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BAYESIAN PROPORTIONAL HAZARD ANALYSIS
OF THE TIMING OF HIGH SCHOOL DROPOUT DECISIONS

Mingliang Li � Department of Economics,
State University of New York at Buffalo, Buffalo, New York, USA

� In this paper, I study the timing of high school dropout decisions using data from High
School and Beyond. I propose a Bayesian proportional hazard analysis framework that takes
into account the specification of piecewise constant baseline hazard, the time-varying covariate
of dropout eligibility, and individual, school, and state level random effects in the dropout
hazard. I find that students who have reached their state compulsory school attendance ages
are more likely to drop out of high school than those who have not reached compulsory school
attendance ages. Regarding the school quality effects, a student is more likely to drop out of
high school if the school she attends is associated with a higher pupil–teacher ratio or lower
district expenditure per pupil. An interesting finding of the paper that comes along with the
empirical results is that failure to account for the time-varying heterogeneity in the hazard,
in this application, results in upward biases in the duration dependence estimates. Moreover,
these upward biases are comparable in magnitude to the well-known downward biases in the
duration dependence estimates when the modeling of the time-invariant heterogeneity in the
hazard is absent.
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1. INTRODUCTION

There has been a large literature that documents the negative
correlations between the act of dropping out of high school and various
outcomes of the individuals. For example, compared with high school
graduates, high school dropouts are likely to suffer from lower wages and
higher likelihood of unemployment when they enter the labor market
(Blakemore and Low, 1984; Li, 2006; Stern et al., 1989). In terms of
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academic performance, high school dropouts on average have lower
subject test scores (Li et al., 2004). High school dropouts are also more
likely to be welfare recipients (McCaul et al., 1992), and as welfare
recipients they tend to stay in welfare programs longer than others (Bane
and Ellwood, 1983). In addition, evidence suggests that high school
dropouts have a higher chance of engaging in illegal drug activities and
marijuana initiation (Bray et al., 2000; Hsing, 1995), and female dropouts
are more likely to be related to teenage pregnancy and single motherhood
(Garfinkel and McLanahan, 1986; Olsen and Farkas, 1989).

Given the negative links between high school dropout behavior and
individuals’ outcomes, it is of substantial policy interest to study the timing
of high school dropout decisions and various factors that can influence
the decisions of dropping out of high school. For instance, finding out
the times at which students are at high risk of dropping out of school
helps the education policy makers to understand dropout behavior and
design timely intervention strategy to prevent students from dropping out
(DesJardins et al., 1999; Olsen and Farkas, 1989). Some researchers find
that a substantial proportion of the potential dropouts remain in high
school because of compulsory schooling laws (Angrist and Krueger, 1991).
If compulsory schooling laws are indeed highly effective in preventing
students from dropping out, enforcement of such laws will be desirable.
Finally, a key question often addressed in the schooling literature is
whether better school quality, as commonly measured by lower pupil–
teacher ratio, higher district expenditure per pupil, etc. can enhance
various student outcomes. So far, no consensus has been reached in the
literature on the effectiveness of different school quality variables. In
particular, little work has been done to examine the potential impacts of
school quality variables on students’ dropout behavior.

This paper contributes to the existing literature and casts light on
the above important questions by using data from High School and
Beyond (HSB) and adopting a Bayesian proportional hazard analysis
approach.1 In particular, I employ a piecewise constant baseline hazard

1As mentioned, there are several related papers written by this author that belong to the large
literature on the dropout behavior of high school students. For example, Li et al. (2004) focus
on the impacts of high school dropout decisions on students’ subject test performance. Li (2006)
studies the effects of students’ dropout behavior on their unemployment outcomes in the future.
Compared with those papers, this paper focuses mainly on the process of dropping out of high
school itself. In particular, this paper attempts to address whether school resources are effective in
keeping students in high school and the effectiveness of various determinants of the high school
dropout decisions. In terms of methodology, the other papers employ a simultaneous equation
framework where students’ dropout behavior serves mainly as an endogenous covariate. In contrast,
the timing of high school dropout decisions is the key outcome variable in this paper. To capture
the unobserved heterogeneity in the dropout hazard at the individual, school and state levels,
I also incorporate into this model random effects at various levels. Another interesting finding that
comes along with the empirical results is the potential upward biases in the duration dependence
estimates when the modeling of time-varying heterogeneity in the hazard is absent.
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specification (Holford, 1976) to permit a flexible estimation of the
duration dependence pattern of the dropout process and to address the
concern that, during a particular period of time, students may have a
relatively higher or lower chance of dropping out of high school. To take
into account that compulsory schooling laws may prevent students from
dropping out, I include in the model a time-varying covariate indicating
each student’s eligibility of dropping out of high school under the state
compulsory schooling laws. I incorporate into the model this time-varying
covariate and other individual and school level covariates by utilizing a
proportional hazard analysis framework (Cox, 1972; Lancaster, 1979). The
hazard of dropping out of high school may vary from one individual to
another, from individuals in one school to those in another, and from
schools in one state to those in another. To take into consideration both
observed and unobserved heterogeneity in the dropout hazard at the
individual, school, and state levels, I also model explicitly the random
effects in the hazard at various levels and add these features to the
proportional hazard framework (Bolstad and Manda, 2001; Guo and
Rodriguez, 1992; Lancaster, 1979; Sastry, 1997).

The above features of the proportional hazard analysis, like the
modeling of piecewise constant baseline hazard, the time-varying covariate,
and the random effects in the hazard, are widely present in the empirical
works of hazard analysis, especially among those analyzed in a non-
Bayesian framework. In this paper, I propose a Bayesian analysis framework
that incorporates all the above features. There are several advantages
associated with the Bayesian approach I propose. First, the Bayesian
estimation tools, such as the Metropolis–Hastings algorithm and the Gibbs
sampler, are adept at dealing with multiple integrals in the likelihood
function and random effects at many levels of the model. Bayesian
estimation methods also avoid any asymptotic theory or approximation to
the true posterior distribution and provide exact finite sample estimates of
the model parameters. Moreover, since parameter uncertainty is formally
introduced into a Bayesian analysis framework and parameters can be
easily integrated out, a rich list of predictive functions of interest, including
the marginal effect of each covariate and the duration dependence
pattern, can be easily estimated to gain insights into the model.

An interesting finding that comes along with the empirical results of
the model is the potential upward biases in the duration dependence
estimates when the modeling of heterogeneity in the hazard is absent.
Initially, this seems to contradict the well-established claim that failure
to incorporate the observed and unobserved heterogeneity in the
hazard results in downward biases in the duration dependence estimates
(Heckman, 1991; Heckman and Singer, 1984a,b). However, a deeper look
into the problem reveals a striking difference between the consequence
of omitting the time-varying heterogeneity from the model and that
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of omitting the time-invariant heterogeneity. Specifically, the absence of
the time-invariant heterogeneity from the model leads to the well-known
and commonly observed downward biases in the duration dependence
estimates. However, the omission of the time-varying heterogeneity from the
model tells a different story. In this paper, it turns out that the failure to
incorporate the time-varying heterogeneity in the hazard, i.e., the time-
varying covariate of dropout eligibility, results in upward biases in the
duration dependence estimates.

