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Nonlinear GRAPPA: A Kernel Approach to Parallel

MRI Reconstruction

Yuchou Chang,” Dong Liang,'? and Leslie Ying'*

GRAPPA linearly combines the undersampled k-space signals
to estimate the missing k-space signals where the coeffi-
cients are obtained by fitting to some auto-calibration signals
(ACS) sampled with Nyquist rate based on the shift-invariant
property. At high acceleration factors, GRAPPA reconstruction
can suffer from a high level of noise even with a large number
of auto-calibration signals. In this work, we propose a nonlin-
ear method to improve GRAPPA. The method is based on the
so-called kernel method which is widely used in machine
learning. Specifically, the undersampled k-space signals are
mapped through a nonlinear transform to a high-dimensional
feature space, and then linearly combined to reconstruct the
missing k-space data. The linear combination coefficients are
also obtained through fitting to the ACS data but in the new
feature space. The procedure is equivalent to adding many
virtual channels in reconstruction. A polynomial kernel with
explicit mapping functions is investigated in this work. Experi-
mental results using phantom and in vivo data demonstrate
that the proposed nonlinear GRAPPA method can significantly
improve the reconstruction quality over GRAPPA and its
state-of-the-art derivatives. Magn Reson Med 68:730-740,
2012. ©2011 Wiley Periodicals, Inc.
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Among many partially parallel acquisition methods (e.g.,
1-9), generalized auto-calibrating partially parallel
acquisitions (GRAPPA) (1) has been widely used for
reconstruction from reduced acquisitions with multiple
receivers. When the net acceleration factor is high,
GRAPPA reconstruction can suffer from aliasing artifacts
and noise amplifications. Several methods have been
developed in recent years to improve GRAPPA, such as
localized coil calibration and variable density sampling
(10), multicolumn multiline interpolation (11), regulari-
zation (12,13), iteratively reweighted least-squares (14),
high-pass filtering (15), cross validation (16,17), iterative
optimization (18), GRAPPA operator (19,20), virtual coil
using conjugate symmetry (21), multislice weighting
(22), infinite pulse response filtering (23), cross sampling
(24), and filter bank methods (25,26).
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The conventional GRAPPA method (1) reconstructs the
missing k-space data by a linear combination of the
acquired data, where the coefficients for combination are
estimated using some auto-calibration signal (ACS) lines
usually acquired in the central k-space. Huang et al. (27)
analyzed two kinds of errors in GRAPPA reconstruction:
truncation error and inversion error. Nana et al. (16,17)
extended the analysis and used more general terms:
model error and noise-related error. The first kind of error
mainly originates from a limited number of ACS lines and
data truncation. When a limited size of k-space signals is
observed or inappropriately chosen instead of the whole
k-space, model errors occur in GRAPPA reconstruction.
This type of error usually varies with the amount of ACS
data, reduction factor, and the size of the coefficients to
be estimated for reconstruction. For example, a reduction
in ACS acquisition usually results in degraded image
quality. Therefore, a large amount of ACS data is needed
to reduce this model error but at the cost of prolonged ac-
quisition time. The second kind of errors originates from
noise in the measured data and noise-induced error in
estimating the coefficients for linear combination. Regula-
rization (12,13) has been used in solving the inverse prob-
lem for the coefficients, but significant noise reduction is
usually at the cost of increased aliasing artifacts. Iterative
reweighted least-squares (14) method reduces the noise-
induced error to a greater extent by ignoring noise-
induced “outliers” in estimating the coefficients. How-
ever, the method is computationally expensive.

In this paper, we focus on the nature of noise-induced
error and develop a novel nonlinear method to reduce
such kind of error. We identify the nonlinear relation-
ship between the bias in the estimated GRAPPA coeffi-
cients and the noise in the measured ACS data due to
the error-in-variable problem in the calibration step. This
relationship suggests that the finite impulse response
model currently used in GRAPPA reconstruction is not
able to remove the nonlinear noise-induced bias even if
regularization is used. We thereby propose a nonlinear
approach to GRAPPA using the kernel method, named
nonlinear GRAPPA. (Note this kernel is a terminology in
machine learning and is different from the GRAPPA ker-
nel for linear combination.) The method maps the under-
sampled data onto a high dimensional feature space
through a nonlinear transform and the data in the new
space are then linearly combined to estimate the missing
k-space data. Although the relationship between the
acquired and missing k-space data is nonlinear, the rela-
tionship can be easily and linearly found in the high
dimensional feature space using the ACS data. It is
worth noting that the nonlinearity of this approach is
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completely different from that in the GRAPPA operator
formulation in Refs. (19,20) where the former is on the k-
space data while the latter is on the GRAPPA coeffi-
cients through successive application of linear operators.
The proposed method not only has the advantage of non-
linear methods in representing generalized models that
include linear ones as a special case, but also maintains
the simplicity of linear methods in computation.

