th post-convergence draw from the sampler, and m denotes the total number of
draws. This is repeated for a variety of different 0

f, thus providing density ordinates over a fine
grid of values. A similar process can be used to obtain the unconditional TT and LATE predictives.

5.2. Predictives for the Mixture Model

To derive expressions for the predictive distributions of outcome gains using Normal mixtures,
we first note that for estimation purposes we introduce a set of component indicator variables,
say fcigg, i D 1, 2, Ð Ð Ð , n, g D 1, 2, Ð Ð Ð , G into our model. The variable cig D 1 denotes that the
i th individual is drawn from the g th component of the mixture, and is otherwise zero.

In terms of prediction, conditioned on the future component indicator value cgf D 1 we are in the
framework of the ‘textbook’ Gaussian selection model, and thus the expressions for the conditional
predictives follow identically to the Gaussian case. Thus, we obtain (Poirier and Tobias, 2002):

[ATE] : p�fjcgf D 1, xf, 
, Data� D ��f; xf�ˇg
1 � ˇg

0�, 	g
2 �

D [	g
2 ]�1/2�

f � xf�ˇg
1 � ˇg

0�√
	g

2

 �14�

[TT] : p�fjcgf D 1, xf, zf, D�zf� D 1, 
, Data� D ��f; xf�ˇg
1 � ˇg

0�, 	g
2 �

�zf�g�

ð 

 zf�g C �	g
1 /	g

2 �[f � xf�ˇg
1 � ˇg

0�]√
1 � �[	g

1 ]2/	g
2 �

 �15�

[LATE] : p�fjcgf D 1, xf, zf, Qzf, D�zf� D 0, D�Qzf� D 1, 
, Data�

D ��f; xf�ˇg
1 � ˇg

0�, 	g
2 �

�Qzf�g� � �zf�g�
A�f, xf, zf, Qzf, 
� �16�
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where

A�f, xf, zf, Qzf, 
� �
[


 Qzf�g C �	g
1 /	g

2 �[f � xf�ˇg
1 � ˇg

0�]√
1 � �[	g

1 ]2/	g
2 �


� 

zf� C �	g
1 /	g

2 �[f � xf�ˇg
1 � ˇg

0�]√
1 � �[	g

1 ]2/	g
2 �

 ]

and we have used the notation ��x; �, �2� to denote that x has a normal distribution with mean
� and variance �2. Each component of the mixture is permitted to contain its own regression
parameters and covariance matrix, so the ‘g’ superscript is used to denote parameters associated
with the g th component of the mixture.

The desired predictives given the parameters but marginalized over the component indicators fol-
low as a weighted average of the conditional predictives above, where the component probabilities
serve as the weights. Focusing on ATE as an example we note:

p�fjxf, Data� D
∫



p�fjxf, 
, Data�p�
jData�d
 �17�

D
∫




 G∑
gD1

p�fjxf, 
, cgf D 1, Data�Pr�cgf D 1j
, Data�

 p�
jData�d
 �18�

D
∫




G∑
gD1

[�gp�fjxf, 
, cgf D 1, Data�]p�
jData�d
 �19�

Rao–Blackwellization can again be used to obtain ordinates of this predictive, since the conditional
(on the parameters and component indicators) predictives are known, as given in (14)–(16).
Calculation of the TT and LATE predictives in the mixture model follows similarly.

6. THE DATA

We apply our procedures described in the previous sections to assess the impact of dropping out
of high school on a mathematics exam administered in the senior year of high school. We acquire
data to investigate these issues from the High School and Beyond data set.

HSB is a survey conducted on behalf of the National Center for Education Statistics, and was
constructed with the intent of yielding a sample of students that are representative of the population
of American high school students. HSB is a biennial survey that begins in 1980, and in this base
year, two large cohorts of sophomore and senior high school students are interviewed.7 To focus
on the impact of dropping out of high school on student achievement, we confine our attention
to the sophomore cohort, as some (approximately 8%) of this original cohort will be observed
to drop out of high school prior to their 1982 (senior-year) interview. It is also very important
to recognize a somewhat unusual feature of this data—that ‘senior-year’ test scores are available

7 The sophomore cohort, for example, consists of approximately 30,000 individuals.
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for both individuals who drop out of high school as well as those that do not. This enables us to
determine if the act of dropping out of high school between the sophomore and senior years has
important consequences on senior-year student achievement.

