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Abstract

Guide RNAs (gRNAs) are short mitochondrially encoded RNAs that contain the information for editing of messenger RNAs inTrypanosoma
brucei. Although a great deal of work has focused on the utilization of gRNAs in editing, little is known about the turnover of gRNAs. In this
report, we utilized in organello pulse chase and in vitro RNA decay experiments to directly examine gRNA turnover. We found that gRNAs are
degraded by a biphasic mechanism. In the first step of decay, 3′ gRNA sequences encompassing primarily the post-transcriptionally added oligo(U)
tail are rapidly removed. This is followed by a second step, which entails a comparatively slower degradation of the encoded gRNA body. Decay
of the 3′ end of the gRNA is sequence specific, as it does not occur on oligoadenylated gRNAs. In contrast, the nucleotide composition of the 3′
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xtension does not affect the rate of degradation during the second, slower, decay step. Finally, competition assays suggest that com
ecay is mediated by two distinct enzymes, one of which simultaneously recognizes elements of the oligo(U) tail and the encoded po
RNA. Overall, these results provide the first evidence for a gRNA-specific decay pathway.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The expression of 12 out of 18 mRNAs in the mitochondria of
rypanosoma brucei requires a post-transcriptional processing
vent known as RNA editing. RNA editing involves the precise

nsertion and deletion of uridine residues in mRNAs, by which it
reates open reading frames for otherwise untranslatable RNAs
1–3]. A critical component in this process is a group of small
50–70 nt) mitochondrially encoded RNAs called guide RNAs
gRNAs). gRNAs were first identified by Blum and colleagues as
mall RNA molecules with sequences that were complementary
o edited regions of mature mRNAs, leading to the model that
diting of mRNA is directed by information encoded on gRNAs

4]. Seiwert and Stuart experimentally confirmed the function
f gRNAs by demonstrating that the number inserted or deleted
ridines could be directed by gRNA sequence changes in in vitro
diting assays[5]. Despite their sequence heterogeneity, gRNAs
an be divided into three functional domains[5–9]. The 5′ most
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region of the gRNA, the anchor region, is complementary to
mRNA just 3′ of the sequences whose editing it directs.
binding of the anchor region to the corresponding mRN
thought to initiate the editing reaction by directing nucleol
attack 5′ of the gRNA/mRNA duplex (relative to the mRNA)[6].
The middle of the gRNA contains the guiding or informat
region, which encodes the sequences necessary to ensure
editing of the mRNA. This guiding region is complement
to the edited RNA and specifies the edited sequence th
Watson Crick and G:U basepairing interactions[5]. The 3′ end of
the gRNA is composed of a postranscriptionally added olig
tail, which is 5–24 nucleotides long with an average lengt
15 nucleotides[7]. The oligo(U) tail is thought to stabilize th
interaction between gRNAs and mRNAs through base pa
[8]. gRNAs not only contain similar functional domains,
possess a common secondary structure of an imperfect d
stem loop[9].

The abundance of gRNAs has been shown to vary bet
different life cycle stages[10–12]. For the small number o
gRNAs that have been examined, their abundance does no
in parallel with the developmentally regulated accumulatio
1 Present address: Department of Microbiology, Immunology, and Molecular
enetics, University of California, Los Angeles, CA 90024, USA.

the cognate edited mRNA[10,11]. Thus, it has been concluded
that gRNA abundance does not control life-cycle stage specific

166-6851/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.molbiopara.2005.10.019



C.M. Ryan et al. / Molecular & Biochemical Parasitology 146 (2006) 68–77 69

editing. In fact, in some cases, developmental accumulation of
specific gRNAs is the inverse of the levels of the corresponding
edited mRNA, suggesting that gRNAs may be degraded as a
consequence of the editing process[11,12]. On the other hand,
we recently demonstrated that down-regulation of gCYb[560]
correlates closely with a decrease in CYb mRNA editing[13].
These results suggest that the abundance of some gRNAs may
be limiting, and that there could be specific instances in which
the level of a given gRNA controls the occurrence of the corre-
sponding editing events.