I analyze the timing of high school dropout decisions using data
from High School and Beyond (HSB). HSB is a rich data set that offers
an abundant array of individual and school level variables that have
potential impacts on students’ dropout behavior. I find that the hazard of
dropping out of high school increases over time before students enter their
senior year, and the hazard decreases over time afterwards. In addition,
students who are eligible to drop out of high school under the compulsory
schooling laws are 114 percent more likely to drop out than those who are
not eligible. Regarding the school quality effects, a one unit increase in
the pupil–teacher ratio increases the dropout hazard of a student by 1.3
percent. A one thousand dollars’ increase in the district expenditure per
pupil reduces the hazard by 8.1 percent. Finally, substantial heterogeneity
in the dropout hazard exists at the student, school, and state levels. The
remaining part of the paper is organized as follows. Section 2 gives a
brief description of the HSB data used in the paper. Section 3 presents
the proportional hazard analysis framework and discusses the Bayesian
estimation methods. Section 4 discusses the empirical findings of the paper
and some interesting results regarding the duration dependence estimates.
Section 5 concludes.

2. DATA

In this paper, I use data from High School and Beyond (HSB),
a national survey of US high school students that was conducted by
the National Center for Education Statistics (NCES). In the spring of
1980, NCES administered the base year survey and interviewed up to 36
sophomores from each of about 1,000 high schools in the United States.
A follow-up survey was conducted in the spring of 1982, which collected
information on the high school dropout behavior of the 1980 sophomores.
In particular, the survey investigators consulted school administrative
records to determine each 1980 sophomore’s dropout status at the time
of the follow-up survey. In addition, the high school dropouts of the 1980
sophomores reported the year and month in which they left high school.
Because of the nature of the survey that is mentioned above, it is natural
to define that the high school duration is from the beginning of the base
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year survey (February 1980).2 Likewise, the last month included in the
sampling period is the end of the follow-up survey (June 1982).3 This
month also corresponds to the time point when the nondropouts of the
1980 sophomores were expected to graduate from high school. Hence it
is reasonable to say that the high school duration is censored at this time
point. Finally, the nature of the data suggests that it is reasonable to specify
a month specific dropout hazard and assume that dropouts decide to drop
out of high school in the middle of a month.

The HSB survey offers an abundant array of individual and family
background variables that have influence on students’ dropout behavior.
The list of individual level variables I include in the model specification are
gender, race, urbanicity, parental education, family income, and number
of siblings in the household. I also include the base year cognitive test
score, which can be used as a measure of the cognitive ability of a student.
An attractive feature of the HSB survey is the availability of a rich set
of variables characterizing the school a student attends. These variables
provide an opportunity to study the effects of school quality variables on
students’ dropout behavior. The school level covariates I include in the
model are pupil–teacher ratio, books per pupil, percentage of teachers
with an M.A. or Ph.D. degree, percentage of teachers staying at school
10 years or more, and district expenditure per pupil. To control for the
community characteristics associated with a given school, I also include
in the model the average family income of the students in a school, the
average base year cognitive test score of the students in a school, and the
county level employment growth rate between 1980 and 1982.

One particular variable I include in the model that is worth
emphasizing is the student’s eligibility of dropping out of high school
under the state compulsory schooling laws. First, this variable is of interest
and relevance to the education policy makers and legislators. Indeed, it

2There are several different ways of defining high school duration. For example, one may
define it to be from the time when a student enters high school, or the time when a student
reaches a particular age, or a particular calendar date. In this paper, the duration is defined
to be from February 1980. This month corresponds to the beginning of the base year survey.
Since the 1980 sophomores included in the HSB survey were current high school sophomores in
February 1980, no dropout behavior was observed for this group of students before this month. In
addition, as far as the group of 1980 sophomores is concerned, February 1980 also corresponds to
the middle point of the sophomore year. Taking into consideration all the above, it seems most
natural to choose this month as the origin of the time scale.

3One of the main objectives of the HSB survey is to provide researchers with detailed
information on the dropout behavior of the 1980 sophomores and an opportunity to study the
various determinants of the decisions of dropping out of high school. To this end, the survey
investigators made their best endeavors to retain both nondropouts and dropouts of the 1980
sophomores in the follow-up survey. As a result, although many students dropped out of school
before June 1982, they did not drop out of the survey. The sample included in the follow-up survey
is still representative of the 1980 sophomores, although the follow-up survey was conducted about
two years after the base year survey.
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is of substantial policy interest to study whether compulsory schooling
laws are effective in keeping students from dropping out of high school.
Importantly, there is considerable variation in the compulsory school
attendance ages stipulated in the state compulsory schooling laws across
the nation. Around 1980, the compulsory school attendance age of many
states was 16 (Angrist and Krueger, 1991). This means that, in these states,
students were not allowed to drop out of school until they reached the age
of 16. However, there also existed many exceptions. Specifically, according
to the Digest of Education Statistics published by the NCES, around 1980,
there were one, thirty-seven, six, and another six states adopting the
compulsory school attendance ages of 15, 16, 17, and 18, respectively.
Moreover, in addition to the variation in the state compulsory school
attendance ages across the nation, each student’s eligibility of dropping
out of school changes over time. As mentioned before, in most states
where the compulsory school attendance age was 16, students younger
than 16 were not allowed to drop out but those who were older than
16 were eligible. Therefore the variation in the dates of birth of the
1980 sophomores introduces an additional source of variation in students’
dropout eligibility at a given time point, even among those who are from
the states with the same compulsory school attendance age. In short, the
dropout eligibility is a time-varying covariate that plays a role different
from the other covariates.

One reason that so far, little work has been done to examine the
impacts of compulsory schooling laws on students’ dropout behavior
using the HSB data is that the NCES does not publicize the information
regarding the geographical locations of the 1980 sophomores included
in the HSB survey. In this paper, I identify the state of each high
school included in the HSB survey by following previous attempts of
Hanushek and Taylor (1990), Rivkin (1991), Ganderton (1992), and
Grogger (1996a,b). In particular, I make use of the local labor market
conditions associated with each school contained in the HSB survey
between 1980 and 1982. This data set was published by the NCES but
it does not identify the location of any school or student in the HSB
survey. Instead, the data set provides state level demographic information
associated with each school in the survey. I match this data set to the
publicly available demographic information and hence identify the state
where each school was located. After I identify the state associated with
each school and each student included in the survey, I combine this
information with the date of birth of each student and construct the time-
varying covariate indicating the dropout eligibility of a student under the
state compulsory schooling laws.

A common feature of the survey data, which is also present in the data
set used in this paper, is the prevalence of the problem of missing data. For
example, for this data set, approximately 18%, 17%, 14%, 24%, 16%, 7%,
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11%, 2%, 3%, and 25% of the observations are missing owing to missing
information on base year cognitive test score, father’s education, mother’s
education, family income, number of siblings, pupil–teacher ratio, books
per pupil, percentage of teachers with an M.A. or Ph.D. degree, percentage
of teachers staying at the school 10 years or more, and district expenditure
per pupil, respectively. The exclusion of these observations from the
sample will result in a substantial loss of the survey data. To minimize
the impact of the missing data problem, I choose to create dummy
variables indicating the missing status of each of the above covariates for all
individuals in the sample and replace the missing observations associated
with a particular covariate with the average of the nonmissing observations

TABLE 1 Descriptive statistics of the data

Variablesa Sample mean Standard error

Dropout eligibility 0.742 0.439
Base year cognitive test score 0 1
Female 0.5 0.5
Minority 0.322 0.467
Father’s education 12.4 3.64
Mother’s education 12.1 3.14
Family income ($10,000) 2.09 0.989
Number of siblings 2.9 1.59
Urbanicityb

