
CSE 410 Fall 2025
Privacy-Enhancing Technologies

Marina Blanton

Department of Computer Science and Engineering
University at Buffalo

Lecture 11: Protecting Data during Computation III
Building Larger Protocols



Computing on Private Values

So far we have mechanisms for performing elementary
operations on private data

(integer) addition c = a+ b

(integer) multiplication c = a · b

The next question is where we take this

Let [x] represent a secret-shared value x

Marina Blanton / CSE 410



Dot Product

Consider an operation that involves multiple additions and
multiplications – a dot product

on input vectors a1, a2, . . . , ak and b1, b2, . . . , bk, compute

c =

k∑
i=1

ai · bi

there are k multiplications and k − 1 additions, how do we
proceed?

Marina Blanton / CSE 410



Dot Product

Consider the following pseudo-code

1: [c] = 0;
2: for i = 1 to k do
3: [d] = [ai] · [bi];
4: [c] = [c] + [d];
5: end for

What is the cost?
important considerations are the amount of communication
and the number of communication rounds

Marina Blanton / CSE 410



Dot Product

Consider the following pseudo-code

1: [c] = 0;
2: for i = 1 to k do
3: [d] = [ai] · [bi];
4: [c] = [c] + [d];
5: end for

What is the cost?
important considerations are the amount of communication
and the number of communication rounds

Marina Blanton / CSE 410



Dot Product

Now consider this version

1: for i = 1 to k in parallel do
2: [di] = [ai] · [bi];
3: end for
4: [c] = 0;
5: for i = 1 to k do
6: [c] = [c] + [di];
7: end for

What is the cost?

Marina Blanton / CSE 410



Dot Product

Now consider this version

1: for i = 1 to k in parallel do
2: [di] = [ai] · [bi];
3: end for
4: [c] = 0;
5: for i = 1 to k do
6: [c] = [c] + [di];
7: end for

What is the cost?

Marina Blanton / CSE 410



Parallelization
Compilers support the ability to combine multiple operations
into batched execution

With PICCO, there is a special loop construct

Original:

for (i = 0; i < k; i++) {
d[i] = a[i] * b[i];

}

Batched:

for (i = 0; i < k; i++) [
d[i] = a[i] * b[i];

]

Marina Blanton / CSE 410



Parallelization
Compilers support the ability to combine multiple operations
into batched execution

With PICCO, there is a special loop construct

Original:

for (i = 0; i < k; i++) {
d[i] = a[i] * b[i];

}

Batched:

for (i = 0; i < k; i++) [
d[i] = a[i] * b[i];

]

Marina Blanton / CSE 410



Parallelization

Furthermore, there is a way to specify batched execution at the
level of array operations For example:

C = A * B;
D = A / B;
E = A > B;

this executes the operation element-wise
the sizes of the arrays in an operation must be the same

Marina Blanton / CSE 410



Dot Product

Getting back to the dot product, there is an even better way to
reduce the cost

Communication cost of a dot product is the same as that of a
single multiplication

this works only using honest majority techniques
recall that multiplication proceeds by distributed product
computation and re-sharing
instead of computing one product, we compute a sum of
products and then reshare
this works with both replicated and Shamir secret sharing
example using RSS

Marina Blanton / CSE 410



Dot Product

The ability to call a dot product protocol from a user program
has a profound impact on performance

PICCO provides a special operation

c = A @ B

for arrays A and B of the same size

Marina Blanton / CSE 410



Other Operations

Consider a more complex operation: matrix multiplication

C = A×B

A is of size n1 × n2

B is of size n2 × n3

C is of size n1 × n3

What is the computation and how can it be optimized?

Marina Blanton / CSE 410



Comparisons

Non-linear operations such as less-than comparisons and
equality tests are non-trivial to realize

suppose that we have access to the individual bits
the cost is linear in the bitlength k of the numbers being
compared
the number of rounds is also of crucial importance

a linear number of rounds for each comparison is slow
we want a constant or at least logarithmic number of rounds
illustration

Marina Blanton / CSE 410



Comparisons

To be able to work with bits, the idea is to generate random
bits and work with protected bits

to compare [a] and [b], we first compute the difference
[d] = [a]− [b]

testing a < b reduces to determining whether d is negative
testing a = b reduces to determining whether d is 0
generate a random element [r] together with its bit
decomposition [rk−1], . . . , [r0]

compute and open [c] = [d] + [r]

perform the computation using public c and private bits
[rk−1], . . . , [r0]

Marina Blanton / CSE 410



Integer Division

Fractional numbers cannot represented

Division is realized using one of iterative algorithms

start with an approximation (a few bits of precision)
initial approximation typically requires normalization
compute a few more bits of the quotient in each iteration
truncate intermediate results to keep bitlength manageable

Marina Blanton / CSE 410



Working with Real Numbers

Floating-point operations don’t fit well the framework
their computation is more expensive and they were
introduced substantially later
a floating-point number is represented as a number of
integers (denoting the mantissa, exponent, and sign bit)
alignment is needed as part of floating-point protocols

Fixed-point representation is an alternative of faster
performance

addition is the same as with integers and is very cheap
multiplication involves multiplying two integers followed by
a truncation

Marina Blanton / CSE 410



Working with Real Numbers

Floating-point operations don’t fit well the framework
their computation is more expensive and they were
introduced substantially later
a floating-point number is represented as a number of
integers (denoting the mantissa, exponent, and sign bit)
alignment is needed as part of floating-point protocols

Fixed-point representation is an alternative of faster
performance

addition is the same as with integers and is very cheap
multiplication involves multiplying two integers followed by
a truncation

Marina Blanton / CSE 410



Variable Bitlength

Recall that unlike CPU instructions, the cost of secure
computation protocols is not fixed

Because the cost can be proportional to the bitlength, one
optimization is to permit variables of custom bitlength

a programmer can choose a custom bitlength according to
the range of values being stored
the cost will be proportional to the declared bitlength

In PICCO, this is declared as

int<16> a;
float<32,10> b;

Marina Blanton / CSE 410



Variable Bitlength

Recall that unlike CPU instructions, the cost of secure
computation protocols is not fixed

Because the cost can be proportional to the bitlength, one
optimization is to permit variables of custom bitlength

a programmer can choose a custom bitlength according to
the range of values being stored
the cost will be proportional to the declared bitlength

In PICCO, this is declared as

int<16> a;
float<32,10> b;

Marina Blanton / CSE 410



Variable Qualifiers

When working with a mix of public and private values, we can
distinguish between the types by annotating their types

public int a;
private float b;
private int<48> c;
int d;

Omission of the quantifier makes the type default to private
remember the principle of fail-safe defaults?

Marina Blanton / CSE 410



Variable Qualifiers

When working with a mix of public and private values, we can
distinguish between the types by annotating their types

public int a;
private float b;
private int<48> c;
int d;

Omission of the quantifier makes the type default to private
remember the principle of fail-safe defaults?

Marina Blanton / CSE 410



Performance of Operations

The cost of individual operations is fundamentally different
from that on conventional CPUs

operations on conventional processors are 1 or a couple of
CPU cycles
the cost of secure protocols for the same operations differs
by orders of magnitude

integer addition/subtraction < integer multiplication <
comparison < division < floating-point arithmetic

Marina Blanton / CSE 410



Summary

We build secure protocols starting from elementary building
blocks:

addition/subtraction
multiplication

Additional tools include:
generated a random element
reconstructing a secret-shared value

This permits building secure protocols for all operations

It is important to keep in mind that the costs are
fundamentally different from conventional arithmetic

Marina Blanton / CSE 410