While the structure and function of gRNA molecules are
well defined, the mechanisms that govern gRNA expression are
relatively poorly understood. gRNA abundance could be reg-
ulated at the levels of transcription, processing and/or RNA
turnover. With few exceptions, gRNAs are encoded on small
DNA molecules termed minicircles[14,15]. The current model
of transcription suggests that initiation occurs just upstream of
each gRNA regardless of its location on the minicircle[16,17].
Whether different gRNA promoters are differentially regulated
is unknown. Transcription can proceed through downstream
gRNAs, resulting in polycistronic primary transcripts[16]. How-
ever, in vitro studies suggest that only the 5′ most gRNA in a
polycistronic transcript will be processed into a mature gRNA
through ribonuclease and terminal uridylyl transferase (TUTase)
action[18]. Recent knockdown experiments demonstrated that
RNA Editing TUTase 1(RET1) is responsible for at least some
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2. Materials and methods

2.1. Cell culture, mitochondrial isolation, and
mitochondrial extract preparation

Procyclic formT. brucei brucei clone IsTaR1 stock EATRO
164 (Figs. 1–5) or strain 427 (Fig. 6) were grown as previously
described[20]. Mitochondrial vesicles were isolated on linear
20–35% Percoll gradients and stored at−80◦C [21]. Mitochon-
drial extracts were prepared as previously described[22]. In this
report only the salt-extracted mitochondrial membrane protein
(EMP) fraction was utilized.

2.2. Post-transcriptional in organello labeling assays

In organello pulse chase assays were performed essentially as
described with minor modifications[23,24]. Following collec-
tion, mitochondrial vesicles were resuspended at a concentration
of 5 mg/ml in transcription buffer (5 mM HEPES (pH 7.6), 3 mM
potassium phosphate (pH 7.8), 125 mM sucrose, 6 mM KCl,
10 mM MgCl2, 1mM EDTA, 2 mM 2-mercaptoethanol) con-
taining 0.1 mM ATP. Vesicles were labeled with [�32P]UTP
(800 Ci/mmol) at a concentration of 200�Ci/ml for 10 min at
27◦C in the absence of the remaining three NTPs to mea-
sure post-transcriptional UTP incorporation. Excess label was
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raction of oligouridylation of gRNAs in vivo[19]. Regarding
he mechanisms of gRNA turnover, little is known. The onl
itro study to address this subject showed that addition o
ligo(U) tail is both stimulated and stabilized by the presenc

he corresponding cognate mRNA[18]. In the absence of ev
ence for transcriptional regulation of specific gRNA gene
emains possible that gRNA turnover plays a role in regula
RNA levels both in conjunction with and/or prior to usage
diting.

Here, we report the first evidence for a gRNA-spec
urnover pathway, and describe the biphasic mechanism o
ecay. Utilizing in organello pulse labeling experiments we

hat the majority of the gRNA label is lost in less than a min
uch more rapidly than oligouridylated rRNAs. Subseque

itro turnover experiments using mitochondrial extracts re
hat decay of gRNAs occurs in two steps. First, the 3′ oligo(U)
ail and a few encoded nucleotides are rapidly removed. I
econd step, the gRNA body is slowly degraded. We show
n oligo(U) tail as short as 5 nucleotides can support the i
ecay step, although shortening the tail affects the size o
le degradation intermediates. The initial rapid decay pha
equence specific, as it does not take place on gRNAs w
ligo(A) tail. However, the rate of decay of the encoded por
f the gRNA is independent of the 3′ homopolymer sequenc
inally, competition experiments suggest the involvemen

wo different ribonucleases, one of which displays a high a
ty for polyuridylated gRNA. Together, our results indicate
resence of a rapid gRNA decay pathway that requires the
ination of both the oligo(U) tail and the encoded portion of
RNA.
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emoved and vesicles were then resuspended in transcr
uffer containing 2 mM UTP and incubated at 27◦C for times

ndicated. Pulse reactions were carried out in a volum
0�l, and chase reactions were performed in batch wi
olume of 50�l per time point. At indicated time point
0�l was removed from batch chase reactions for term

ion. Reactions were stopped as described, total RNA
solated, and equal volumes of each reaction were ana
y electrophoresis on a 6% acrylamide/7 M urea gel.
ere analyzed either by autoradiography followed by d
itometry of non-saturated autoradiographs using a Bio
S-700 imagining densitometer and Multi-Analyst softw

version 1.1) or by phosphoimager analysis on a Bio-Rad
onal FX Phosphoimager using Quantity One software (Ve
.2.1).