Suburban 0.501 0.5
Rural 0.287 0.452
Pupil–teacher ratio 19.3 4.9
Books per pupil 15.3 13
% of teachers with M.A. or Ph.D. degree 48.2 23.3
% of teachers at school 10 years or more 39.4 23.5
District expenditure per pupil ($1,000) 1.92 0.711
Average family income ($10,000)c 2.09 0.533
Average test scored 0 1
County level employment growth rate 80–82 (%) −0.0553 5.67
High school duration (month)e 27 4.11

aTo reduce the number of missing observations, I create a set of dummy variables indicating
whether an observation is missing for each of the following covariates: base year cognitive test
score, father’s education, mother’s education, family income, number of siblings, pupil–teacher
ratio, books per pupil, percentage of teachers with an M.A. or Ph.D. degree, percentage of teachers
staying at school 10 years or more, and district expenditure per pupil. I do not present the
descriptive statistics of these dummy variables to save space.

bFor urbanicity, the excluded are individuals from the urban areas.
cAverage family income is the average family income of the students within a school.
dAverage cognitive test score is the average of base year cognitive test scores of the students

within a school, standardized to have a mean of zero and a variance of one.
eHigh school duration is defined to be from February 1980.
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of that covariate.4 This helps to retain a significant number of observations
in the sample, and the final sample contains 25,404 students from 930
schools in 50 states. In Table 1, I present the descriptive statistics of the
data used in the paper.

3. MODEL

It is possible that high school dropout behavior, like other types of
economic and social behavior, is characterized by strong state dependence,
so that the chance that a student leaves high school today depends on the
length of time she has been in school in the past. There exists a large
literature that exemplifies the applications of hazard analysis to various
interesting problems in economics and social sciences (Campolieti, 1997,
2000, 2001; Han and Hausman, 1990; Lancaster, 1979, 1990; Lancaster and
Nickell, 1980; Meyer, 1990; Nickell, 1979). Indeed, it is of great importance
to study the conditional probabilities a student drops out of high school
at different points of the high school duration and to find out the sources
of variation between different individuals in the amount of time they
remain in school. In addition, the timing of dropout decisions can be
considered as a sequence of binary outcomes that record the dropout
status of a student in each time period. Therefore the high school duration
should contain richer information than the single binary outcome variable
indicating the student’s dropout status over the entire period of time.

Formally, let us define the survivor function as the probability that the
duration T is equal to or bigger than a given value t , S(t) = Prob(T ≥ t).5

Therefore the cumulative distribution function is F (t) = Prob(T < t) =
1 − Prob(T ≥ t) = 1 − S(t), and the probability density function is f (t) =
dF (t)/dt = d[1 − S(t)]/dt = −dS(t)/dt . A key function of interest in the
duration analysis literature is the hazard function (Cox, 1972; Kiefer,
1988). It roughly captures the instantaneous probability that the duration
T is exactly of the value t , conditional on T being equal to or greater
than t , �(t) = f (t)/S(t) = [−dS(t)/dt ]/S(t) = −d ln S(t)/dt . Finally, the
integrated hazard function is �(t) = ∫ t

0 �(u)du = ∫ t
0 [−d ln S(u)/du]du =

− ∫ ln S(t)
0 d ln S(u) = − ln S(t). This suggests that both S(t) and f (t) can

4An alternative approach to constructing the sample is to discard the observations with missing
data altogether, which leads to a significant reduction in the sample size. This strategy was adopted
in the last version of the paper. In this version, I take the suggestions from a referee to create
dummy variables for missing data and substitute the means of the nonmissing observations for those
missing observations. The results of the paper are robust to this alternative strategy of constructing
the sample. The main results did not change after I chose to retain the observations with missing
data in the sample.

5In this paper, I choose to analyze high school duration in a continuous time framework
instead of using a discrete time model.
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be expressed in terms of �(t), S(t) = exp[−�(t)] = exp[− ∫ t
0 �(u)du], and

f (t) = S(t)�(t) = exp[− ∫ t
0 �(u)du]�(t).

As discussed in the data section, the dropouts of the 1980 sophomores
only reported the year and month in which they left high school.
Therefore it is natural to assume a month-specific baseline dropout hazard
�m , where m denotes month m. This approach is consistent with the
commonly adopted specification of piecewise constant baseline hazard
(Campolieti, 1997, 2001; Han and Hausman, 1990; Holford, 1976; Meyer,
1990).6 Following the proportional hazard analysis approach (Cox, 1972;
Kiefer, 1988), I incorporate into the model the individual, school, and state
level covariates and random effects and a time-varying covariate indicating
each student’s eligibility of dropping out under the schooling laws.

To be more specific, define the dropout hazard of individual i from
school c in state s and in month m as �scim = exp(xscim�)�s�sc�sci�m , where
xscim is a 1 × k vector of covariates associated with the individual in
month m, and �s , �sc , and �sci denote the unobserved heterogeneity in
the dropout hazard at the state, school, and individual levels, respectively.
The set of observed variables xscim includes a time-varying covariate that
indicates each student’s dropout eligibility over time, a group of individual
specific variables (gender, race, urbanicity, base year cognitive test score,
parental education, family income, and number of siblings), and an array
of school level covariates (pupil–teacher ratio, books per pupil, percentage
of teachers with an M.A. or Ph.D. degree, percentage of teachers staying
at school 10 years or more, district expenditure per pupil, average family
income of the students in a school, average base year cognitive test score of
the students in a school, and county level employment growth rate between
1980 and 1982).

In addition, I incorporate into the model the individual, school, and
state level random effects in the dropout hazard. It is a well-known result
in the duration analysis literature that failure to account for observed
and unobserved heterogeneity in the hazard results in downward biases
in the duration dependence estimates. Although I include in the model
a wide array of individual and school level covariates, it is not likely that
the heterogeneity in the dropout hazard can be fully captured by these
observed covariates. Therefore it is important to take into account both
the observed and the unobserved heterogeneity in the hazard at various
levels. Moreover, it is possible that a student drops out of school partly
because his or her friends do so. In other words, the dropout behavior of

6It is possible to model the dropout hazard using full nonparametric specifications (Clayton,
1991; Campolieti, 2000, 2003; Gørgens and Horowitz, 1999; Horowitz, 1999; Kalbfleisch, 1978;
Ruggiero, 1994), which are computationally more demanding. In this paper, I adopt the
specification of month-specific dropout hazard, which has relatively lower computational costs and
reasonable flexibility in modeling.
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the students within the same school may not be independent, or there may
exist some interaction effects between students from the same school. The
set of school level random effects considered in this model is an attempt
to capture such interaction or peer group effects. Since students from the
same school share a common school level random effect in the hazard, the
dropout hazards of these students are not independent from each other.7

In practice, I follow many previous studies of random effects in the
hazard analysis literature (Abbring and Van den Berg, 2007; Bolstad
and Manda, 2001; Clayton, 1978; Guo and Rodriguez, 1992; Han and
Hausman, 1990; Lancaster, 1979; Meyer, 1990; Oakes, 1982; Sastry, 1997;
Vaupel et al., 1979; Van den Berg, 2001) and assume that the individual,
school, and state level random effects follow gamma distributions,
�sci

iid∼ G(r , r−1), �sc
iid∼ G(u,u−1), �s

iid∼ G(v, v−1), where G(�, �) denotes the
gamma distribution8 with a mean of �� and a variance of ��2.9 These
assumptions reflect the standard normalizations adopted in the literature,
i.e., the random effects at various levels of the model have a mean of
one, E(�sci) = E(�sc) = E(�s) = 1. In addition, the parameters r−1,u−1, and
v−1 have a ready interpretation in the model as they are the variance
parameters of the individual, school, and state level random effects,
Var (�sci) = r−1,Var (�sc) = u−1, and Var (�s) = v−1, respectively.