In both the base year and first follow-up survey, the sophomore cohort is given a variety of tests
in several different areas. In this paper, we focus only on two sections of those tests which involve
mathematical and quantitative reasoning. These tests specifically involve quantitative comparisons
in which the student indicates which of two quantities is greater, asserts their equality, or indicates
lack of sufficient data to determine which quantity is greater. We calculate both a sophomore
and senior-year test score as an average of the two mathematics test scores taken in each year.
Each of the test scores is then standardized to have mean zero and unit variance. The senior-
year mathematics test score is used as the outcome variable in both the ‘treated’ (dropout) and
‘untreated’ (non-dropout) states. We will include the base-year (sophomore) math test score from
the 1980 interviews as an explanatory variable in the outcome and selection equations to pick
up initial differences in ‘ability’ across individuals. In our outcome (test score) and selection
equations, we also add dummy variables for being female or white, highest grade completed by
the individual’s mother and father, family income, and number of siblings as explanatory variables.

Our excluded variable which enters the dropout equation but does not appear in the outcome
(senior test score) equations is the percentage of employment growth in the local labour market
over the period 1980–1982. Our expectation is that a large amount of local employment growth
over this period suggests prosperous local labour market conditions, making it more attractive for
someone to drop out of high school and begin full-time employment. Specifically we imagine
that individuals who are just indifferent to dropping out or staying in school might be induced
to drop out if the local labour market conditions were to improve. We do not expect, however,
that employment growth itself will have a direct effect on senior-level test scores, and thus omit
it from the senior-year test score equations.8

We restrict the sample to students in the sophomore cohort attending public high schools who
participated in both the base-year and follow-up mathematics tests. Further excluding observations
where other key covariates are missing produced a final sample of 12,459 observations.9 Among
this final sample, approximately 8.1% of the individuals (1006) dropped out of high school
between their sophomore and senior years, so that a substantial amount of observations exist
for the estimation of parameters in both the ‘treated’ and ‘untreated’ states.

7. EMPIRICAL RESULTS

Our goal is to take the HSB data and use it to address two questions which seem to be of
primary interest: (1) How does dropping out of high school impact the test scores of a randomly
chosen individual? (2) How are the test scores of those that actually choose to drop out of high
school affected by dropping out? To address question (1) we will calculate the posterior predictive

8 To test this supposition, we added this employment growth rate to the test score equations, and found that it played
virtually no role in those equations, and its inclusion had no effect on the estimates obtained for the remaining parameters.
9 Over 12% of the original observations were from private schools and were discarded. When students moved between
their sophomore and senior years, no follow-up information was available, and 40 of the schools originally sampled
dropped out of the survey. Approximately 4% of the remaining students were not re-surveyed in the follow-up. Parental
education and parental income had a high non-response rate, though the distributions of these variables in our final selected
sample were found to be similar to those obtained in the entire sample. We do not take up the issue of modelling the
missing observations, as this would additionally require us to model the process generating these observations.
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distribution of test score gains for a randomly chosen person (ATE), and for question (2) we will
calculate this distribution for those who actually drop out (TT).10

Throughout this analysis we specify independent priors of the form

ˇjˇ, Vˇ ¾ N�ˇ, Vˇ�

�1j�, R ¾ W��, �R�I��2
DŁ D 1�

where ˇ D [�0 ˇ0
1 ˇ0

0]0 (as defined in (1)–(3)). The first line proposes a Normal prior for the elements
of ˇ, while the second specifies a Wishart prior11 for the inverse covariance matrix �1 subject to
the normalization that the scale parameter in the selection equation is unity. We set all elements of
the prior mean vector ˇ to zero, but set the coefficient associated with the employment growth rate
to 0.01 to reflect our prior expectation that more favourable local labour market conditions will
induce some marginal individuals to drop out of school. The employed prior is quite diffuse, as
we set the prior standard deviation of each element equal to 2 (setting Vˇ D 4Ik , with Ik denoting
the k ð k identity matrix), so that the data information is predominant. As for the prior for the
inverse covariance matrix, we set � D 12, and centre the variance parameters in both outcome
equations over 0.25. All correlation parameters in R are set equal to zero so that our prior ‘centres’
our model over one where selection bias is not important, though our prior is diffuse enough to
let the data revise our beliefs and reveal to us the importance of unobservable selectivity.

We obtain results for the ‘textbook’ Gaussian model, a Student-t model with 2, 5 and 16 degrees
of freedom, and also two- and three-component Normal mixture models. Our prior view is that the
three-component mixture model should be general enough to capture the key features of this data,
and as shown below, the data do tend to favour specifications that are more parsimonious than
this most general specification. For each of these models we calculate log marginal likelihoods to
determine those specifications most favoured by the data. The results of these marginal likelihood
calculations are presented in Table I.