.3. Oligodeoxynucleotides

The following oligodeoxynucleotides were used in th
tudies (Integrated DNA technologies). T7 promoter seque
re underlined.

RPS12u-5′T7, (5′-TGTAATACGACTCACTATAGGGCTA-
TACACTTTTGATAACAAACTAAAGTAAA-3 ′); RPS12u
5′-AAAAACATATCTTATTCT-3 ′); RPS12u-A20 (5′-TTTT-
TTTTTTTTTTTTTTTAAAAACATATCTTATTCT-3 ′); gA6

14]-5′T7 (5′-TGTAATACGACTCACTATAGGGGGGCGAA-
TCATATATAC-3′); gA6[14]-NT (5′-TAATTATCATATCAC-
GTCAA-3′); gA6[14]-5U (5′-AAAAATAATTATCATA
CACTGTCAA-3′); gA6[14]-10U (5′-AAAAAAAAAATAA-
TATCATATCACTGT CAA-3′); gA6[14]-17A (5′-TTTTT-
TTTTTTTTTTTTAATTATCATATCACTGTC AA-3 ′).
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2.4. RNA synthesis

RPS12un and RPS12un-A20 RNAs were synthesized as pre-
viously described[22]. The guide RNA gA6[14]-17U was syn-
thesized directly from a previously described plasmid[25]. This
plasmid was also used as a template to generate PCR products
for creation of the remaining RNAs used in this study. This
was achieved by amplifying the plasmid with the sense oligonu-
cleotide gA6[14]-5′T7 and the antisense primers gA6[14]-NT,
gA6[14]-5U, gA6[14]-10U or gA6[14]-17A. These PCR prod-
ucts were utilized to generate gA6[14] with no 3′ extension,
a 5 uridine extension, 10 uridine extension, or 22 adenosine
extension. The gA6[14]-22A transcript was synthesized from a
PCR product created using the gA6[14]-17A oligonucleotide.
However, we consistently observed that the transcript from this
template appeared larger than expected, and DNA sequenc-
ing showed that PCR amplification generated a product with
a 22 nucleotide poly(A) tail rather than a 17 nucleotide poly(A)
tail. This difference is reflected in the length of the resulting
RNA (Fig. 4). The guide RNAs gCYb[558]-15U and gCYb[558]
were synthesized directly from a previously described plas-
mid [25]. RNAs were synthesized with T7 RNA polymerase
and [�32P]GTP from the templates described above using the
Megascript in vitro transcription system (Ambion Inc.). Labeled
RNAs were separated on a 6% acrylamide/7 M urea gels and
visualized by UV shadowing. Full-length products were excised,
e ipita
t

2

usly
d tion
[ d
5 he-
n res
o
m -
u n 6%
a rate
a imag

ing densitometer and Multi-Analyst software (Version 1.1) or
gels were exposed to phosphoimager screen and analyzed with
a Bio-Rad Personal FX Phosphoimager and Quantity One soft-
ware (Version 4.2.1). Percent full-length RNA remaining was
determined by analyzing density at the migration position of the
starting material. Percent total RNA was determined by analyz-
ing density of the area between and including full-length and
intermediate product RNAs as described in the text. Half lives
are expressed as the mean± standard deviation of three experi-
ments.

In ribohomopolymer competition experiments, unlabeled
poly(U) (Amersham Biosciences), poly(C) (Sigma), or yeast
tRNA (Sigma) was added in different molar ratios (relative to
labeled gRNA) to each reaction. The moles of competitor RNA
were approximated from the average length as determined from
the specifications sheet.

Because ribonuclease activity varies between preparations,
each EMP preparation was initially characterized by protein
titration. Following protein titration, the protein concentration
that exhibited optimal poly(A) specific RNA degradation activ-
ity [22] was used in each reaction.