To derive the likelihood function of the model, let tscim denote the high
school duration associated with individual i from school c in state s and
in month m, and let dscim denote the binary outcome variable indicating
whether the individual drops out of high school in month m. Following
the previous arguments, the survivor function of the individual in month
m is Sscim(t) = exp[− ∫ t

0 �scim(u)du] = exp[− ∫ t
0 exp(xscim�)�s�sc�sci�mdu] =

exp[− exp(xscim�)�s�sc�sci�mt ], and the related probability density function is
fscim(t) = Sscim(t)�scim(t) = exp[− exp(xscim�)�s�sc�sci�mt ] exp(xscim�)�s�sc�sci�m .
For an individual who does not drop out in month m (i.e., dscim = 0), the
contribution of this observation to the likelihood function is captured
by the survivor function Sscim(t) evaluated at t = tscim . In contrast, for an
individual who drops out in month m (i.e., dscim = 1), the contribution of

7In this paper, I do not model in an explicit way the interaction or peer effects. For example,
one way to explain the dropout outcome of a student is to include the dropout outcomes of her peer
students as endogenous covariates. I do not pursue this approach but instead attempt to capture the
peer group effects by incorporating the school level random effects in the dropout hazard.

8See, e.g., Poirier (1995, p. 98).
9Several researchers in the literature (Campolieti, 2001, 2003; Elbers and Ridder, 1982;

Gørgens and Horowitz, 1999; Horowitz, 1999; Heckman and Singer, 1984a,b; Lancaster and Nickell,
1980) have studied the nonparametric identification of random effects in the proportional hazard
analysis framework and proposed some nonparametric estimation methods. However, to most
empirical researchers and from a computational point of view, it is not a trivial task to take into
account simultaneously the piecewise constant baseline hazard and the Heckman and Singer type
of unobserved heterogeneity distribution. Hence I choose to follow the more common approach
and assume that the random effects in the hazard follow gamma distributions.
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the observation to the likelihood function is captured by the probability
density function fscim(t) evaluated at t = tscim .

Following these arguments, the likelihood function of the model is
the enumeration of the individual likelihood function associated with each
student in each month. In addition, the likelihood function explicitly
incorporates the previously discussed individual, school, and state level
random effects in the hazard:

p(Data |�) ∝
{ S∏

s=1

Cs∏
c=1

Isc∏
i=1

exp
[

−
M∑

m=1

exp(xscim�)�s�sc�sci�mtscim

]

×
M∏

m=1

[exp(xscim�)�s�sc�sci�m]dscim
}

×
[ S∏

s=1

vv�(v)−1�v−1
s exp(−�sv)

Cs∏
c=1

uu�(u)−1�u−1
sc exp(−�scu)

×
Isc∏
i=1

r r�(r )−1�r−1
sci exp(−�sci r )

]
,

where � denotes the set of parameters, S the number of states, Cs the
number of schools in state s, Isc the number of students from school c in
state s, and M the number of months in the sampling period.10

To estimate the model, I develop a Bayesian estimation method, which
avoids a direct evaluation of the above nontrivial likelihood function
and draws instead from the exact posterior of the model (Chib and
Greenberg, 1995; Gamerman, 1997; Gelman et al., 1995; Gilks et al., 1996).
For example, the Bayesian estimation method allows me to simulate the
random effects in the hazard at various levels directly from the posterior of
the model, so the estimation does not rely on any approximation methods
or asymptotic theory. A wide array of posterior functions of interest, such
as the duration dependence pattern, the marginal effect of each covariate
on the dropout hazard, and the school level random effects in the dropout
hazard, can be easily estimated.

Following the Bayes rule, the joint posterior distribution of the set
of parameters p(� |Data) is proportional to the product of the above
likelihood function of the model p(Data |�) and the joint prior
distribution of the set of parameters p(�), p(� |Data) ∝ p(Data |�)p(�).

10As previously discussed in the data section, the first month of the sampling period is February
1980. This month corresponds to the beginning of the base year survey. Likewise, the last month
included in the sampling period is June 1982. This month corresponds to the end of the follow-up
survey and is also the point when the nondropouts of the 1980 sophomores were expected to
graduate from high school. Therefore the number of months included in the sampling period is
M = 28.
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I specify the following priors to complete the Bayesian analysis. First,
I assume prior independence between different groups of parameters,
p(�) = 	

∏M
m=1 p(�m)
p(�)p(r )p(u)p(v). The priors for the baseline hazard

parameters are �m ∼ G(a�, b�), for m = 1, 2, 3, � � � ,M , where a� = 0�01 and
b� = 100. For the coefficient parameters, I assume that � ∼ N (�0,V�), where
�0 = 0k×1 and V� = 1000Ik . Finally, the priors for the individual, school, and
state level variance parameters are specified as: r ∼ G(ar , br ), u ∼ G(au , bu),
and v ∼ G(av , bv), where ar = au = av = 0�01, br = bu = bv = 100.11

3.1. Gibbs Sampler

In practice, I use the following Metropolis–Hastings within Gibbs
algorithm to implement the above Bayesian estimation method. The
algorithm involves an iterative sampling from the following complete
conditional posterior distributions that are derived from the previously
discussed joint posterior distribution p(� |Data).

1. Sample the month specific baseline dropout hazard �m :

�m |�−�m ,D

∼ G


a� +

S∑
s=1

Cs∑
c=1

Isc∑
i=1

dscim ,

[
b−1
� +

S∑
s=1

Cs∑
c=1

Isc∑
i=1

exp(xscim�)�s�sc�sci tscim

]−1



for m = 1, 2, � � � ,M .

2. Sample the state level random effects in the dropout hazard �s :

�s |�−�s ,D

∼ G


v +

Cs∑
c=1

Isc∑
i=1

M∑
m=1

dscim ,

[
v +

Cs∑
c=1

Isc∑
i=1

M∑
m=1

exp(xscim�)�sc�sci�mtscim

]−1



for s = 1, 2, � � � , S .

3. Sample the school level random effects in the dropout hazard �sc :

�sc |�−�sc ,D

∼ G


u +

Isc∑
i=1

M∑
m=1

dscim ,

[
u +

Isc∑
i=1

M∑
m=1

exp(xscim�)�s�sci�mtscim

]−1



for c = 1, 2, � � � ,Cs , and s = 1, 2, � � � , S .

11These prior specifications are essentially noninformative and very diffuse. For example,
I have tried the alternative prior hyperparameters a� = ar = au = av = 0�001, or a� = ar = au = av =
0�1; b� = br = bu = bv = 1000, or b� = br = bu = bv = 10; V� = 100Ik or V� = 10000Ik and found that
estimation results virtually do not change.
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4. Sample the individual level random effects in the dropout
hazard �sci :

�sci |�−�sci ,D

∼ G


r +

M∑
m=1

dscim ,

[
r +

M∑
m=1

exp(xscim�)�s�sc�mtscim

]−1



for i = 1, 2, � � � , Isc , c = 1, 2, � � � ,Cs , and s = 1, 2, � � � , S .