THEORY
Review of GRAPPA

In conventional GRAPPA, the central k-space of each
coil is sampled at the Nyquist rate to obtain ACS data,
while the outer k-space is undersampled by some outer
reduction factors (ORF). The missing k-space data is esti-
mated by a linear combination of the acquired under-
sampled data in the neighborhood from all coils, which
can be represented mathematically as

L B, H
Si(ky +rAky, k) => > > w.(l 1, h)
|=1 t=B; h=H,
xSj(ky + tRAky, ky + hAky),j = 1,..,L,r # tR, [1]

where Sj(k, +rAky, k) denotes the unacquired k-space
signal at the target coil, S;(k, + tRAk,, k, + hAk,) denotes
the acquired undersampled signal, and w;;(l,t, h)
denotes the linear combination coefficients. Here R rep-
resents the ORF, I counts all coils, t and h transverse the
acquired neighboring k-space data in k;, and k, direc-
tions, respectively, and the variables k, and k, represent
the coordinates along the frequency- and phase-encoding
directions, respectively.

In general, the coefficients depend on the coil sensitiv-
ities and are not known a priori. The ACS data are used
to estimate these coefficients. Among all the ACS data
fully acquired at the central k-space, each location is
assumed to be the “missing” point to be used on the left-
hand side of Eq. 1. The neighboring locations with a cer-
tain undersampling pattern along the phase encoding
direction are assumed to be the undersampled points
that are used on the right-hand side of Eq. 1. This is
repeated for all ACS locations (except boundaries of the
ACS region) based on the shift-invariant property to fit
GRAPPA coefficients to all ACS data. This calibration
process can be simplified as a matrix equation

b = Ax, 2]

where A represents the matrix comprised of the under-
sampled points of the ACS, b denotes the vector for the
“missing” points of the ACS, and x represents the coeffi-
cients to be fitted. The matrix A is of size M x Kwith M being
the total number of ACS data (excluding the boundaries) and
K being the number of points in the neighborhood from all
coils that are used in reconstruction. The least-squares
method is commonly used to calculate the coefficients:

% = min||b — Ax|*. [3]
X

When the matrix A is ill-conditioned, the noise can be
greatly amplified in the estimated coefficients. To
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address the ill-conditioning issue, regularization meth-
ods (12,13) have been used to solve for coefficients using
a penalized least-squares method,

% = min||b — Ax|*+\R(x), 4]

where R(x) is a regularization function (e.g., R(x) =
[ Ix1 1, in Tikhonov) and \ is regularization parameter.
Regularization can effectively suppress noise to a certain
level. However, aliasing artifacts usually appear in
reconstruction at the same time while large noise is
suppressed.

Another source of noise-induced error in GRAPPA is
“outliers.” Outliers are k-space data with large measure-
ment errors due to noise and low sensitivity. They lead
to large deviations in the estimated coefficients from the
true ones when the least squares fitting is used. Iterative
reweighted least-squares method (14) has been proposed
to minimize the effect of outliers in least-squares fitting.
The method iteratively assigns and adjusts weights for
the acquired undersampled data. “Outliers” are given
less weights or removed in the final estimation, so that
the fitting accuracy and reconstruction quality are
improved. However, the high computational complexity
of the method limits its usefulness in practice.

Errors-in-Variables Model of GRAPPA

The conventional GRAPPA formulation in Egs. 1 or 2
models the calibration and reconstruction as a standard
linear regression and prediction problem, where the
undersampled part of the ACS corresponds to the regres-
sors and the rest is the regressands. With this formula-
tion, if the undersampled points of the ACS (regressors)
are measured exactly or observed without noise, and
noise is present only in the “missing” ones of the ACS
(regressands), then the least-squares solution is optimal
and the error in the reconstruction is proportional to the
input noise. However, this is not the case in GRAPPA
because all ACS data are obtained from measurement
and thus contain the same level of noise.