As shown in the table, the widely-used Gaussian model ranks second-to-last relative to its
competitors, and the two-component mixture model produces the highest log marginal likelihood.
Further, values of the marginal likelihoods imply that the associated posterior model probabilities
virtually place probability one on the two-component Normal mixture, and thus model averaged

Table I. Log marginal likelihoods, and posterior model probabilities
for alternate models

All
models

Log marginal
likelihoods

Model
Pr (L–M)

Gaussian �14,106.538 0.000000
t�v D 2� �14,511.080 0.000000
t�v D 5� �14,035.599 0.000000
t�v D 16� �14,025.568 0.000000
Two-component �13,996.708 0.999960
Three-component �14,006.835 0.000040

10 It would also be possible to calculate the predictive joint distribution of �y1, y0�, and thereby calculate a variety of
other quantities of interest. Here we restrict our attention to the outcome gain distributions described previously.
11 For the Normal mixture models, we specify identical priors of this form for each mixture component. We also
parameterize the Wishart so that (in the absence of the normalization) E��1� D R�1.
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quantities would simply reduce to model-specific ones. For this reason, we focus our remaining
attention on specific results obtained from the two-component mixture model.

Estimation results from the two-component mixture are presented in Table II. To interpret these
and subsequent results, we regard the decision to drop out as the decision to receive ‘treatment’
so that, in the notation of equations (1)–(3), Y1 represents the test score for the dropouts, and Y0

represents the test score for those remaining in high school. Thus, negative values associated with
the treatment effect  � Y1 � Y0 indicate a reduction in test scores as a result of dropping out.

As shown in the first row of Table II, the second component receives the vast majority of the
weight, as the posterior mean of the probability associated with this second component was 0.91.

Table II. Posterior means, standard deviations and probabilities of being positive: two-component Normal
mixture model

Variable/posterior First component Second component

Mean Std. Pr(Ð > 0jD) Mean Std. Pr(Ð > 0jD)

Component probability 0.0897 0.0129 1.000 0.910 0.0129 1.000

Senior test (dropouts)
Intercept �0.181 0.189 0.165 �0.716 0.147 0
Base math score 0.555 0.0505 1.000 0.138 0.0549 0.987
Female �0.0770 0.0612 0.106 0.000167 0.0379 0.508
White 0.135 0.0661 0.978 0.0250 0.0408 0.729
Father education 0.0124 0.0112 0.867 �0.0116 0.00934 0.103
Mother education 0.00109 0.0126 0.526 0.00220 0.00859 0.605
Family income ($1000) �0.00564 0.00293 0.0291 0.00331 0.00241 0.925
Number of siblings �0.0202 0.0177 0.124 �0.00570 0.0115 0.297

Senior test (non-dropouts)
Intercept �1.689 0.523 0.000208 �0.457 0.0396 0
Base math score 0.221 0.117 0.963 0.795 0.00753 1.000
Female �0.0173 0.139 0.437 �0.0790 0.0126 0
White 0.545 0.181 0.999 0.110 0.0157 1.000
Father education 0.0385 0.0242 0.947 0.0205 0.00230 1.000
Mother education 0.0490 0.0296 0.956 0.0108 0.00271 1.000
Family income ($1000) 0.00633 0.00760 0.805 0.00301 0.000655 1.000
Number of siblings �0.0176 0.0455 0.334 �0.00620 0.00393 0.0607

Dropout decision
Intercept 0.815 0.395 0.983 �1.079 0.192 0
Base math score �0.421 0.0887 0 �0.972 0.0587 0
Female �0.0263 0.131 0.408 �0.0196 0.0560 0.365
White �0.0143 0.157 0.471 0.0658 0.0605 0.859
Father education �0.0374 0.0208 0.0350 �0.0601 0.0120 0
Mother education �0.0535 0.0249 0.0137 �0.0558 0.0136 0.000042
Family income ($1000) �0.00215 0.00550 0.340 �0.00840 0.00295 0.00204
Number of siblings 0.0839 0.0384 0.989 0.0711 0.0157 1.000
% Employment growth 80–82 0.0130 0.0172 0.773 0.00958 0.00608 0.940

Correlations, variances and bounds
1,1 0.268 0.0297 1.000 0.118 0.0143 1.000
0,0 0.834 0.0958 1.000 0.328 0.00777 1.000
�1,0 �0.0399 0.318 0.451 0.287 0.131 0.986
�1,D 0.108 0.233 0.670 �0.296 0.127 0.00454
�0,D �0.201 0.253 0.221 �0.849 0.0173 0
�

1,0
�0.933 0.0929 0 �0.248 0.133 0.0468

�1,0 0.892 0.123 1.000 0.751 0.0900 1.000
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The remaining 9% is allocated to the first component of the mixture, and as seen from inspection
of the elements of , the group of people who ‘comprise’ this first component appear to be
characterized by relatively high-variance outcomes.