5. Sample the state level variance parameter v−1:

p(v |D) ∝ b−av
v �(av)−1vav−1 exp(−vb−1

v )

S∏
s=1

vv�(v)−1�v−1
s exp(−�sv)�

Since this conditional posterior distribution cannot be sampled directly, I
sample a candidate draw from the proposal density

v∗ |�−v ,D ∼ G [av + �v , (b−1
v + �vs2� )

−1],

where ∗ denotes the candidate draw, �v = 10 is the tuning parameter,
s2� = 1

S

∑S
s=1(�s − �̄)2, and �̄ = 1

S

∑S
s=1 �s . The probability of accepting the

candidate draw is min(R , 1), where

R = v∗−�v exp(�vs2�v
∗)

v−�v
j−1 exp(�vs2�vj−1)

S∏
s=1

v∗v∗
�(v∗)−1�v

∗−1
s exp(−�sv∗)

vj−1
vj−1�(vj−1)−1�

vj−1−1
s exp(−�svj−1)

,

and j−1 denotes the draw accepted in the last iteration.

6. Sample the school level variance parameter u−1:

p(u |D) ∝ b−au
u �(au)−1uau−1 exp(−ub−1

u )

S∏
s=1

Cs∏
c=1

uu�(u)−1�u−1
sc exp(−�scu)�

Again, since this conditional posterior distribution cannot be sampled
directly, I sample a candidate draw from the proposal density

u∗ |�−u ,D ∼ G [au + �u , (b−1
u + �us2� )

−1],

where �u = 10 is the tuning parameter, s2� = (
∑S

s=1

∑Cs
c=1 1)

−1
∑S

s=1∑Cs
c=1(�sc − �̄)2, and �̄ = (

∑S
s=1

∑Cs
c=1 1)

−1
∑S

s=1

∑Cs
c=1 �sc . The probability of
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accepting the candidate draw is min(R , 1), where

R = u∗−�u exp(�us2�u
∗)

u−�u
j−1 exp(�us2�uj−1)

S∏
s=1

Cs∏
c=1

u∗u∗
�(u∗)−1�u

∗−1
sc exp(−�scu∗)

uj−1
uj−1�(uj−1)−1�

uj−1−1
sc exp(−�scuj−1)

�

7. Sample the individual level variance parameter r−1:

p(r |D) ∝ b−ar
r �(ar )−1r ar −1 exp(−rb−1

r )

S∏
s=1

Cs∏
c=1

Isc∏
i=1

r r�(r )−1�r−1
sci exp(−�sci r )�

Once again, since this conditional posterior distribution cannot be
sampled directly, I sample a candidate draw from the proposal density

r ∗ |�−r ,D ∼ G 	ar + �r , (b−1
r + �r s2� )

−1
,

where �r = 10 is the tuning parameter, s2� = ( ∑S
s=1

∑Cs
c=1

∑Isc
i=1

)−1∑S
s=1

∑Cs
c=1

∑Isc
i=1(�sci − �̄)2, and �̄= ( ∑S

s=1

∑Cs
c=1

∑Isc
i=1

)−1 ∑S
s=1

∑Cs
c=1

∑Isc
i=1

�sci . The probability of accepting the candidate draw is min(R , 1), where

R = r ∗−�r exp(�r s2� r
∗)

r−�r
j−1 exp(�r s2� rj−1)

S∏
s=1

Cs∏
c=1

Isc∏
i=1

r ∗r ∗�(r ∗)−1�r
∗−1
sci exp(−�sci r ∗)

rj−1
rj−1�(rj−1)−1�

rj−1−1
sci exp(−�sci rj−1)

�

8. Sample the coefficients �:

p(� |�−�,D) ∝
{

S∏
s=1

Cs∏
c=1

Isc∏
i=1

exp

[
−

M∑
m=1

exp(xscim�)�s�sc�sci�mtscim

]

×
M∏

m=1

[exp(xscim�)�s�sc�sci�m]dscim
}

× exp
[
−1
2
(� − �0)

′V −1
� (� − �0)

]
�

Since this conditional posterior distribution cannot be sampled directly, I
sample a candidate draw from the proposal density

�∗ | �j−1 ∼ N (�j−1,�),

where � = ��(
∑S

s=1

∑Cs
c=1

∑Isc
i=1 x

′
scimxscim)

−1
∑S

s=1

∑Cs
c=1

∑Isc
i=1 1 and �� =

0�0001 is the tuning parameter. The probability of accepting the candidate
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draw is min(R , 1), where

R =
{

S∏
s=1

Cs∏
c=1

Isc∏
i=1

exp[− ∑M
m=1 exp(xscim�

∗)�s�sc�sci�mtscim]
exp[− ∑M

m=1 exp(xscim�j−1)�s�sc�sci�mtscim]

×
∏M

m=1[exp(xscim�∗)�s�sc�sci�m]dscim∏M
m=1[exp(xscim�j−1)�s�sc�sci�m]dscim

}

× exp[− 1
2(�

∗ − �0)
′V −1

� (�∗ − �0)]
exp[− 1

2(�j−1 − �0)′V −1
� (�j−1 − �0)] �

In the implementation, I simulate 20,000 iterations from the above
algorithm and discard the first 4,000 iterations as preconvergence draws.
To monitor and ensure the convergence of the algorithm, I also
run iterations from several independent sequences, with starting values
sampled from an overdispersed distribution following Gelman et al.
(1995).

4. RESULTS

To examine the duration dependence pattern of the high school
dropout hazard, I plot in Figure 1 the posterior mean of each month’s
dropout hazard of a representative individual E(�∗

m |Data) and the
corresponding Kaplan–Meier estimate of the empirical hazard �̂m , for
m = 1, 2, 3, � � � ,M and M = 28.12 The Kaplan–Meier estimate (Kaplan and
Meier, 1958; Kiefer, 1988) in month m is defined as �̂m = hm/nm , where
hm is the number of students who dropped out of high school in month
m and nm is the number of students in the sample who were at risk of
dropping out in month m. Note that, as compared with the estimates of
the dropout hazard obtained from the model considered in this paper, the
Kaplan–Meier estimates do not account for time-invariant or time-variant
or observed or unobserved heterogeneity in the dropout hazard.

From Figure 1, the estimated dropout hazard increases during the first
five months of the sampling period (February 1980 to June 1980), when
the 1980 sophomores were still in their sophomore year. For the next

12The dropout hazard reported is associated with a representative individual who is male,
white, from an urban area, and has a base year cognitive test score equal to the sample mean, a
family income of $20,000, and three siblings. Both his parents have twelve years of education. His
high school has a pupil–teacher ratio of 19, 15 books per pupil in the school’s library, 48% of
teachers with an M.A. or Ph.D. degree, 40% of teachers staying at school 10 years or more, and
district expenditure per pupil of $2,000. The average family income of the students in the school
is $20,000, and the average base year cognitive test score of the students in the school is equal to
the sample mean. The representative individual is from a county with an employment growth rate
from 1980 to 1982 of zero percent and is not eligible to drop out from high school under the
state compulsory schooling laws.
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FIGURE 1 Posterior mean of each month’s dropout hazard of a representative individual
E(�∗

m |Data) (solid line) and the corresponding Kaplan–Meier estimate of the empirical hazard �̂m
(dashed line), m = 1, 2, 3, � � � ,M and M = 28.

twelve months (July 1980 to June 1981), the 1980 sophomores were in their
junior year. During this period, the dropout hazard climbs continuously
and reaches the highest point in June 1981. For the last eleven months
of the sampling period (July 1981 to May 1982), the 1980 sophomores
were in their senior year. Contrary to what we have observed in the
previous years, the dropout hazard decreases during this last period.13

One explanation for this duration dependence pattern is that during the
sophomore and junior years, the school curriculum becomes more and
more challenging over time, and this results in a gradual increase in the
dropout hazard. In contrast, after students enter their senior year, the
future benefits associated with graduation from high school become more
and more attractive, and this leads to a decrease in the dropout hazard.

