CSE 410 Fall 2025 Privacy-Enhancing Technologies

Marina Blanton

Department of Computer Science and Engineering University at Buffalo

Lecture 10: Protecting Data during Computation II Secret Sharing

Computation Using Secret Sharing

Secret Sharing

- With (n, t) secret sharing, a private value s is split into n shares s_1, \ldots, s_n
- Access to t or fewer shares reveals no information about s
- Access to t + 1 or more shares permits reconstruction of the secret
- Computational parties operate on shares, which translates to operations on the corresponding secrets

Modular Arithmetic

Computation is over a finite set modulo some N

- the result of $a \mod b$ is between 0 and b-1
- recall that \mathbb{Z}_N is the set of integers $\{0, \ldots, N-1\}$
- what is $-3 \mod 10$?

Secret Sharing

Example: additive secret sharing with n = 2 parties

- additive means we use addition to produce shares
- access to a single share reveals no information about a secret
- our secret is $0 \le x < N$
- to generate shares:
 - choose random r from \mathbb{Z}_N and set the first share $x_1 = r$
 - compute the second share $x_2 = (x r) \mod N$
- to reconstruct, compute $x = (x_1 + x_2) \mod N$
- example

Security of Secret Sharing

Unlike encryption, secret sharing is unbreakable

- secret sharing enjoys information theoretic security and achieves perfect secrecy
- this goes back to Shannon's work in the 1940s

Let's examine the two-party secret sharing above

• One party holds random r

 \blacksquare clearly this cannot reveal anything about secret x

• One party holds random r

- \blacksquare clearly this cannot reveal anything about secret x
- The other party holds $x r \mod N$
 - \blacksquare this also doesn't reveal anything about x

• One party holds random r

- \blacksquare clearly this cannot reveal anything about secret x
- The other party holds $x r \mod N$
 - this also doesn't reveal anything about x
 - when we draw random r, all N options are equally likely

0								N - 1
---	--	--	--	--	--	--	--	-------

• One party holds random r

- \blacksquare clearly this cannot reveal anything about secret x
- The other party holds $x r \mod N$
 - this also doesn't reveal anything about x
 - when we draw random r, all N options are equally likely

• when we add x to it, all N options are still equally likely

- The above means the outcome of protecting one value of x is identical to the outcome of protecting another value of x
 - this means that we learn no information about that value
- The above holds regardless of our computational capabilities
 - encryption requires that the keys and ciphertexts are sufficiently long to maintain security
 - information-theoretic techniques, on the other hand, can be used with arbitrarily small numbers

Most types of secret sharing permit addition to be performed directly on local shares

• Addition z = x + y

• assume (2, 2) additive secret sharing with modulus N

• party *i* holds x_i , y_i and computes $z_i = (x_i + y_i) \mod N$

Alice x_1, y_1

 $z_1 = (x_1 + y_1) \bmod N$

Bob x_2, y_2

 $z_2 = (x_2 + y_2) \bmod N$

Multiplication $x\cdot y$

- multiplication cannot be computed using only local shares
- with two shares per value, we need to compute

$$z = x_1y_1 + x_2y_1 + x_1y_2 + x_2y_2 = z_1 + z_2 \pmod{N}$$

- two terms $(x_1y_1 \text{ and } x_2y_2)$ can be computed locally, while others require additional tools
- this requires interaction or tools such as homomorphic encryption

Multiplication $x\cdot y$

- multiplication cannot be computed using only local shares
- with two shares per value, we need to compute

 $z = x_1y_1 + x_2y_1 + x_1y_2 + x_2y_2 = z_1 + z_2 \pmod{N}$

- two terms $(x_1y_1 \text{ and } x_2y_2)$ can be computed locally, while others require additional tools
- this requires interaction or tools such as homomorphic encryption

(Integer) addition and multiplication are sufficient to compute any desired functionality

Multiplication $x\cdot y$

Replicated secret sharing (RSS) supplies more than one share to a party

- shares are still produced in an additive form
- \blacksquare the number of shares and their distribution follow an access structure Γ

Replicated secret sharing (RSS) supplies more than one share to a party

- shares are still produced in an additive form
- \blacksquare the number of shares and their distribution follow an access structure Γ
- We are interested in (n, t) threshold secret sharing
 - any t parties cannot learn any information about the secret
 - any t + 1 parties can recover the secret

Replicated secret sharing (RSS) supplies more than one share to a party

- shares are still produced in an additive form
- \blacksquare the number of shares and their distribution follow an access structure Γ
- We are interested in (n, t) threshold secret sharing
 - any t parties cannot learn any information about the secret
 - any t + 1 parties can recover the secret
- Create one share for each maximal unqualified set ${\cal T}$
 - it is each set of parties of size t in our case