3. Results

3.1. Guide RNAs are rapidly degraded in isolated
m
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.5. RNA degradation assays

RNA degradation assays were performed as previo
escribed, up to and including termination of the reac

22]. Following termination 5�l stop buffer (0.2% SDS an
0 mM EDTA) was added and RNA was extracted with p
ol/chloroform/isoamyl alcohol (25:24:1). Twenty microlit
f the aqueous phase was then added to 20�l of 90% for-
amide loading buffer and heated at 90◦C for 3 min. Equal vol
mes of each fraction were analyzed by electrophoresis o
crylamide/7 M urea gels and autoradiography. Non-satu
utoradiographs were analyzed using a Bio-Rad GS-700

ig. 1. In organello turnover of mitochondrial gRNAs and rRNAs. Mitocho
esicles were resuspended and incubated for up to 30 min in 2 mM unla
isualized by autoradiography in the left panel. RNA size standards are
he right. Percent RNA remaining is graphed in the right panel. 9S and
xperiments. Error bars represent one standard deviation obtained from
-

d
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itochondria

To gain insight into the mechanisms of gRNA turnover,
egan by analyzing the process in organello. Isolated mitoc
ria were labeled with [�32P]-UTP for 10 min in the absen
f other nucleotides to prevent transcription[21,23]. Previous
ork has demonstrated through RNA sequencing[26] and ge
lectrophoresis and hybridization[27] that under these co
itions, [�32P]-UTP is incorporated post-transcriptionally in
S rRNA, 12S rRNA and gRNAs, apparently through la

ng of their 3′ oligo(U) tails. To measure the relative stabilit
f rRNAs and gRNAs, isolated mitochondria were pulsed
�32P]-UTP and chased with 2 mM unlabeled UTP for up
0 min. RNA was isolated from the mitochondria, resolved
% acrylamide/7 M urea gels, and visualized by autorad
aphy. Under these conditions, turnover of the labeled gR

l vesicles were labeled with [�32P]-UTP for 10 min. Excess label was removed
d UTP. RNAs were isolated and analyzed on a 7 M urea and 6% acryla
ted on the left (nt, nucleotides) and rRNA and gRNA populations are degnated on

RNAs are graphed as a single population because they were not well rall
experiments.
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Fig. 2. Rapid decay of the gRNA gA6[14]-17U by partially purified mitochondrial protein extract. In vitro transcribed and internally labeled RPS12unand RPS12un-
A20 (A) or gA6[14]-17U RNAs (B) (2.5 pmol each) were incubated separately with partially purified mitochondrial extract at 27◦C for the indicated times. Products
were resolved on a 7 M urea and 6% acrylamide gel and visualized by autoradiography in the left panels. The (–) Protein and (–) Time (min) lanes indicate starting
material. Migration positions of full-length (FL) and intermediate products (I) for gA6[14]-17U are designated to the right. Percent RNA remainingwas determined
by densitometry and is plotted for each time point in the right panels. Error bars represent one standard deviation obtained from three independent experiments.

population was very rapid. Less than 50% of labeled gRNA
remained after 1 min of incubation with unlabeled UTP (Fig. 1).
In contrast, both 9S and 12S rRNAs were very stable. Little
or no decay of either rRNA was observed even after 30 min of

chase with unlabeled UTP (Fig. 1). These results demonstrate
that, in organello, full-length gRNAs are rapidly degraded with
a half life of less than 1 min. However, since labeling of gRNA
in this system occurs by incorporation of [�32P]-UTP into non-
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ig. 3. Biphasic decay of gRNAs in vitro. gA6[14] (A) and gCYb[558] (B
ith partially purified mitochondrial extract at 27◦C for the indicated time
utoradiography in left panels. The (–) Protein and (–) Time (min) lanes in
I) for polyuridylated RNAs are designated to the right of those panels. To
f oligouridylated RNAs is shown, after darker exposure, to the right of tho

ach time point in the right panels. Error bars represent one standard deviation o