Next I discuss the coefficient estimates associated with the individual
and school level covariates and the time-varying covariate. I list the
posterior mean E(� |Data), standard deviation Std(� |Data), and
probability of being positive P(� > 0 |Data) of each coefficient in

13It is somewhat surprising to observe that the dropout hazards associated with the summer
months, including the sixth (July 1980), seventh (August 1980), eighteenth (July 1981) and
nineteenth (August 1981) months of the sampling period, are not exactly zero, although they are
quite small and close to zero. A close look at the data set suggests that indeed a small proportion
of the high school dropouts reported that they left high school during these summer months.
Since in general schools are not in session during summer months, one may interpret that these
students made their decisions on dropping out of high school during summer months and chose
not to enroll in school when new academic years started.
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TABLE 2 The posterior mean E(� |Data), standard deviation Std(� |Data), and probability of
being positive P(� > 0 |Data) of each coefficient, and the effect of each control variable on the
dropout hazard E(�%�∗

m |�x ,Data)
Explanatory variablesa E(� |D)b Std(� |D) P(� > 0 |D) E(�%�∗

m |�x ,D)c

Dropout eligibility 0�758 0�0838 1 114
Base year test score −0�708 0�0362 0 −50�7
Female −0�188 0�0518 0 −17�1
Minority −0�379 0�0672 0 −31�4
Father’s education −0�0498 0�00853 0 −4�85
Mother’s education −0�0662 0�00937 0 −6�4
Family income ($10,000) −0�0592 0�0297 0.0211 −5�71
Number of siblings 0�12 0�0158 1 12.7
Suburban −0�23 0�0814 0.001 −20�3
Rural −0�207 0�103 0.0119 −18�3
Pupil–teacher ratio 0�013 0�0072 0.965 1.31
Books per pupil −0�00491 0�0031 0.0581 −0�49
% Teachers M.A./Ph.D. −0�00123 0�00167 0.238 −0�123
% Teachers 10+ years −0�000265 0�00143 0.419 −0�0264
District expend./pupil −0�0864 0�0709 0.115 −8�05
Average fam. inc. ($10,000) −0�139 0�0733 0.0362 −12�7
Average test score −0�175 0�0392 0 −16
County employ. growth 0�0139 0�00621 0.976 1.4
Variance parameters

Individual level (r−1) 0�798 0�115 1
School level (u−1) 0�249 0�0415 1
State level (v−1) 0�0541 0�0306 1

aThe descriptive statistics of the data are reported in Table 1. To reduce the number of
missing observations, I also include in the model a set of dummy variables indicating whether an
observation is missing for each of the following covariates: base year cognitive test score, father’s
education, mother’s education, family income, number of siblings, pupil–teacher ratio, books per
pupil, percentage of teachers with an M.A. or Ph.D. degree, percentage of teachers staying at
school for 10 years or more, and district expenditure per pupil. I do not report the coefficient
estimates associated with these dummy variables to save space.

bD denotes the data.
cE(�%�∗

m |�x ,Data) denotes the percentage change (%) in the dropout hazard resulting from a
one-unit increase in the explanatory variable x , holding other covariates constant.

Table 2.14 In many situations, one can interpret the posterior mean of
a coefficient E(� |Data) roughly as the marginal effect of the associated
covariate on the dropout hazard, i.e., the percentage change in the dropout
hazard due to a one-unit increase in the covariate, holding other covariates
constant. This rule of thumb often serves as a good approximation when
the marginal effect is relatively small and close to zero.

To see this, note that with a one-unit increase in a particular covariate
x , the dropout hazard changes from �∗

m to exp(�)�∗
m , where �∗

m denotes the

14Since I adopt a Bayesian analysis framework in this paper, it is possible for me to calculate
the posterior probability that a particular coefficient is positive. This posterior quantity of interest
is analogous to the statistical significance often reported in most non-Bayesian analyses.
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dropout hazard of a representative individual in month m and � represents
the coefficient associated with the covariate x . The percentage change
in the dropout hazard is hence captured by the quantity [exp(�)�∗

m −
�∗
m]/�∗

m = exp(�) − 1, and according to the Taylor expansion, exp(�) − 1 ≈
� when � is close to zero. This suggests that using � to approximate the
marginal effect of a covariate cannot be very accurate if � is substantially
different from zero. For example, from Table 2, the coefficient estimate
associated with the time-varying covariate of dropout eligibility is 0.76.
This coefficient estimate suggests that the marginal effect of the dropout
eligibility is exp(0�76) − 1 = 1�14, which is substantially different from 0.76.
To this end, I also calculate the exact marginal effect associated with each
covariate, E(�%�∗

m |�x ,Data), and list these marginal effects in the last
column of Table 2.

According to Table 2, the coefficient estimates in general have their
expected signs and are statistically significant. As previously discussed,
after students become eligible to drop out of high school under the
state compulsory schooling laws, their dropout hazard increases by 114
percent. In addition, a one-standard-deviation increase in the base year
cognitive test score reduces the dropout hazard by 51 percent. A one-year
increase in the father’s education decreases the hazard by 4.9 percent, and
a one-year increase in the mother’s education reduces the hazard by 6.4
percent. A ten-thousand-dollars increase in family income decreases the
dropout hazard by 5.7 percent. Finally, having one more sibling increases
the hazard by 13 percent.

An issue of substantial interest to the education policy makers that is
commonly studied in the schooling literature is whether school quality,
often measured in class size, district expenditure per pupil, etc., can
improve various student outcomes. There is a huge debate in the literature
regarding the effectiveness of school resources on students’ outcomes
(Betts, 1995, 1996; Card and Krueger, 1992; Figlio, 1999; Grogger, 1996a,b;
Hanushek et al., 1996, 1998; Heckman et al., 1996; Hoxby, 1998, 2000). So
far, much has been done to examine the effectiveness of different school
quality variables on students’ labor market outcomes, such as wages and
unemployment, and their academic performance, such as students’ scores
on standard subject tests. However, little research has been done on the
possible effects of school resources on students’ decisions on dropping out
of high school.

It is possible that school quality variables have a bigger influence on
students’ dropout behavior than on other outcomes such as wages and test
scores. This paper examines the impacts of school resources on students’
dropout decisions. From Table 2, a one-unit increase in the school pupil–
teacher ratio raises the student’s dropout hazard by 1.3 percent. Having
one more book per student in school’s library reduces the dropout hazard
by 0.5 percent. A one-thousand-dollars increase in the district expenditure
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per pupil decreases the hazard by 8.1 percent. These results suggest that
school resources are effective in preventing students from dropping out of
high school.

One common concern in the school quality literature is the difficulty
of disentangling the impacts of the school quality variables from the effects
of the community characteristics associated with the school. In particular,
high-quality schools are often related to wealthy communities and good
social environment. Without an appropriate control for each student’s
family background and the community characteristics associated with each
school, the estimated school quality effects may be confounded with the
effects of family and community characteristics. To take into account
this concern, I include in the model an array of individual and family
characteristics that are discussed before, such as the base year cognitive test
score, parental education, family income, and family size.

I also calculate the average family income of the students in a school
and the average base year cognitive test score of the students in the
school. I include these variables in the model to control for the impacts
of community characteristics. Finally, a student may have a higher chance
of dropping out of high school if there are more job opportunities in
the local area. Thus I also control for the effect of local employment
opportunity by including in the specification the county level employment
growth rate from 1980 to 1982. The results from Table 2 suggest that
a ten-thousand-dollars increase in the average family income reduces
the dropout hazard by 13 percent. A one-standard-deviation increase
in the average base year cognitive test score of the students in the
school decreases the hazard by 16 percent. Finally, a one-percentage-point
increase in the county level employment growth rate from 1980 to 1982
increases the hazard by 1.4 percent.