To understand the effect of noise in both parts of the
ACS data (regressors and regressands), we describe the
regression and prediction process of GRAPPA using
latent variables (28). Specifically, if A and b are observed
variables that come from the ACS data with measure-
ment noise, we assume that there exist some unobserved
latent variables A and b representing the true, noise-free
counterparts, whose true functional relationship is mod-
eled as a linear function f. We thereby have

A:A“’SA
b=b+3, [5]
f: b=Ax

where 84 and 3, represent measurement noises that are
present in the ACS data and assumed to be independent
of the true value A and b, and % denotes the latent true
coefficients for the linear relationship between A and b
without the hidden noise.

In the standard regression process, the coefficients x is
estimated by fitting to the observed data in A and b:



b=Ax — b+3,=(A+d)x [6]
Therefore, there is a bias 8y = x-X in the coefficients
estimated from the least-squares fitting, where

x=[(A+32) (A+8,) " (A+8a) (b+8y). [7]

For example, consider the simplest case where x is a
scalar and b and A are both column vectors whose ele-
ments b; and a; represent measurements at index t. The
estimated coefficient is given by

T T
X= atbt/z az, 8]
=

t=1

which deviates from the true coefficient ¥ = b/a. When
the number of measurements T increases without bound,
the estimated coefficient converges to

x=x/(1+0}/0%), [9]

where the noise in A and b is assumed to have zero
mean and variance of o} and of, respectively. It suggests
that even if there are an infinite number of measure-
ments, there is still a bias in the least-squares estimator.
Since the bias depends on the noise in both A and b, its
effects on the estimated coefficients x are also noise-like.
In the multivariable case, the bias of GRAPPA coeffi-
cients is not easily characterized analytically, but is
known to be upper bounded by (Theorem 2.3.8 in Ref.
(29))

1135
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where k(A) is the condition number of matrix A. The
bound in Eq. 10 suggests that the bias in GRAPPA coeffi-
cients can be large at high reduction factors due to ill-
conditioned A (12). In addition, the bias is not a linear
function of the noise in the ACS. This is known as the
errors-in-variable problem in regression. Figure 1 uses an
example to demonstrate the nonlinearity of the bias for
GRAPPA coefficients as a function of noise in the ACS
data. Specifically, a set of brain data with simulated coil
sensitivities (obtained from http://www.nmr.mgh.harvar-
d.edu/~thlin/) was used as the noise-free signal. We cal-
culated the bias for GRAPPA coefficients (with the
coefficients obtained from the noise-free signal as refer-
ence) when different levels of noise were added on all
24 lines of the ACS data. We plotted the normalized bias
for GRAPPA coefficients as a function of the normalized
noise level added to the ACS data. It is seen that the bias
is not a linear function of noise level. However, when
the noise is sufficiently low, the curve is well approxi-
mated by a straight line and the bias—noise relationship
is approximately linear. Total least squares (30,31) is a
linear method used to alleviate the problem by solving
Eq. 6 using the total least squares instead of least
squares. It addressed the error-in-variable problem to
some extent when the noise is low. In the reconstruction
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FIG. 1. Nonlinearity of the bias for GRAPPA coefficients as a
function of noise in ACS data.

step of GRAPPA, when the biased coefficients x are
applied upon the noisy undersampled data A to estimate
the missing data in outer k-space, errors presented in the
reconstruction are given by

y— A% = (A +34)(X +8x) — AX = Adx + X0a + 548« [11]

It shows the effect of biased coefficients on the esti-
mated missing k-space data is also nonlinear and noise-
like. A comprehensive statistical analysis of noise in
GRAPPA reconstruction can be found in (32).

Proposed Nonlinear GRAPPA

All existing GRAPPA derivatives are based on the linear
model in Eq. 1 without considering the nonlinear bias
due to noise in the ACS data. To address the nonlinear,
noise-like errors in GRAPPA reconstruction, a kernel
method is proposed to describe the nonlinear relation-
ship between the acquired undersampled data and the
missing data in the presence of noise-induced errors.
Please note that the kernel used in this paper is different
from the kernel usually used in GRAPPA literature to
represent the k-space neighborhood for linear
combination.