-test, shows that the half life of gA6[14]-17U(FL) is different than the half life o
nd gA6[14]NT have statistically similar half lives (p > 0.10). Statistical analysis o
or without an oligo(U) tail were internally labeled. These RNAs were inted
oducts were resolved on 7 M urea and 6% acrylamide gels and visua
te starting material. Migration positions of full-length (FL) and intermediate produc
nce visualization of intermediate products, a duplicate lane of the 30min degradatio
periments. Percent RNA remaining was determined by densitometry andis plotted for

btained from three independent experiments. Comparison of half lives using a student’s
f either gA6[14]-17U(Tot) or gA6[14]NT (p < 0.01). However, gA6[14]-17U(Tot)

f gCYb[558] degradation provides similar conclusions.
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Fig. 4. The initial rapid decay step of gRNA turnover is oligo(U) specific. In vitro transcribed and internally labeled gA6[14]-17U, gA6[14]NT and gA6[14]-22A
were incubated with partially purified mitochondrial extract at 27◦C for the times indicated. Products were resolved on a 7 M urea and 6% acrylamide gel and
visualized with a phosphorimager screen in top panel. The (–) Protein and (–) Time (min) lanes indicate starting materials. Migration positions of full-length (FL) and
intermediate products of gA6[14]-17U decay are indicated to the left, and positions of full-length (FL) and intermediate products (I* ) of gA6[14]-22A degradation
are indicated on the right. Percent full-length RNA remaining was determined using densitometry and plotted for each time point in bottom panel. Comparison of
the half life of gA6[14]-17U to the half life of either gA6[14]NT or gA6[14]-22A, using a student’st-test, shows these values are statistically different (p < 0.05).

encoded oligo(U) tail, we cannot distinguish whether the rapid
loss of signal we observe is due to deuridylation of gRNAs or to
decay of the entire molecule. Regardless of whether the observed
loss of gRNA results from deuridylation or total decay of the
molecule, the mechanism appears to be specific for gRNA since
rRNAs have a similar 3′ end and remain stable throughout the
experiment. Alternatively, the entire rRNA population may be

rapidly bound by protein and sequestered from the degradation
machinery.

In these experiments, we also observed that approximately
30% of the gRNA population remains stable after 30 min (Fig. 1).
Furthermore, approximately 60% of the gRNA is degraded
within the first minute of the chase period while only 10–15%
more of the gRNA degraded over the following 29 min (Fig. 1).
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ig. 5. Effect of oligo(U) tail length on the initial decay step of gRNA turno
ail (gA6[14]-5U, gA6[14]-10U, gA6[14]-17U, respectively) were incubate
ere resolved on a 7 M urea and 6% acrylamide gel and visualized utiliz
tarting materials. The positions of full-length (FL) and intermediate (I)
A6[14]-5U and gA6[14]-10U are marked on the right. The data were a
anel. Error bars represent one standard deviation obtained from three e
ternally labeled gA6[14] without a tail (gA6[14]NT) or with a 5-, 10- or 17-uridine
h partially purified mitochondrial extract at 27◦C for the indicated times. Produc
phophorimager screen top panel. The (–) Protein and (–) Time (min) lacate

ucts for gA6[14]-17U are indicated to the left. The intermediate (I* ) products fo
ed by densitometry and percent full-length RNA remaining is plotted intom
ments.
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Fig. 6. Decay of the oligo(U) tail and gRNA body are mediated by distinct enzymes. In vitro transcribed and internally labeled gA6[14]-17U or gA6[14]NT (2.5 pmol
of each) were incubated separately with the indicated mole: mole ratio of unlabeled poly(U), poly(C), or tRNA for 30 min at 27◦C with partially purified mitochondrial
extract. Products were resolved on a 7 M urea and 6% acrylamide gel and visualized utilizing a phosphorimager screen (left panels). gRNAs bearing or lacking
oligo(U) tails (gA6[14]-17U and gA6[14]NT, respectively) were aligned for ease of comparison. The (0) gRNA:competitor RNA and (–) Protein lanes indicate
starting materials. Percent full-length RNA decay was determined by densitometry. Using these percentages, percent inhibition of decay was calculated as [(percent
decay of full length RNA in the absence of competitor− percent decay of full length RNA in the presence of competitor)/percent decay of full length RNA in the
absence of competitor]. Duplicate experiments are graphed with error bars indicating the range. In samples in which quantitation indicated greatersignal in lanes
with competitor compared to lanes with no competitor, the value was set at 100% inhibition.