As the second component receives the vast majority of the weight, we confine most of our
discussion to estimation results obtained within that component. As a general rule, the directions
of the effects suggested by Table II are highly consistent with our prior expectations. Individuals
scoring higher on the sophomore exam, raised in families with higher family income and fewer
siblings are more likely to score higher on the senior mathematics test. Note that the empirical
importance of the family characteristics remains even after controlling for sophomore-year test
scores, suggesting that family environment between the sophomore and senior years matters in terms
of senior-year student achievement. Also note that for the non-dropout equation the probabilities
of being positive are virtually one or zero for all of the coefficients. In this sense, the posterior
suggests overwhelming evidence that family education, income and size, and initial test scores are
important predictors of senior-year student achievement.

For the equation describing the dropout decision, the coefficient estimates are again very similar
to what we would expect. Those achieving higher sophomore test scores with more educated and
wealthier parents from smaller families appear to be significantly less likely to drop out of high
school between their sophomore and senior years. On another important issue, our exclusion
restriction appears to be an empirically important factor in the decision to drop out. Higher
employment growth over the period from 1980 to 1982 is associated with an increased propensity
for students to drop out of high school from their sophomore to senior years.

Inspection of the elements of the covariance matrix reveals some very important results. For the
second component of the mixture, posterior means of the identified correlations �1D and �0D are
negative, and the marginal posterior distributions show that virtually all of their mass is placed
over negative values. The negative coefficient estimates indicate that unobservable factors making
it more likely for an individual to drop out of high school also make it less likely for him or her
to receive high senior-year test scores. Thus, in order to accurately characterize the impact of
dropping out of high school on senior-year test scores, one needs to estimate a model like this one
which accounts for the endogeneity of dropout choice and features the role of the unobservables.
For the relatively few individuals belonging to the first component, however, selection does not
seem to be empirically important, as the identified correlations are not clearly bounded away from
zero. For the vast majority of individuals, however, selection bias is a key feature of this data.

The fact that the selection effect differs across the components of the mixture illustrates our
theoretical points made in Section 4 extremely well. For the second component, the identified cor-
relations are bounded away from zero, and �0D is quite large in value. This provides a vehicle for
learning about �10, as the lower and upper conditional support bounds will be informative. Recall
that the positive definiteness of the 3 ð 3 covariance matrix  implies �

10
� �10 � �10, where these

upper and lower limits depend only on the identified correlations �1D and �0D, as described in (5)
and (6). Evaluated at posterior means, the lower bound is found to be approximately �0.25, while
the upper bound is approximately 0.75. This clearly restricts the (conditional) support of the non-
identified correlation, and as these identified correlations are rather precisely estimated, the result-
ing marginal posterior distribution of �10 should ‘live’ mostly within these upper and lower limits.

In Figure 1, we provide graphical evidence to support this point. In the first row of this figure,
we plot the priors and posteriors of the non-identified correlation parameter �10 for both the first
(left) and second (right) components of the mixture. The priors were chosen to be identical across
the components. For the second component (right-most graphs), the priors and posteriors clearly
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Figure 1. Posterior (solid) and prior (dashed) distributions of �10 and its upper ��10� and lower ��
10

�
bounds: two-component model

differ, and the marginal posterior of �10 places virtually no mass to the left of �0.25 and to the
right of 0.75, which is consistent with our quick calculations for the values of the upper and
lower bounds. This clearly shows that learning about the identified correlations leads us to learn
about the non-identified correlation through information conveyed in the p.d. restriction on . The
first component, however, shows that the priors and posteriors for �10 are nearly identical, as the
posterior distributions of the identified correlations do not yield informative support bounds. Thus,
this application seems to be an ideal one for our purposes, as it simultaneously illustrates cases
where learning does and does not take place about the non-identified correlation parameter �10.

In the bottom portion of Figure 1 we present plots of priors and posteriors associated with
the conditional support bounds �

10
and �10. For both cases, the priors place a large mass over 1
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or �1, reflecting relative non-informativeness a priori regarding values of the identified correlation
parameters �1D and �0D. For the first component of the mixture (left-most graphs), the priors
and posteriors are quite similar, indicating that no information has been conveyed regarding the
identified correlations which serve to limit or restrict these support bounds. However, for the
second component of the mixture (right-most graphs), the priors and posteriors of the bounds are
quite different, suggesting that learning has taken place. Further, the lower bound is approximately
centred at �0.25, and the upper bound at 0.75, which is again consistent with our quick calculation
at posterior mean values.