General Formulation Using Kernel Method

Kernel method (33-36) is an approach that is widely
used in machine learning. It allows nonlinear algorithms
through simple modifications from linear ones. The idea
of kernel method is to transform the data nonlinearly to
a higher dimensional space such that linear operations
in the new space can represent a class of nonlinear oper-
ations in the original space. Specifically, given a linear
algorithm, we map the data in the input space A to the
feature space H via a nonlinear mapping ®(-): A—H, and
then run the algorithm on the vector representation ®(a)
of the data. However, the map may be of very high or
even infinite dimensions and may also be hard to find.
In this case, the kernel becomes useful to perform the
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algorithms without explicitly computing ®(-). More pre-
cisely, a kernel is related to the mapping ® in that

k(al., az) =< @(al), (I)(az) >, Val, a € A, [12}
where <,> represents the inner product. Many different
types of kernels are known (36) and the most general
used ones include polynomial kernel (37) and Gaussian
kernel (38).

To introduce nonlinearity into GRAPPA, we apply a
nonlinear mapping to the undersampled k-space data a; =
{Si(k, + tRAky, ky + hAk,)} in the neighborhood of each
missing point where / counts all coils and ¢ and h trans-
verse the acquired neighboring k-space data in k, and k,
directions, respectively. Under such a mapping, Eq. 2 is
transformed to the following new linear system of x:

b =®(A)x, [13]
where ®(A) = [®(a,), P(ay), ..., P(ay)]”, with a; being the
ith row vector of the matrix A defined in Eq. 2. The new
matrix ®(A) is of M x Nk, where N is the dimension in
the new feature space which is usually much higher than
K. Equation 13 means the missing data in b is a linear com-
bination of the new data in feature space which are gener-
ated from the original undersampled k-space data A.

Regularization

FIG. 3. Phantom images recon-
structed from an eight-channel
dataset with an ORF of 6 and 38
ACS lines (denoted as 6-38 on
the right corner of each image).
With the sum of squares recon-
struction as the reference, the
proposed nonlinear GRAPPA
method is compared with conven-
tional GRAPPA, regularized
GRAPPA, and IRLS methods. The
corresponding difference images
with the reference (7x amplifica-
tion) and g-factor maps are also
shown on the right two columns,
respectively.
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FIG. 2. lllustration of the calibration procedure for GRAPPA and
nonlinear GRAPPA.

Although Eq. 13 is still a linear equation of the coefficients
X, it mathematically describes the nonlinear relationship
between the undersampled and missing data because of
the nonlinear mapping function ®(-). With the ACS data,
the regression process to find the coefficients x in Eq. 13
for the proposed nonlinear GRAPPA can still be solved by
a linear, least-squares algorithm in feature space
% = (O7(A)D(A)) T (A)b. [14]

Once the coefficients are estimated in Eq. 14, they are
plugged back in Eq. 13 for the prediction process to
reconstruct the missing data in outer k-space, like the

6-38
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conventional GRAPPA does. Figure 2 summarizes the
above procedure and illustrates the nonlinear and linear
parts of the proposed method (NL GRAPPA) in compari-
son to the conventional GRAPPA. It can be seen that the

proposed method introduces an additional nonlinear
mapping step into GRAPPA to pre-process the acquired
undersampled data while the computational algorithm to
find the coefficients is still the linear least-squares
method. Other linear computational algorithms such as
reweighted least-squares and total least-squares methods
can also be used here.

Choice of Nonlinear Mapping ®(-)

To choose the optimal kernel or feature space is not triv-
ial. For example, Gaussian kernel has been proved to be
universal, which means that linear combinations of the
kernel can approximate any continuous function. How-
ever, overfitting of the calibration data may arise as a
result of this powerful representation. Given the success
of GRAPPA, we want the nonlinear mapping to be a
smooth function that includes the linear one as a special
case when the dimension of the feature space is as low
as the original space. Since polynomials satisfy the
desired properties, we choose an inhomogeneous poly-
nomial kernel of the following form

Chang et al.