These results suggest that a portion of the gRNA population is
protected from rapid degradation. Furthermore, this average size
of this protected subset increases relative to the initial labeling,
suggesting that protected gRNAs may still contain an oligo(U)
tail. These protected gRNAs could be secluded from nucle-
olytic attack by binding to the editing machinery, forming a
gRNA/mRNA complex, or by interacting with a combination of
protein and mRNA factors[1–3,8,18,19,25].

3.2. Decay of gRNAs is biphasic in vitro

Due to the limits of the in organello post-transcriptional
labeling system, we were unable to conclude if the rapid loss
of gRNA we observe is caused by degradation of the entire
gRNA molecule or removal of the labeled oligo(U) tail. There-
fore, we utilized a previously established in vitro RNA turnover
assay to further examine the mechanisms of gRNA degradation
[22]. In this assay, in vitro transcribed body-labeled RNAs were
incubated with salt extracted mitochondrial membrane proteins
(EMP). RNA degradation was monitored by gel electrophore-
sis followed by autoradiography or phosphoimager analysis.
In these experiments, we utilized derivatives of gA6[14] and

gCYb[558], which specify editing of ATPase 6 and apocy-
tochrome B RNA, respectively[10,11].

To analyze the rate of gRNA decay, we first compared the
degradation of gA6[14]-17U with that of adenylated and non-
adenylated unedited mRNAs (RPS12un-A20 and RPS12un,
respectively). Previously, we demonstrated that polyadenylated
unedited RNAs are preferentially degraded compared to their
non-adenylated counterparts in this system[22]. In these exper-
iments, we initially measured the disappearance of the signal for
full-length gA6[14]-17U, regardless of the nature of the decay
intermediates. Time course experiments comparing turnover of
RPS12un, RPS12un-A20 and gA6[14]-17U showed that the dis-
appearance of full-length gA6[14]-17U (gA6[14]-17U(FL)) was
more rapid than that of even polyadenylated RPS12un (com-
pareFig. 2A and B). The average half lives of RPS12un and
RPS12un-A20 were 62.3± 9.3 and 23.6± 1.8 min, respectively
(Fig. 2A). In contrast, gA6[14]-17U(FL) displayed a half life less
than 15 min (Fig. 2B). Similar results were observed if micrococ-
cal nuclease-treated extracts were utilized, thereby ruling out any
potential effects of cognate mRNAs on the rate of gRNA decay
in this system (data not shown). In a previous study, we showed
that RPS12un with a 20 uridine tail degrades at the same rate as
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RPS12un without an extension[22]. Taken together, these data
imply that degradation of gA6[14]-17U occurs by a mechanism
different than the mechanism that degrades unedited RNAs in
our in vitro system.

In addition to the rapid disappearance of the full-length
gRNA, we also observed the formation of an intermediate prod-
uct (I, Fig. 2B) and a faint smear between the full-length and
intermediate bands. Analysis of the migration of these products
compared to a 10 base pair ladder showed that the prominent sta-
ble intermediates lack the entire U tail and 2–4 nucleotides of the
3′ end of the encoded gA6[14] sequences. These 2–4 nucleotides
comprise part of the second stem of gA6[14]-17U. To exam-
ine decay of the entire gA6[14]-17U molecule, we quantitated
all products between and including full-length RNA and the
intermediate product (gA6[14]-17U(Tot);Fig. 2B). This RNA
population decayed with an average half life of 27.3± 8.5 min,
which is similar to the half life of RPS12un-A20. Comparison
of the decay of full-length gA6[14]-17U with disappearance of
the total gA6[14]-17U population suggests that two steps are
involved in the degradation of gRNA in vitro. The first step
rapidly removes the 3′ oligo(U) tail and a few nucleotides of
encoded 3′ sequence, while a slower second step degrades the
bulk of the gRNA body. These results suggest that the rapid dis-
appearance of gRNA observed inFig. 1 is likely the result of
rapid deuridylation.

Next, we asked whether the 3′ oligo(U) extension is
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an average half life of 33.3± 12.1 min, a rate of decay that is
similar to that of gCYb[558]NT (Fig. 3B). These results demon-
strate that regardless of their encoded sequence, oligouridylated
gRNAs are degraded by a similar process involving a relatively
rapid deuridylation followed by a slower decay of the gRNA
body.