A well-known finding in the hazard analysis literature is that failure
to account for the observed and unobserved heterogeneity in the
hazard results in downward biases in the duration dependence estimates
(Heckman, 1991; Heckman and Singer, 1984a,b). Hence it is essential to
include in the model specification not only the observed individual and
school level covariates but also unobserved heterogeneity in the hazard at
various levels of the model. From Table 2, the variance parameter estimates
of the unobserved heterogeneity in the hazard are 0.8, 0.25, and 0.054 at
the individual, school, and state levels, respectively. These estimates suggest
that substantial variation in the dropout hazard exists at different levels of
the model.

To take a further look into this problem, I calculate the random
effect in the dropout hazard associated with each individual, school, and
state. In Figure 2, I plot the tenth, fiftieth, and ninetieth percentiles
and the outliers of the simulated posterior draws of the log of each
state’s random effect in the hazard. Note that a normalization assumption
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FIGURE 2 The tenth (left bar), fiftieth (middle bar), and ninetieth (right bar) percentiles and
the outliers (whiskers) of the simulated posterior draws of the log of each state’s random effect in
the dropout hazard, log(�s), s = 1, 2, � � � , S .

adopted in this paper that is common in the hazard analysis literature
is that random effects, such as �s , �sc , and �sci which are specified in the
model, are centered around one. Because these random effects are all
positive numbers, it is natural to take the log of each state’s random
effect and compare it with the value of zero. From Figure 2, the states of
Massachusetts, New Jersey, and New York are associated with lower dropout
hazards as the logs of these states’ random effects are smaller than zero
with a posterior probability of 90 percent or more. In contrast, the states
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of Florida, Louisiana, New Mexico, and Oregon are connected with higher
chances of dropping out of high school as the logs of these states’ random
effects are bigger than zero with a posterior probability of 90 percent or
more. This sharp contrast again demonstrates the substantial variability in
the dropout hazard across the entire nation.

4.1. Downward and Upward Biases in the Duration
Dependence Estimates

A well-established claim in the duration analysis literature is that
failure to account for the observed and unobserved heterogeneity in the
hazard results in downward biases in the duration dependence estimates
(Heckman, 1991; Heckman and Singer, 1984a,b). To verify this claim using
the application studied in this paper, I estimate an alternative model that
does not account for both time-invariant and time-varying heterogeneity in
the dropout hazard. So far, the maintained model assumption is that the
dropout hazard of individual i from school c in state s and in month m is
�scim = exp(xscim�)�s�sc�sci�m . This specification, denoted as model (1) here,
takes into account observed and unobserved, and time-invariant and time-
variant heterogeneity in the dropout hazard. An alternative assumption of
the dropout hazard is �scim = �m , and this is called model (2). Model (2) is
intended to capture the change in the baseline dropout hazard over time,
by specifying piecewise constant baseline hazard or month-specific dropout
hazard. However, this approach does not capture the heterogeneity in the
dropout hazard between different individuals.

I obtain the duration dependence estimates from model (2) and list
them in the second column of Table 3. In particular, to characterize
the duration dependence pattern of the dropout hazard, I calculate
the posterior mean of the percentage change in each month’s dropout
hazard from the previous month, E[(�m − �m−1)/�m−1 |Data] · 100, for m =
2, 3, � � � ,M and M = 28. For comparison, I also obtain the corresponding
duration dependence estimates from model (1), the full model considered
in this paper. I list these results in the first column of Table 3, calculate
the differences in the duration dependence estimates between models (2)
and (1), and list the differences in the fifth column of the table. These
differences should reflect the directions of potential biases resulting from
the failure to account for the heterogeneity in the dropout hazard. If there
are downward biases in the duration dependence estimates, we should
expect that the duration dependence estimates from model (2) will be
all smaller than their corresponding estimates from model (1), or that
the numbers in column five will all be negative. Contrary to my prior
expectation, however, the biases of the duration dependence estimates
calculated in column 5 are not all negative. In fact, most biases in the
earlier months of the sampling period are positive. This does not seem to
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TABLE 3 Posterior mean of the percentage change in each month’s dropout hazard from the
previous month, m = 2, 3, � � � ,M and M = 28, from four different models

Percentage change in each month’s dropout hazard from the previous montha

Model Difference between two models

m (1)b (2)c (3)d (4)e (2)–(1) (3)–(1) (2)–(3) (4)–(1) (2)–(4)

2 25.9 29.2 23.6 30.7 3�23 −2�37 5�6 4.75 −1�52
3 −6.43 −4.04 −11.9 −3.21 2�39 −5�5 7�89 3.22 −0�826
4 150 152 144 157 2�5 −5�68 8�18 6.92 −4�42
5 −5.37 −4.87 −8.18 −2.71 0�499 −2�82 3�31 2.66 −2�16
6 −92.5 −92.3 −92.6 −92.3 0�161 −0�136 0�297 0.193 −0�0317
7 246 255 245 257 9�04 −1�21 10�2 11 −1�95
8 116 121 114 123 4�9 −2�26 7�16 6.91 −2�01
9 0.685 2.29 −0.846 3.35 1�61 −1�53 3�14 2.67 −1�06

10 15.9 17.6 14.5 18.8 1�75 −1�38 3�13 2.91 −1�16
11 −24 −23.2 −24.7 −22.6 0�761 −0�704 1�47 1.38 −0�616
12 107 107 105 110 0�59 −1�82 2�41 3.62 −3�03
13 −28.9 −29 −29.6 −28.2 −0�0774 −0�618 0�541 0.737 −0�815
14 22.7 21.9 21.1 23.5 −0�735 −1�59 0�851 0.846 −1�58
15 5.57 5.63 3.86 6.99 0�0622 −1�71 1�77 1.42 −1�36
16 61.5 59.3 58.8 62.3 −2�22 −2�72 0�494 0.767 −2�99
17 48.5 45.4 44.4 49.4 −3�12 −4�14 1�02 0.832 −3�95
18 −92.8 −92.8 −92.8 −92.7 −0�0256 −0�0677 0�0421 0.0907 −0�116
19 182 184 182 185 1�52 −0�218 1�73 2.9 −1�38
20 221 220 216 222 −1�01 −4�24 3�24 1.69 −2�69
21 6.61 5.07 4.79 7.36 −1�54 −1�82 0�278 0.755 −2�3
22 2.66 1.48 0.787 3.52 −1�18 −1�88 0�695 0.853 −2�03
23 −44.7 −45.2 −45.5 −44.3 −0�467 −0�788 0�32 0.385 −0�852
24 34 33 32.4 34.8 −1�06 −1�57 0�509 0.8 −1�86
25 −29.8 −30 −30.4 −29.3 −0�181 −0�562 0�382 0.52 −0�701
26 4.75 4.21 3.75 5.2 −0�537 −0�991 0�455 0.456 −0�992
27 −64.1 −64.1 −64.4 −63.8 −0�0111 −0�228 0�217 0.323 −0�334
28 −39.2 −38.8 −39.2 −38.5 0�355 −0�0176 0�373 0.665 −0�31

aThe estimate is the posterior mean of the percentage change (%) in the dropout hazard in
month m from the previous month, E[(�m − �m−1)/�m−1 |Data] · 100, m = 2, 3, � � � ,M and M = 28.

bModel (1) is the full model considered in the paper.
cCompared with model (1), model (2) does not account for both time-invariant and time-variant

heterogeneity in the dropout hazard.
dCompared with model (1), model (3) does not account for time-invariant heterogeneity in the

dropout hazard but accounts for the time-variant heterogeneity.
eCompared with model (1), model (4) does not account for time-variant heterogeneity in the

dropout hazard but accounts for the time-invariant heterogeneity.

be consistent with the well-established claim that the failure to account for
the heterogeneity in the hazard results in downward biases in the duration
dependence estimates.

