
CSE 410 Fall 2025
Privacy-Enhancing Technologies

Marina Blanton

Department of Computer Science and Engineering
University at Buffalo

Lecture 5: Protecting Data at Rest III
Integrity Protection

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Outline

So far we discussed encryption as means to data
confidentiality protection
Next, we will talk about data integrity protection

this covers message authentication codes
we also discuss hash functions as a tool for integrity
protection and other applications

Everything we are discussing so far assumes a
computationally limited adversary

doesn’t have unlimited resources, can’t search through the
key space, etc.

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Data Integrity

Encryption protects data only from a passive attack
we often also want to protect message from active attacks
(modification or falsification of data)
such protection is called message or data authentication

Goals of message authentication
a message is authentic if it came from its alleged source in
its genuine form
message authentication allows verification of message
authenticity

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Message Authentication

How can message authentication be performed?
in addition to the message itself, another token that
authenticates the message, often called a tag, is transmitted
the cryptographic primitive is called a Message
Authentication Code (MAC)

Message authentication is independent of encryption
it can be used with or without encryption
a number of applications benefit from message
authentication alone

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Message Authentication

What do we want from a message authentication code?
a tag should be easy to compute by legitimate parties, but
hard to forge by an adversary

MAC constructions use a secret key
a secret key is shared by two communicating parties
a MAC cannot be computed (or verified) without the key

To achieve source authentication and message integrity:
the sender computes t = MACk(m) and sends (m, t)
the receiver recomputes t′ = MACk(m) for received m and
compares it to t

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Message Authentication Codes

A MAC scheme is defined by three algorithms:
key generation: a randomized algorithm, which on input a
security parameter n, produces key a k
MAC generation: a possibly randomized algorithm, which
on input a message m and key k, produces a tag t
MAC verification: a deterministic algorithm, which on
input a message m, tag t, and key k, outputs a bit b

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Message Authentication Codes

Properties of MAC algorithms
most fundamentally, we desire correctness and security
correctness requires that a correctly computed tag will
always verify
security will be defined later and intuitively requires that it
is hard to forge a tag on a new message without the key
from a performance point of view, we desire tags of a fixed
size (i.e., independent of the message length)

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Message Authentication Codes

Classification of attacks on MACs:
known-text attack: one or more pairs (mi,Mack(mi)) are
available
chosen-text attack: one of more pairs (mi,Mack(mi)) are
available for mi’s chosen by the adversary
adaptive chosen-text attack: the mi’s are chosen by the
adversary, where successive choices can be based on the
results of prior queries

Against which kind of attack do we want to be resilient?

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Message Authentication Codes

Classification of forgeries:
selective forgery: an adversary is able to produce a new
MAC pair for a message under her control
existential forgery: an adversary is able to produce a new
MAC pair but with no control of the value of the message

Resilience against which type would be preferred?
And, as usual, key recovery is the most damaging attack on
MAC

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Message Authentication Codes

We desire for a MAC to be existentially unforgeable under
an adaptive chosen-message attack

an adversary is allowed to query tags on messages of its
choice
at some point it outputs a pair (m, t)
the forgery is considered successful if m hasn’t been queried
before and t is a valid tag for it
as with encryption, security guarantees depend on the
security parameter

MACs do not prevent all traffic injections
a replayed message will pass verification process
it is left to the application to make each message unique

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Message Authentication Codes

There are two most common (standardized)
implementations of MAC functions

CBC-MAC: based on a symmetric encryption (e.g., AES) in
Cipher Block Chaining (CBC) mode with some
modifications

varying IV is not permitted
only a single block is produced
additional security measures are in place to support
variable-length messages

HMAC: based on a hash function
We’ll discuss the latter and need to look at hash functions
first

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Message Authentication Codes

A CBC-MAC variant secure in the presence of
variable-length messages:

. . .0

new

D

k1 k1 k2 k1m1 m2 mt

EEEE

k1

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Hash Functions

A hash function h is an efficiently-computable function
that maps an input x of an arbitrary length to a (short)
fixed-length output h(x)

hash functions have many uses including hash tables
We are interested in cryptographic hash functions that
must satisfy certain security properties

it is computationally hard to invert h(x)
it is computationally hard to find collisions in h

Other uses of hash functions include
password hashing
in digital signatures
in intrusion detection and forensics

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Hash Functions

h must satisfy the following security properties:
Preimage resistance (one-way): given h(x), it is difficult to
find x

Second preimage resistance (weak collision resistance):
given x, it is difficult to find x′ such that x′ ̸= x and
h(x′) = h(x)

Collision resistance (strong collision resistance): it is
difficult to find any x, x′ such that x′ ̸= x and h(x′) = h(x)

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Attacks on Hash Functions

Brute force search attack
success solely depends on the length of the hash n

difficulty of finding a preimage or a second preimage is 2n

difficulty of finding a collision with probability 0.5 is ≈ 2n/2

this is due to the so-called birthday attack
the implication is that we want to double the hash size to
meet the security requirements

128-bit keys for encryption vs. 256-bit hash sizes
Cryptanalysis attacks are specific to hash function algorithms

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Hash Functions

Well known hash function algorithms:
MD5
SHA-1
SHA-2 family (SHA-256, SHA-384, and others)
new SHA-3

Normally hash function algorithms are iterated
they use a compression function
the input is partitioned into blocks
a compression function is used on the current block mi and
the previous output hi−1 to compute

hi = f(mi, hi−1)