3.3. Role of 3′ tail sequence and length in gRNA decay

We next determined the role of 3′ tail sequence in the ini-
tial rapid decay event of gA6[14] RNA. We generated gA6[14]
transcripts with either no 3′ extension, a 17-uridine extension,
or a 22-adenosine extension. These RNAs were incubated sep-
arately in in vitro degradation reactions, and decay was mon-
itored over a time course. As in previous experiments, the
decay of full-length gA6[14]-17U was more rapid than decay
of gA6[14] (Fig. 4). In contrast to the full-length oligouridy-
lated gA6[14], which decayed with an average half life of
5.0± 1.5 min, gA6[14]-22A degraded at a relatively slow rate
comparable to decay of gA6[14]NT (Fig. 4). In the experi-
ment presented inFig. 4, gA6[14]-22A decayed with an aver-
age half life of 14.7± 4.1 min compared to 14.8± 4.3 min for
gA6[14]NT. Furthermore, decay of gA6[14]-17U and gA6[14]-
22A produced different size intermediate products (I versus I* ,
Fig. 4). Whereas decay of oligouridylated gA6[14] produced
a band 2–4 nucleotides shorter than gA6[14]NT, the decay
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rate of decay is faster and proceeds further into encoded portion
of the gRNAs with a 17 nucleotide oligo(U) tail.

3.4. RNA competition experiments implicate an enzyme
with high affinity for oligouridylated gRNA

To begin to examine the biochemical properties of the
enzyme(s) that mediates rapid decay of the gRNA 3′ end and
slow decay of the gRNA body, we examined the effect of
excess, unlabeled RNA on each of these decay events. Unla-
beled poly(U), poly(C), or tRNA was added to degradation
reactions in 1, 5, or 10 fold molar excess compared to gA6[14]-
17U or gA6[14]NT (Fig. 6). Surprisingly, addition of poly(U) to
degradation reactions had a greater inhibitory effect on decay of
gA6[14] lacking a oligo(U) tail (gA6[14]NT) than it did on decay
of gA6[14]-17U (Fig. 6). Decay of gA6[14]NT was completely
inhibited at all concentrations of poly(U) tested. In contrast,
decay of gA6[14]-17U was inhibited only 26% by equimolar
poly(U) and 74% at 5-fold molar excess poly(U). Even at 10-fold
molar excess poly(U), decay of gA6[14]-17U was not com-
pletely inhibited, but was reduced by 86% compared to reactions
performed in the absence of competitor. Decay of gA6[14]-17U
and its non-tailed counterpart, gA6[14]NT, differed even more
dramatically when inhibition by other competitor RNAs were
tested. Decay of gA6[14]-17U was essentially refractory to the
addition of up to10-fold molar excess poly(C), whereas decay
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different extents. These differences may result from loading of
a different nuclease complex, potentially lacking a processivity
factor and/or a helicase, onto 5 uridine or oligo(A) tailed gRNAs
compared to those with a 17 uridine stretch. Alternatively, the
same nuclease may act on each of these molecules, but may not
load as stably on gRNAs with different length or sequence tails.
Less stable binding could result in an overall decrease in degra-
dation rate. Furthermore, if a nuclease is less stably bound, its
premature release from the gRNA may lead to decay interme-
diates that are longer than those produced by a more processive
nuclease.

Several lines of evidence suggest the existence of a gRNA-
specific degradation pathway. First, in isolated mitochondria,
oligo(U) tails on rRNAs are stable over time, whereas gRNA
oligo(U) tails are very rapidly removed. In vitro, gRNA oligo(U)
tails are also rapidly degraded. In stark contrast, we previously
showed that oligo(U) tails on unedited, mitochondrially encoded
mRNAs are very slowly degraded in the same in vitro system
[22]. Thus, rapid removal of the gRNA oligo(U) tail is not due to
the action of a promiscuous U-specific exoribonuclease present
in our mitochondrial extracts. Rather, these results suggest that
decay of the gRNA oligo(U) tail is dependent on the presence
of encoded gRNA sequences. We also demonstrated here that
gRNAs bearing a 3′ oligo(A) tail decay at the same rate as
non-tailed gRNAs. In contrast, decay of both unedited mRNAs
and reporter RNAs is markedly stimulated by polyadenylation
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