To take a deeper look into the issue, I choose to differentiate
further between two different types of heterogeneity in the hazard.
Specifically, I distinguish between time-invariant heterogeneity and time-
varying heterogeneity. Thus, I estimate another model, called model (3),
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which, as compared with model (1), does not account for time-invariant
heterogeneity in the hazard but accounts for time-varying heterogeneity.
Thus in model (3), the dropout hazard associated with individual i
from school c in state s and month m is �scim = exp(qscim�)�m , where qscim
denotes the time-varying covariate of dropout eligibility and � denotes the
coefficient associated with the covariate. In other words, model (3) does
not take into consideration the individual, school and state level covariates
and random effects. However, model (3) still accounts for the time-varying
heterogeneity in the dropout hazard, i.e., the time-varying covariate of
dropout eligibility.

Estimates of the duration dependence pattern of model (3) are listed
in the third column of Table 3. In addition, differences between the
duration dependence estimates from model (3) and those from the
previous two models, model (1) and model (2), are listed in the sixth
and seventh columns, respectively. In particular, the differences between
the duration dependence estimates from model (3) and model (1)
should illustrate the directions of potential biases resulting from omitting
only the time-invariant heterogeneity from the model. Interestingly, these
differences are all negative and are consistent with the common intuition
that failure to model the heterogeneity in the dropout hazard leads
to downward biases in the duration dependence estimates. Moreover, a
comparison between the duration dependence estimates from models (2)
and (3) reveals a type of bias in the duration dependence estimates that
has not been widely studied in the literature. Specifically, since model (2)
does not account for both time-invariant and time-varying heterogeneity
in the hazard, and model (3) only accounts for time-varying heterogeneity,
the difference between the two models is that model (2) further omits
the time-varying heterogeneity. Surprisingly, results show that omitting the
time-varying heterogeneity from the model, in this application, leads to
upward biases in the duration dependence estimates.

To verify this observation, I estimate yet another model, model (4),
which, as compared with model (1), does not account for time-varying
heterogeneity in the hazard but accounts for time-invariant heterogeneity.
Formally, in model (4), the dropout hazard associated with individual i
from school c in state s and in month m is �scim = exp(zsci�)�s�sc�sci�m ,
where zsci denotes the time-invariant individual and school level covariates
and � denotes the vector of coefficients associated with these covariates.
As compared with model (1), model (4) only excludes the time-varying
covariate of dropout eligibility qscim . I estimate the duration dependence
pattern from model (4) and list the results in the fourth column of Table 3.
The differences between the duration dependence pattern estimated from
model (4) and those from models (1) and (2) are listed in the last two
columns. As with what has been discussed before, the difference between
models (1) and (4) is the absence of time-varying heterogeneity. Again,
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the results suggest that the exclusion of time-varying heterogeneity, in this
application, leads to upward biases in the duration dependence estimates.
On the other hand, the difference between models (2) and (4) is the
further omission of the time-invariant heterogeneity. As with the previous
results, the absence of time-invariant heterogeneity results in the well-
known and more commonly observed downward biases in the duration
dependence estimates.

These findings confirm that it is necessary to distinguish between the
two types of heterogeneity in the hazard when we study the duration
dependence pattern, namely the time-invariant heterogeneity and the
time-varying heterogeneity. One may ask about the causes of the upward
biases that we observe in this application. Before giving an explanation,
it is worthwhile to reexamine briefly the causes of the more commonly
observed downward biases in the duration dependence estimates owing to
the failure to account for the time-invariant heterogeneity in the hazard.
Note that the dropout hazard is roughly a student’s conditional probability
of dropping out of high school time t given that she has remained in
school until t . Define the risk set as the group of students who have
stayed until t . Since the dropout hazard is calculated by conditioning on
the probability of survival, only those students who drop out at t and
the group of students who have stayed until t (risk set) matter in the
calculations of the dropout hazard. It is natural that students with higher
dropout hazards (high-risk students) are more likely to drop out than
students with lower dropout hazards (low-risk students). Therefore, on
average, high-risk students drop out of high school earlier than low-risk
students. This suggests that the proportion of high-risk students in the risk
set decreases over time, and in contrast, the proportion of low-risk students
in the risk set increases over time. Without an explicit modeling of the
heterogeneity in the dropout hazard between different individuals (time-
invariant heterogeneity), one would naively think that the dropout hazard
decreases over time. In fact the truth is that the risk set is composed of a
smaller proportion of high-risk students and a bigger proportion of low-
risk students over time.

The explanation for the upward biases owing to the failure to account
for the time-varying heterogeneity in the hazard turns out to be similar.
To gain some insights, note that the time-varying heterogeneity in the
hazard, in this paper, is the time-varying covariate of dropout eligibility. As
students grow older, they are more likely to be eligible to drop out of high
school under the state compulsory schooling laws. Hence the proportion
of students in the risk set who are eligible to drop out of high school
increases over time and the proportion of students in the risk set who
are not eligible decreases over time. Moreover, the estimation results show
that students who are eligible to drop out are associated with a higher
likelihood of dropping out. Combined together, these two factors suggest
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that the risk set is composed of a bigger proportion of high-risk students
and a smaller proportion of low-risk students over time, because more
students become eligible to drop out as they grow older. As discussed
before, without capturing in an explicit way the time-varying dropout
eligibility (time-varying heterogeneity), one may be tempted to believe that
the dropout hazard increases over time. Nevertheless, the truth is that the
proportion of students in the risk set who are eligible to drop out increases
over time and these students are associated with higher dropout hazard.

Finally, note that the existence of upward biases in the duration
dependence estimates owing to the absence of time-varying heterogeneity
from the model is not merely a theoretical concern. In the application
considered in this paper, the magnitude of the upward biases is
also quantitatively important and warrants particular attention. In fact,
these upward biases are substantial and comparable to the more
commonly noticed downward biases owing to the omission of time-
invariant heterogeneity. Note again the comparison between the duration
dependence estimates from model (2) and those from model (1). From
column five of Table 3, it needs to be emphasized that, in the earlier
months of the sampling period, the upward biases that are less commonly
studied in the literature are even bigger than the more commonly
observed downward biases.

5. CONCLUSION

In this paper, I examine the dropout behavior of high school students
and study the timing of high school dropout decisions using data from
High School and Beyond. I set up a Bayesian proportional hazard analysis
framework that incorporates simultaneously the specification of piecewise
constant baseline hazard, the time-varying covariate of dropout eligibility,
and individual, school and state level random effects in the dropout
hazard. I find that students who are eligible to drop out of high school
under state schooling laws are 114 percent more likely to drop out than
those who are not eligible. In addition, a one-unit increase in the school
pupil–teacher ratio raises the student’s dropout hazard by 1.3 percent.
A one-thousand-dollars increase in the district expenditure per pupil
decreases the hazard by 8.1 percent. An interesting finding that comes
along with the empirical results is that the absence of modeling the time-
varying heterogeneity in the hazard, in this paper, results in upward biases
in the duration dependence estimates. Moreover, these upward biases
are comparable in magnitude to the well-known downward biases in the
duration dependence estimates owing to failure to account for the time-
invariant heterogeneity in the hazard.
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