FIG. 4. Axial brain images recon-
structed from a set of eight-chan-
nel data with an ORF of 5 and 48
ACS lines using GRAPPA, regular-
ized GRAPPA, IRLS, and the pro-
posed nonlinear method. The
corresponding difference images
with the reference (5x amplifica-
tion) are shown on the middle col-
umn and g-factor maps on the
right column.

k(a;, a;) = (va] a; +r)d., [15]
where y and r are scalars and d is the degree of the poly-
nomial. Another advantage of polynomial kernel lies in
the fact that its corresponding nonlinear mapping ®(a)
such that k(a;,a;) =< ®(a;),P(az) > has explicit repre-
sentations. For example, if y = r = 1 and d = 2, ®(a) is
given by (39)

d(a) = [1, ﬁal7...,\/§aK,af, ..A,af(,\/ialab

\/Eaja,-,.. . ,\/EaK,laK]T, [16}

where a,, a,, ..., ax are components of the vector a and
there are (K+2)(K+1)/2 terms in total. It is seen that the
vector includes the linear terms in the original space as
well as the constant and second-order terms.

When all possible terms in ®(a) are included, direct
use of the kernel function may be preferred over the use
of nonlinear mapping in Eq. 13 for the sake of computa-
tional complexity. However, our experiment (see Fig. 8)
shows that the reconstruction using kernel functions suf-
fers from blurring and aliasing artifacts. This is because
the model is excessively complex and represents a too
broad class of functions, and thus the model has been
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overfit during calibration but poorly represents the miss-
ing data. This overfitting problem can be addressed by
reducing the dimension of the feature space (40). The
reduction of feature space is achieved here by keeping
the constant term and all first-order terms
V2ai,...,\/2a, but truncating the second-order terms in
vector ®(a). Specifically, we sort the second-order terms
according to the following order. We first have the
square terms within each coil, and then the product
terms between the nearest neighbors, the next-nearest
neighbors, and so on so forth in k-space. The above order
is then repeated for terms that are across different coils.
With the sorted terms, we can truncate the vector ®(a)
according to the desired dimension of the feature space.
The performance of the proposed method depends on
the number of second-order terms. If the number is too
low, prediction is inaccurate because the feature space is

d(a) = [1.V2a1,V2a,, -+,

2 2
\/EaK7a17027" Ty

2
g, 10z, - -
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not complex enough to accurately describe the true rela-
tionship between the calibration and undersampled data
in presence of noise, and thus the reconstruction resem-
bles GRAPPA and still suffers from noise-like errors. On
the other hand, if the dimension is too high, the model
is overfit by the calibration data but poorly represents
the missing data, thus leading to aliasing artifacts and
loss of resolution in reconstruction. This is known as the
bias—variance tradeoff and is demonstrated using an
example in Results section.

Explicit Implementation of Nonlinear GRAPPA

We find heuristically (elaborated in Results section) that
it is sufficient to keep the number of the second-order
terms to be about three times that of the first-order terms.
That is, the feature space is reduced to

,a;aj, - -+ ,AKk—10K, A1 03, - -+, Apdyq, - - -, AK—20K |, (17]

K

where (a; a;) are nearest neighbors and (a,, ag) are
next-nearest neighbors in k-space along k, within each
coil. We also find that a slight increase in the number of
second-order terms does not change the reconstruction
quality, but increases the computation.

B, H,
Sj(ky + rAky, ky) = wi ><1+ZZZ
=1 b=B; h=H,

L B, H
+ZZZW“’ (1,b, h) x S}(ky + bRA

=1 b=B;, h=H,

B, H,—1

~K ~K

After plugging the above truncated mapping vector
®(a) in Eq. 17 into the matrix representation in Eq. 13
and changing to the notations in conventional GRAPPA,
the proposed nonlinear GRAPPA method is thereby for-
mulated as

U(1,b, h) x Sj(k, + bRAky, ky + hAky)

Ky, ky + hAky)

+Z SN wiV(1b, h) x Si(ky + bRAKy, ky + hAky) x Sj(ky + bRAKy, ky + (h + 1)Aky)

=1 b= Blh H,

Z Z Z W 22)(1 b, h) x Sj(k, + bRAky, ky + hAky) x Sj(k, + bRAky, ky + (h + 2)Aky),

=1 b=B; h=H,

where the same notations are used as in Eq. 1.

The above nonlinear formulation represents a more
general model for GRAPPA, which includes the conven-
tional GRAPPA as a special case. It is seen that the
first-order term of nonlinear GRAPPA in Eq. 18 is
equivalent to the conventional GRAPPA, which mainly
captures the linear relationship between the missing
and acquired undersampled data in the absence of noise
and approximations. The second-order terms of Eq. 18
can be used to characterize other nonlinear effects in
practice such that noise and approximation errors are
suppressed in reconstruction. The proposed formulation
is a nonlinear model in the sense that nonlinear combi-
nation of acquired data contributes to estimation of
missing k-space data. However the computational algo-
rithm is still linear because the new system equation in
Eq. 13 is still a linear function of the unknown coeffi-
cients and can still be solved by the linear least-squares
method.