Distribute the share to all parties not in the set T

Replicated SS

Replicated Secret Sharing

Example of (4, 2) RSS

Suppose we set up RSS with n = 3 and t = 1

• when t < n/2, the setting is called honest majority and enables efficient computation

As before, addition c = a + b is local

• compute each share c_i as $a_i + b_i \mod N$

Multiplication $c = a \cdot b$ involves the following:

• note that
$$c = \sum_{i,j} a_i b_j$$
 for $i, j \in \{1, 2, 3\}$

Multiplication $c = a \cdot b$ involves the following:

- note that $c = \sum_{i,j} a_i b_j$ for $i, j \in \{1, 2, 3\}$
- the parties can jointly compute the sum of products

Multiplication $c = a \cdot b$ involves the following:

• note that $c = \sum_{i,j} a_i b_j$ for $i, j \in \{1, 2, 3\}$

• the parties can jointly compute the sum of products

- e.g., party 1 computes $a_2 \cdot b_2 + a_2 \cdot b_3 + a_3 \cdot b_2$
- party 2 computes $a_3 \cdot b_3 + a_3 \cdot b_1 + a_1 \cdot b_3$
- party 3 computes $a_1 \cdot b_1 + a_1 \cdot b_2 + a_2 \cdot b_1$

Multiplication $c = a \cdot b$ involves the following:

• note that $c = \sum_{i,j} a_i b_j$ for $i, j \in \{1, 2, 3\}$

• the parties can jointly compute the sum of products

- e.g., party 1 computes $a_2 \cdot b_2 + a_2 \cdot b_3 + a_3 \cdot b_2$
- party 2 computes $a_3 \cdot b_3 + a_3 \cdot b_1 + a_1 \cdot b_3$
- party 3 computes $a_1 \cdot b_1 + a_1 \cdot b_2 + a_2 \cdot b_1$
- the problem is that the resulting shares are in a different form
- this is where communication comes in place

Multiplication $c = a \cdot b$ involves the following:

- each party computes a partial sum and reshares it
- in the simplest three-party version, each party communicates 2 messages
 - illustration on the board
- this can be reduced to one message using pseudo-random values

The main disadvantage of RSS is that the number of shares grows exponentially with the number of parties

Shamir secret sharing doesn't have this drawback

• each participant stores only a single share

Computation is carried out over a finite field

• for our purposes, it means computation modulo a prime

Each secret is represented as a polynomial of degree t with random coefficients (modulo p)

- given secret s, choose random a_1, \ldots, a_t
- let $f(x) = a_t x^t + \ldots + a_1 x + s$
- evaluate the polynomial on *n* distinct non-zero points that serve the purpose of shares
 - e.g., party 1 obtains $s_1 = f(1)$, party 2 obtains $s_2 = f(2)$, etc.

Each secret is represented as a polynomial of degree t with random coefficients (modulo p)

- given secret s, choose random a_1, \ldots, a_t
- let $f(x) = a_t x^t + \ldots + a_1 x + s$
- evaluate the polynomial on *n* distinct non-zero points that serve the purpose of shares

• e.g., party 1 obtains $s_1 = f(1)$, party 2 obtains $s_2 = f(2)$, etc.

- access to t of fewer shares reveals no information about s
- access to t + 1 or more shares permits secret reconstruction via polynomial interpolation

Computing on Shamir secret shares follows a similar structure

• addition c = a + b is local

• each party *i* locally computes $c_i = a_i + b_i$

Computing on Shamir secret shares follows a similar structure

- addition c = a + b is local
 - each party *i* locally computes $c_i = a_i + b_i$
- multiplication $c = a \cdot b$ is interactive
 - each party *i* locally computes $c_i = a_i \cdot b_i$
 - \blacksquare the issue is that the resulting polynomial is of degree 2t
 - the parties re-share and lower the polynomial degree in the process
 - this dictates n > 2t

Shamir SS

Secret Sharing Summary

Additive secret sharing

- t < n, dishonest majority
- typically have t = n 1

Replicated secret sharing

- t < n/2, honest majority
- typically have n = 2t + 1

Shamir secret sharing

- t < n/2, honest majority
- typically have n = 2t + 1

Summary

Secret sharing can be realized using a variety of techniques

- they are information theoretic in nature
- the setting with honest majority achieves the best performance
- addition is local, while multiplication requires interaction

We build on elementary operations to create more complex protocols