7.1. Predictive Distributions of Outcome Gains: ATE and TT

In Figure 2 we plot the ATE and TT posterior predictive distributions of test score gains for white
males, fixing the continuous covariates at mean values and rounding the means of the integer-
valued variables to the nearest integer.12 For this application, ATE represents the loss in test scores
from dropping out of high school for someone chosen at random, while TT represents the test
score loss that exists for those actually dropping out of high school.
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Figure 2. Predictive distributions of test score gain resulting from dropping out of high school: ATE (solid)
and TT (dashed) [negative values indicate a LOSS in test scores as a result of dropping out]

12 Alternatively, one could also marginalize over the covariates by specifying some distribution for their future values.
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From the figure, we see that the ATE predictive is centred near �1 (specifically, its posterior
mean is �0.84), indicating that dropping out of high school clearly hurts student achievement on
average. The size of the effect is quite large, as the test scores have been standardized to have
unit variance. Interestingly, when using our methods, we are also able to calculate quantities such
as the posterior probability that (on average) dropping out of high school leads to a reduction in
test scores: Pr�f < 0jxf D xf, Data� D 0.90. When looking at just mean effects, as is widely
done in the program evaluation literature, such parameters cannot be uncovered—their calculation
requires the predictive distribution of outcome gains, which is the focus of our analysis.

The TT predictive in Figure 2 is shifted to the right relative to ATE, indicating that the test
score loss that occurs as a result of dropping out of high school is much smaller for those who
actually decide to drop out of high school than for an average person. Specifically, the posterior
mean of TT is approximately 0.19, suggesting that dropping out actually increases the test scores
of the dropouts! We cannot make this claim with any large degree of confidence, however, as the
posterior probability that test scores increase from dropping out for those actually dropping out
of high school is Pr�f > 0jxf D xf, zf D zf, Df�zf� D 1, Data� D 0.65.13

Note that what creates the right-shift of TT relative to ATE is the fact that the covariance between
U0 and UD is very large, and large relative to the covariance between U1 and UD. This implies
that unobservable factors making it more likely for an individual to drop out of school are strongly
negatively correlated with her test scores if she remains in school, while these unobservables have
a much smaller negative correlation with test score outcomes if she drops out of school. As a result,
the TT predictive distribution is shifted to the right relative to ATE. Said differently, our results
suggest that staying in school matters in terms of test score outcomes, but it matters primarily
for those who are inclined to stay in school and graduate. Thus, any intervention implemented
with the intent of keeping individuals in school to raise their test scores is perhaps questionable,
since those individuals who drop out are less likely to do well on tests if they were to remain
in school. We are able to further support this claim by computing Pr�TT > ATEjData� D 0.88.
Thus, even though the standard deviations associated with each predictive are quite large, we see
strong evidence that dropouts benefit less from remaining in school in terms of test scores than
an average student. Again, it is important to note that quantities like this one, which seem to have
the significant policy relevance, cannot be obtained when looking only at mean effects.

7.2. Prior Sensitivity Analysis

To provide evidence that our key substantive conclusions were not affected by choice of prior for
the non-identified parameter, we re-estimated our model using a different prior. In this prior, we
choose the hyperparameters to centre the non-identified correlation at 0.5, but leave the remaining
prior hyperparameters unchanged. Centring the prior for �10 over 0.5 accords with a belief that
individuals who perform well (or poorly) on tests in either the dropout or non-dropout state would
also perform well (or poorly) in the other state. In short, as Heckman et al. (1997, p. 510) state,
this prior reflects a seemingly reasonable and widespread belief that ‘. . . good persons are good
at whatever they do’.

13 Again, note that these probabilities are calculated for white males and integer-valued variables are rounded to the
nearest integer.
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We do not report the results of this sensitivity analysis here,14 though we note that key
conclusions were not affected by this choice of prior. In particular, selection remained empirically
important, learning took place about �10 in the second but not the first component of the mixture,
test scores fell on average as a result of dropping out of high school, and dropouts themselves
did not seem to face a significant loss in test scores as a result of dropping out. The posterior
results were also found to be robust to moderate changes in the remaining prior hyperparameters,
including changes in � and Vˇ.15

It is also important to recognize that ‘conventional’ treatment parameters which only look at
mean effects are not significantly affected by this change in prior since their expressions do not
involve �10. As such, the approach described in this paper not only enables us to recover mean
parameters which are commonly reported in studies on program evaluation, but also enables us to
estimate a rich set of other quantities of policy relevance.

8. CONCLUSION

The ability to recover distributions of outcome gains rather than simply means of those
distributions enables researchers to obtain a new and rich set of quantities useful for policy
evaluation. Extending our focus to distributions of outcome gains, however, is a non-trivial effort,
since the distributions of interest depend on a non-identified correlation parameter. In this paper, we
argued theoretically and illustrated empirically that learning can take place about this non-identified
correlation parameter.