(18]

To better interpret the nonlinear GRAPPA method, we
can consider the nonlinear terms as additional virtual
channels as done in Ref. (21). For example, the first-
order term in Eq. 18 represent a linear combination of L
physical channels, while each second-order term repre-
sents a set of additional L virtual channels. Therefore,
there are 4L channels in total when Eq. 18 is used. More
second-order terms provide more virtual channels. It is
worth noting that different from the true physical chan-
nel, there is no equivalent concept of coil sensitivities
for the virtual channels. This is because the additional
virtual channels are nonlinear function of the original
physical channels. For example, the “square channel”
takes the square of the k-space data point-by-point. In
image domain, this is equivalent to the sensitivity-modu-
lated image convolves with itself. Therefore, the result-
ing image cannot be represented as the product of the
original image and another independent “sensitivity”
function. Another point to be noted is that the virtual



FIG. 5. Sagittal brain images reconstructed from a set of eight-
channel data with an ORF 5 and 48 ACS lines and their corre-
sponding difference images on the right. The proposed nonlinear
GRAPPA suppresses most noise without aliasing artifacts.

channels are not necessarily all independent. Only add-
ing channels that are linearly independent can improve
the reconstruction performance. Choosing independent
channels needs further study in our future work.

MATERIALS AND METHODS

The performance of the proposed method was validated
using four scanned datasets. The first three scanned
datasets were all acquired on a GE 3T scanner (GE
Healthcare, Waukesha, WI) with an 8-channel head coil,
and the last one was acquired on a Siemens 3T scanner
(Siemens Trio, Erlangen, Germany). In the first dataset, a
uniform water phantom was scanned using a gradient
echo sequence (TE/TR = 10/100 ms, 31.25 kHz band-
width, matrix size = 256 x 256, FOV = 250 mm?). The
second dataset was an axial brain image acquired using a
2D spin echo sequence (TE/TR = 11/700 ms, matrix size
= 256 x 256, FOV = 220 mm?). The third one was a sag-
ittal brain dataset acquired using a 2D spin echo
sequence (TR = 500 ms, TE = min full, matrix size =
256 x 256, FOV = 240 mm?). In the fourth dataset, car-
diac images were acquired using a 2D trueFISP sequence
(TE/TR=1.87/29.9 ms, bandwidth 930 Hz/pixel, 50
degree flip angle, 6mm slice thickness, 34 cm FOV in
readout direction, 256 x 216 acquisition matrix) with a
4-channel cardiac coil. Informed consents were obtained

Chang et al.

for all in vivo experiments in accordance with the insti-
tutional review board policy.

The proposed method was compared with conventional
GRAPPA, as well as two existing methods that improve the
SNR, Tikhonov regularization (12), and iterative
reweighted least squares (IRLS) (14). The root sum of
squares reconstruction from the fully sampled data of all
channels was shown as the reference image for comparison.
The size of the coefficients (blocks by columns) was chosen
optimally for each individual method by comparing the
mean-squared errors resulting from different sizes. The g-
factor map was calculated using Monte Carlo simulations
as described in (41) and used to show noise amplification.
It is worth noting that for nonlinear algorithms, the SNR
loss depends on the input noise level, and the g-factors
shown in Results section are valid only in a small range
around the noise level used in this study. Difference images
were used to show all sources of errors, including blurring,
aliasing, and noise. All methods were implemented in
MATLAB (Mathworks, Natick, MA). To facilitate visual
comparison, difference images from the reference and
zoomed-in patches were also shown for some reconstruc-
tions. A software implementation of the proposed nonlin-
ear GRAPPA method is available at https://pantherfile.
uwm.edu/leiying/www/index_files/software.htm.