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Hash Function Algorithms

Families of customized hash functions
MD2, MD4, MD5 (MD = message digest)

all have 128-bit output
MD4 and MD5 were specified as internet standards in RFC
1320 and 1321
MD5 was designed as a strengthened version of MD4 before
weaknesses in MD4 were found
collisions have been found for MD4 in 220 compression
function computations (90s)
in 2004 collisions for many MD5 configurations were found
MD5 (and all preceding versions) are now too weak and not
to be used

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Hash Function Algorithms

Secure Hash Algorithm (SHA)
SHA was designed by NIST and published in FIPS 180 in
1993
In 1995 a revision, known as SHA-1, was specified in FIPS
180-1

it is also specified in RFC 3174
SHA-0 and SHA-1 have 160 bit output and MD4-based
design
In 2002 NIST produced a revision of the standard in FIPS
180-2
SHA-2 hash functions have length 256, 384, and 512 to be
compatible with the increased security of AES

they are known as SHA-256, SHA-384, and SHA-512
Also, SHA-224 was added to compatibility with 3DES

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Hash Function Algorithms

Security of SHA
brute force attack is harder than in MD5 (160 bits vs. 128
bits)
SHA performs more complex transformations that MD5

it makes finding collisions more difficult
in 2004 collisions in SHA-0 were found in < 240

in 2005 collisions have been found in “reduced” SHA-1 (233
work)
finding collisions in the full version of SHA-1 is estimated at
< 269

several other attacks followed and SHA-1 is considered too
weak
SHA-2 is a viable option, but has the same structure as in
SHA-1 (security weaknesses may follow)

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Hash Function Algorithms

SHA-3
search for SHA-3 family was announced by NIST in 2007

it was required to support digests of 224, 256, 384, and 512
bits and messages of at least 264 − 1 bits

the winner, Keccak, was announced in 2012 and the SHA-3
standard was released in 2015 as NIST’s FIPS 202
Keccak is a family of sponge functions

it is a mode of operation that builds a function mapping
variable-length input to variable-length output using a
fixed-length permutation and a padding rule
SHA-3 can be used with one of seven Keccak permutations
the design is distinct from other widely used techniques

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Back to Message Authentication

How do we construct a MAC from a hash function h and
key k?

consider defining Mack(m) = h(k||m)

knowledge of the key is required for efficient computation
and verification
one-way property of h makes key recovery difficult

unfortunately, this construction is not secure
iterative nature of hash function computation gives room
for easy forgeries

HMAC is a more complex construction with provable
security

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Hash-Based MAC – HMAC

HMAC goals:
use available hash functions without modifications
preserve the original performance of the hash function
use and handle keys in a simple way
allow replacement of the underlying hash function
have a well-understood cryptographic analysis of its
strength

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

HMAC

HMAC

HMACk(x) = h((K ⊕ opad)||h((K ⊕ ipad)||x))

K is the key k padded to a full block (≥ 512 bits)
ipad = 0x3636…36 and opad = 0x5C5C…5C are fixed
padding constants

HMAC is efficient to compute
the entire message is hashed only once
the second time h is called on only two blocks

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

HMAC

HMAC Security
security is related to that of the underlying hash function

we want k1 = h(K ⊕ opad) and k2 = h(K ⊕ ipad) to be
rather independent and close to random
then HMAC is existentially unforgeable under an adaptive
chosen-message attack for messages of any length

HMAC provides greater security than the security of the
underlying hash function
no known practical attacks if a secure hash function is used
according to the specifications

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Confidentiality + Integrity

How do we use a MAC in combination with encryption?

message authentication
m, Mack(m)

encrypt and authenticate
Enck1(m), Mack2(m)

authenticate then encrypt
Enck1

(m, Mack2
(m))

encrypt then authenticate
Enck1

(m), Mack2
(Enck1

(m))

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Confidentiality + Integrity

The goal is now to achieve both confidentiality and
integrity properties at once

this is called authenticated encryption
Analysis of prior constructions:

encrypt and authenticate
transmitting Mack2(m) may leak information about m

authenticate then encrypt
has a chosen-ciphertext attack against the general version,
which has been successfully applied in practice

encrypt then authenticate
satisfies the definition of authenticated encryption and is
CCA-secure

The keys k1 and k2 must be different!

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Authenticated Encryption

Do I have to use encryption and MAC separately or are
there authenticated encryption modes?

recently, authenticated encryption modes have been
proposed

Some good reads:
https://blog.cryptographyengineering.com/2012/05/19/
how-to-choose-authenticated-encryption/
https://stackoverflow.com/questions/1220751/how-to-
choose-an-aes-encryption-mode-cbc-ecb-ctr-ocb-cfb

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Authenticated Encryption

Good options to consider:
Offset Codebook (OCB) mode

state of the art in authenticated encryption
proposed internet standard
used to have licensing restrictions
see http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm
for more information

Galois/Counter Mode (GCM)
does not have licensing restrictions
can be used as an alternative to commercial software

Marina Blanton / CSE 410

Integrity Protection Hash Functions HMAC Confidentiality + Integrity

Summary

We so far covered
symmetric encryption, block ciphers
encryption standards (DES, AES)
secure encryption modes
randomness generation
message authentication codes
hash functions (MD5, SHA-1, SHA-2, SHA-3)

What is remaining
putting it all together
password-based protection

Marina Blanton / CSE 410

	Integrity Protection
	Hash Functions
	HMAC
	Confidentiality + Integrity