We applied our methods to estimate the impact of dropping out of high school on a senior-
year mathematics test. This application is of significant economic interest, and also illustrated
our econometric points extremely well. For this application, selection bias was an empirically
important feature of our data, and non-Gaussian models were strongly preferred over the widely-
used Gaussian model. Using a two-component Normal mixture, we showed that the priors and
posteriors of this non-identified correlation differed considerably, as learning about the identified
correlations led us to update our beliefs about this non-identified correlation. We found that
dropping out of high school has a significant negative impact on test scores on average, while the
test score loss for the subgroup of individuals who actually drop out of high school is modest and
nearly centred at zero.

APPENDIX: ESTIMATION

As in Koop and Poirier (1997) and Chib and Hamilton (2000), we work with the complete or
augmented outcome data. To this end, we let

rŁ
i D

[ DŁ
i

Diyi C �1 � Di�yMiss
i

DiyMiss
i C �1 � Di�yi

]

14 Parameter posterior means and standard deviations, marginal posteriors of �10, �10 and �
10

, and ATE and TT predictives
using this prior can be obtained at http://orion.uci.edu/¾jtobias/Dropouts.
15 Specifically, multiplying Vˇ by 10 or 0.1 had a minimal effect on our results, as did setting � D 5 or � D 20.
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denote the ‘complete’ set of outcomes for each individual. This consists of the latent desire for
receipt of treatment �DŁ�, and both the observed and potential outcome (y1 and y0).

Recall that yi denoted the observed outcome, and we will use yMiss
i to denote the missing

unobserved or potential outcome. This particular formulation is computationally convenient, as it
automatically determines if yMiss

i should be plugged into the treated or untreated outcome.
We let kx denote the length of the vector x, and define k � k� C kˇ1 C kˇ2 . We also let Wi

be the 3 ð k matrix with zi, xi and xi on the diagonal and let ˇ denote the k ð 1 vector of
associated parameters:

Wi D
[ zi 0 0

0 xi 0
0 0 xi

]
, ˇ D

[ �
ˇ1

ˇ0

]

Student-t Models

To specify a model with Student-t errors, it proves to be convenient to work with a conditional
Normal model for rŁ

i :16

rŁ
i jWi, ˇ, �i, 

ind¾ N�Wiˇ, �i� �A.1�

and add the following hierarchical priors for the �i:

�ijv iid¾ IG�v/2, 2/v� �A.2�

where IG(a, b) denotes an inverted gamma density with parameters a and b.17 It follows, then,
that marginalized over the mixing variables �, the complete data follows a Student-t distribution:

rŁ
i jWi, ˇ, 

ind¾ tv�Wiˇ, � �A.3�

a multivariate Student-t distribution with v degrees of freedom, mean Wiˇ, and covariance matrix
[v/�v � 2�]. We parameterize the elements of  as follows:

 D
[ �2

DŁ �1D �0D

�1D �2
1 �10

�0D �10 �2
0

]

Priors for ˇ and �1 are specified as in Section 7. Given the assumed independence across
observations, the joint posterior distribution of the latent desires for receipt of treatment �DŁ�,
missing outcome data �yMiss�, regression parameters ˇ, and inverse covariance matrix �1 is

p�jData� /
[

n∏
iD1

��rŁ
i ; Wiˇ, �i�pIG��i�

]
��ˇ; ˇ, Vˇ�pW��1�I��DŁ D 1� �A.4�

with  denoting all parameters and augmented data in the joint posterior, and ��x; �, � denoting
the multivariate normal density for x with mean � and covariance matrix .

16 This addition of gamma or inverted gamma mixing variables to the error variance to extend analyses to Student-t
distributions, yet maintain computational tractability has been used in previous work by Carlin and Polson (1991), Albert
and Chib (1993), Geweke (1993), and Chib and Hamilton (2000), among others.
17 In this paper, we parameterize the inverted gamma density as follows: x ¾ IG�a, b� then p�x� / x��aC1� exp[�1/�bx�].
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A Note on Computation
Our approach for fitting this model involves transforming the Student-t model back to the Gaussian
case by dividing the y, DŁ, x and z variables by

p
�i in all of the non-� conditionals. To this end,

we let QÐ denote quantities scaled by
p

�i, e.g. Qxi � xi/
p

�i. We continue to let  denote all the
parameters and augmented data in our model, and also let �x denote all parameters other than x.