RESULTS
Phantom

Figure 3 shows the reconstructions of the phantom using
sum of squares, GRAPPA, Tikhonov regularization, IRLS,
and the proposed nonlinear GRAPPA for an ORF of 6
and the ACS of 38 (net acceleration of 3.41). The size of
the coefficients was chosen optimally for each individual
method, though the image quality is not sensitive to the
change of size within a large range of the optimal choice.
The size of the coefficients for nonlinear GRAPPA was
two blocks and 15 columns and that for the other meth-
ods was four blocks and nine columns. It is seen that the
conventional GRAPPA suffers from serious noise. Tikho-
nov regularization and IRLS can both improve the SNR
to some extent but at the cost of aliasing artifacts. The
proposed nonlinear GRAPPA method suppresses most of
the noise without additional artifacts or loss of resolu-
tion. In addition, difference images with the reference
and g-factor maps shown in Fig. 3 also suggest that the
noise-like errors have quite different distributions spa-
tially and they are more uniformly distributed in nonlin-
ear GRAPPA than in other methods.

In Vivo Brain Imaging

Figures 4 and 5 show the reconstruction results for the
two in vivo brain datasets, axial and sagittal, respec-
tively. An ORF of 5 and the ACS of 48 were used with a
net acceleration of 2.81. Nonlinear GRAPPA used a size
of two blocks and 15 columns, while the other methods
used that of four blocks and nine columns. The differ-
ence images with the reference are also shown (amplified
five and nine times for display) in both Figs. 4 and 5
and g-factor maps are shown for the axial dataset in Fig.
4. It is seen that the reconstruction using the proposed
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FIG. 6. Results from the four-channel cardiac dataset with an ORF 5 and 48 ACS lines. The reconstructed images, zoomed ROI, differ-
ence images, and g-factor maps are shown from left to right, respectively. They show that the proposed method can remove more

noise than other methods while still preserving the resolution.

method achieves a quality superior to all other methods.
The proposed method effectively removes the spatially
varying noise in the conventional GRAPPA reconstruc-
tion without introducing aliasing artifacts as Tikhonov
regularization and IRLS methods do. Furthermore, the
proposed method also preserves the resolution of the
axial image without blurring. There is only a slight loss
of details in the sagittal image due to the tradeoff
between noise suppression and resolution preservation
(discussed later in Fig. 8).

In Vivo Cardiac Imaging

Figure 6 shows the results for the in vivo cardiac dataset
in long axis. The ORF is 5 and number of ACS lines is

48 (net acceleration of 2.60). The size of the nonlinear
GRAPPA coefficients was four blocks and 15 columns.
The other methods used a size of four blocks and three
columns. The ventricle areas are zoomed to show more
details. Both the difference images and the g-factor maps
are shown for all methods. The same conclusion can be
made that the nonlinear GRAPPA method can signifi-
cantly suppress the noise in GRAPPA and still preserve
the resolution and avoid artifacts.

We also used the cardiac dataset to study how the
number of second-order terms affects the nonlinear
GRAPPA reconstruction quality. Specifically, we trun-
cate all the sorted second-order terms to keep the num-
ber to be N times (e.g., three times in Eq. 18) that of the
first-order terms. The normalized mean squared errors
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FIG. 7. Normalized mean squared error curves of the proposed
method as a function of the number of the second-order terms

using the long-axis cardiac dataset. The “U” shape of the curve
suggests that some intermediate number should be chosen.

(NMSE) was calculated and plotted as the function of
the number of the first-order terms in Fig. 7. In consider-
ation of computational complexity, only the central 64
columns of the 48 ACS lines were used here for calibra-
tion. The two endpoints of the curve are the extreme
cases of the proposed method. The left one corresponds
to conventional GRAPPA without the second-order
terms, and the right one is the case where all second-
order terms are included (implemented efficiently using

FIG. 8. The nonlinear GRAPPA reconstructions with an increasing
number of the second-order terms show that the noise is gradu-
ally removed but artifacts gradually increase. In the extreme case,
when all second-order terms are included, both blurring and alias-
ing artifacts are serious.

Chang et al.

FIG. 9. Comparison between GRAPPA and nonlinear GRAPPA
when ORF increases with fixed ACS lines. Contrary to GRAPPA,
noise in the proposed method does not increase with the ORF.

kernel representation directly). Figure 8 shows the corre-
sponding reconstructions at some points of the curve.
Both the curve and the images suggest that too small or
too large N deteriorates reconstruction quality. When the
number N increases, noise is gradually suppressed, but
the resolution gradually degrades and aliasing artifacts
gradually appear due to the overfitting problem. The
optimal range for the value of N to balance the tradeoff
between noise, resolution, and aliasing artifacts is seen
to be 3-4 times of the number of the first-order terms,
according to both the normalized mean squared error
curve and the images. Because the value of N directly
affects the computational complexity, N = 3 was chosen
and shown to work well for all datasets tested in this
study.

DISCUSSION

We have shown in Results section that the proposed
nonlinear GRAPPA method can outperform GRAPPA at
high ORFs but also with a large number of ACS lines. It
is interesting to see how the method behaves at lower
ORFs or with fewer ACS lines. In Fig. 9, we compare
GRAPPA and nonlinear GRAPPA with decreasing ORFs
when the number of ACS lines is fixed to be 40. At a
low ORF of 2, both methods perform similarly well. The
proposed method has a slightly lower level of noise. As
ORF increases, GRAPPA reconstruction begins to deteri-
orate due to the increased level of noise. In contrast, the
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nonlinear GRAPPA method can maintain a similar SNR.
Therefore, the benefit of nonlinear GRAPPA becomes
more obvious at high ORFs. On the other hand, as ORF
increases, the required number of ACS lines usually
needs to increase to avoid aliasing artifacts.
Theoretically, the proposed method needs more ACS
lines than GRAPPA to set up sufficient number of equa-
tions to avoid the aliasing artifacts. This is because there
are more unknown coefficients to be solved for in the
high dimensional feature space. Figure 10 shows how
the reconstruction quality improves when increasing the
number of ACS lines. The improvement of GRAPPA is
primarily in terms of noise suppression while the
improvement of nonlinear GRAPPA is in aliasing-arti-
facts reduction. Although more number of ACS lines is
needed in the proposed method to avoid artifacts, the
ORF can be pushed much higher than GRAPPA and
thereby the net acceleration factor can remain low. For
example, the combination of ORF of 5 and 48 ACS lines
(denoted as 5—48) in Fig. 6 has a higher net acceleration
factor to that of 4—40 (net acceleration of 2.57) in Fig. 9
and 3-32 (net acceleration of 2.30) in Fig. 10. The non-
linear GRAPPA reconstruction with 5-48 is always supe-
rior to GRAPPA with 5-48, 4-40, or 3—-32 combinations.
In GRAPPA, it is known that the size of the coeffi-
cients also affects the reconstruction quality. More col-
umns usually improves the data consistency and reduces
aliasing artifacts, but at the cost of SNR and computation

FIG. 10. Comparison of GRAPPA and nonlinear GRAPPA recon-
structions when ACS increases with fixed ORF. It shows nonlinear
GRAPPA needs more ACS lines than GRAPPA to avoid aliasing
artifacts, but GRAPPA has more noise than nonlinear GRAPPA.

FIG. 11. Comparison between GRAPPA and nonlinear GRAPPA
when different numbers of columns are chosen for the coeffi-
cients. Contrary to GRAPPA, the use of more columns in nonlinear
GRAPPA can suppress more noise in reconstruction.

efficiency (42). A rather small number of columns (e.g.,
3-5 columns) are typically used to balance the trade-off.
In the proposed nonlinear GRAPPA, the size of coeffi-
cients also plays an important role. Figure 11 shows the
GRAPPA and nonlinear GRAPPA reconstructions with 5,
9, and 15 columns of coefficients. Contrary to the obser-
vation in GRAPPA, more columns in nonlinear GRAPPA
can improve the SNR due to the higher degree of free-
dom in calibration. In consideration of the computation
cost, 15 columns were chosen to be used in our
experiments.

The computation time of the proposed method is about
2-5 times that of conventional GRAPPA and Tikhonov-
regularized GRAPPA, while IRLS is the most time con-
suming among all. Furthermore, regularization can also
be easily incorporated into the proposed reconstruction
method.

CONCLUSION

In this paper, we propose a novel kernel-based nonlinear
reconstruction algorithm for GRAPPA. The proposed
method provides a more general model to characterize
the noise behavior in GRAPPA reconstruction and
thereby improves the SNR significantly. Experimental
results demonstrate that the nonlinear GRAPPA is supe-
rior to conventional GRAPPA and some of the improved
GRAPPA methods for the same net acceleration factor.
Future work will investigate automatic reduction of
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feature space using the methods in Refs. (43-45) to
reduce the required number of ACS lines and improve
the computational efficiency. We anticipate that the pro-
posed nonlinear approach can bring further benefits to
current applications of conventional GRAPPA.
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