(1) Posterior conditionals for augmented data yMiss
i and DŁ

i :

QyMiss
i j�QyMiss

i
, Data

ind¾ N��1 � Di��1i C �Di��0i, �1 � Di�w1i C �Di�w0i�

where

�1i D Qxiˇ1 C � QDŁ
i � Qzi��

[
�2

0�1D � �10�0D

�2
0 � �2

0D

]
C � Qyi � Qxiˇ0�

[
�10 � �0D�1D

�2
0 � �2

0D

]
�A.5�

�0i D Qxiˇ0 C � QDŁ
i � Qzi��

[
�2

1�0D � �10�1D

�2
1 � �2

1D

]
C � Qyi � Qxiˇ1�

[
�10 � �0D�1D

�2
1 � �2

1D

]
�A.6�

w1i D �2
1 � �2

1D�2
0 � 2�10�0D�1D C �2

10

�2
0 � �2

0D

�A.7�

w0i D �2
0 � �2

0D�2
1 � 2�10�0D�1D C �2

10

�2
1 � �2

1D

�A.8�

As for the latent data QDŁ
i , it is also drawn from its conditional normal, though it is truncated by

the observed value of Di:

QDŁ
i j� QDŁ

i
, Data

ind¾
{

TN�0,1���Di, ωDi� if Di D 1
TN��1,0���Di, ωDi� if Di D 0

where

�Di D Qzi� C �Di Qyi C �1 � Di� QyMiss
i � Qxiˇ1�

[
�2

0�1D � �10�0D

�2
1�2

0 � �2
10

]
�A.9�

C ��Di� QyMiss
i C �1 � Di� Qyi � Qxiˇ0�

[
�2

1�0D � �10�1D

�2
1�2

0 � �2
10

]
�A.10�

ωDi D 1 � �2
1D�2

0 � 2�10�0D�1D C �2
1�2

0D

�2
1�2

0 � �2
10

�A.11�

and TN�a,b���, �2� denotes a univariate Normal density with mean � and variance �2, truncated
to the interval (a, b).
Given these drawn quantities, we then compute the complete data vector

QrŁ
i D

[ QDŁ
i

Di Qyi C �1 � Di� QyMiss
i

Di QyMiss
i C �1 � Di� Qyi

]
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(2) Complete conditional for ˇ � [�0ˇ0
1ˇ0

0],:

ˇj�ˇ, Data ¾ N��ˇ, ωˇ� �A.12�

where

�ˇ D [ QW0��1 � In� QW C V�1
ˇ ]�1[ QW0��1 � In� Qy C V�1

ˇ ˇ] �A.13�

ωˇ D [ QW0��1 � In� QW C V�1
ˇ ]�1 �A.14�

where QW is the 3n ð k block diagonal matrix with QZ, QX and QX stacked on the main diagonal, and
Qy is a 3n ð 1 vector of the stacked QDŁ, QyŁ

1 and QyŁ
0 outcomes.

(3) Complete conditional for �1:
A slight complication is introduced as the complete conditional is no longer Wishart, given
that the (1,1) element must be normalized to unity. We thus use the results of Nobile (2000)
who provides a convenient algorithm for drawing a Wishart conditional on a diagonal element.
We express this conditional as

�1�, Data ¾ W

(
n C �,

[
n∑

iD1

�QrŁ
i � QWiˇ��QrŁ

i � QWiˇ�0 C �R

])
I��2

DŁ D 1�

(4) Complete conditional for f�ig:

�ij��i , Data ¾ IG

v C 3

2
,

[
v C �ri � Wiˇ�0�1�ri � Wiˇ�

2

]�1
 , i D 1, 2, . . . , n

where we are using the untransformed data ri and Wi rather than the scaled data Qri and QWi.
(5) Complete conditional for v (e.g., Albert and Chib, 1993):

vj�v, Data / p�v�
n∏

iD1

[�v/2��2/v��v/2�]�1���v/2C1�
i exp��v/�2�i��

with p�Ð� denoting the prior for the degrees of freedom parameter. Since this conditional is not
easily sampled from, one could discretize the support of v, or use an additional Metropolis step.
Alternatively, one can cycle through all but the last conditional after fixing a value of v a priori.

A Finite Mixture of Normals

In the finite mixture framework (see, e.g., McLachlan and Peel, 2000), the contribution of one
individual to the likelihood is given as

p�rŁ
i j� D

G∑
gD1

�g��rŁ
i ; Wiˇ

g, g� �A.15�

where we have allowed each component of the mixture to possess its own parameter vector ˇg

and covariance matrix g, and the �g are the probabilities of being drawn from each component
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(i.e.,
∑

g �g D 1). We also define Wi as before to be the 3 ð k matrix with zi along the first row,

and the xi vectors along the last two rows. Finally, we define ˇg � [�g0
ˇg0

1 ˇg0
0 ]0.

In terms of estimation, it is desirable to first augment the parameter space with a set of component
indicators, denoted fcgign

iD1. These indicator variables take the value of one to indicate that the
i th individual is drawn from the g th component of the Normal mixture, and are zero otherwise.
In this case, the likelihood function for the augmented data rŁ given the set of component label
vectors c D fcign

iD1, ci D [c1ic2i Ð Ð Ð cGi] is given as

p�rŁjc, � D
n∏

iD1

[��rŁ
i ; Wi�

1, 1�]c1i [��rŁ
i ; Wi�

2, 2�]c2i Ð Ð Ð [��rŁ
i ; Wi�

G, G�]cGi �A.16�

We also specify the following priors:

p�cj�� D
n∏

iD1

p�cij�� D
n∏

iD1

G∏
gD1

�cgi
g �A.17�

� ¾ Dir�˛1, ˛2, Ð Ð Ð , ˛G� �A.18�

ˇg ind¾ N�ˇg, Vg�, g D 1, 2, Ð Ð Ð , G �A.19�

[g]�1 ind¾ W��g, �gRg�I��2
DŁ D 1�, g D 1, 2, Ð Ð Ð , G �A.20�

where ‘Dir’ denotes the Dirichlet distribution (e.g., Poirier, 1995, p. 132), and � D [�1 �2

Ð Ð Ð �1 � ∑G�1
gD1 �g�]. As seen from the above, after integrating over the multinomial prior for

the component indicators, we are left with the same density for each rŁ
i in (A.15), so that the

component indicators serve the practical purpose of facilitating computation. The joint posterior
of the latent and missing data, component indicators, regression parameters and covariance matrices
is given as the product of (A.16)–(A.20).

Conditioned on the values of the component indicators, the data sorts itself into G different
groups or blocks, and inference on the parameters within the blocks proceeds identically as in the
textbook Gaussian model. Hence, the complete posterior conditionals for the regression parameters
ˇg and inverse covariance matrices [g]�1 proceed identically to those described in the previous
Student-t section, where the data ‘belonging to’ each component are used to estimate the regression
parameters and inverse covariance matrix associated with that component.18

In addition, we obtain the following complete posterior conditionals:

(1) Complete conditional for fcig:

cij�ci , Data
ind¾Mult

(
1,

�1j1j�1/2 exp[�0.5�ri � Wiˇ
1�0�1��1�ri � Wiˇ

1�]
G∑

gD1

�gjgj�1/2 exp[�0.5�ri � Wiˇ
g�0�g��1�ri � Wiˇ

g�]

, . . .

�A.21�

18 Of course, we no longer have to scale the data by the inverted gamma mixing variables �.
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�GjGj�1/2 exp[�0.5�ri � Wiˇ
G�0�G��1�ri � Wiˇ

G�]
G∑

gD1

�gjgj�1/2 exp[�0.5�ri � Wiˇ
g�0�g��1�ri � Wiˇ

g�]

)
�A.22�

with ‘Mult’ denoting the Multinomial distribution (e.g., Poirier, 1995, pp. 118–119).
(2) Complete conditional for �:

�j��, Data ¾ Dir�n1 C ˛1, n2 C ˛2, Ð Ð Ð , nG C ˛G� �A.23�

where ng � ∑n
iD1 cgi denotes the number of people ‘in’ the g th component of the mixture.

ACKNOWLEDGEMENTS

We are grateful to seminar participants at the University of Laval, the University of Michigan, the
University of Missouri and the University of Wisconsin-Milwaukee. We are particularly grateful
to the co-editor and two anonymous referees for valuable comments and suggestions on previous
drafts of this paper. All errors are, of course, our own.

REFERENCES

Albert JH, Chib S. 1993. Bayesian analysis of binary and polychotomous response data. Journal of the
American Statistical Association 88: 669–679.

Bjorklund A, Moffitt R. 1987. The estimation of wage gains and welfare gains in self-selection models.
Review of Economics and Statistics 69(1): 42–49.

Carlin B, Polson N. 1991. Inference for nonconjugate Bayesian models using the Gibbs sampler. Canadian
Journal of Statistics 19: 399–405.

Chib S, Hamilton B. 2000. Bayesian analysis of cross-section and clustered data treatment models. Journal
of Econometrics 97: 25–50.

Chib S, Hamilton B. 2002. Semiparametric Bayes analysis of longitudinal data treatment models. Journal of
Econometrics 110: 67–89.

Dehejia R. 1999. Program evaluation as a decision problems. NBER working paper # 6954. Also Journal of
Econometrics, Forthcoming.

Dehejia R, Wahba S. 1999. Causal effects in non-experimental studies: re-evaluating the evaluation of training
programs. Journal of the American Statistical Association 94: 1053–1062.

Geweke J. 1993. Bayesian treatment of the independent Student t linear model. Journal of Applied
Econometrics 8: 19–40.

Heckman J. 1976. The common structure of statistical models of truncation, sample selection, and limited
dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement
5: 475–492.

Heckman J. 1990. Varieties of selection bias. American Economic Review Papers and Proceedings 90(2):
313–318.
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