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Compressed sensing (CS) has been used in dynamic cardiac MRI

to reduce the data acquisition time. The sparseness of the

dynamic image series in the spatial- and temporal-frequency (x-f)

domain has been exploited in existing works. In this article, we

propose a new k-t iterative support detection (k-t ISD) method to

improve the CS reconstruction for dynamic cardiac MRI by incor-

porating additional information on the support of the dynamic

image in x-f space based on the theory of CS with partially known

support. The proposed method uses an iterative procedure for

alternating between image reconstruction and support detection

in x-f space. At each iteration, a truncated ‘1 minimization is

applied to obtain the reconstructed image in x-f space using the

support information from the previous iteration. Subsequently, by

thresholding the reconstruction, we update the support informa-

tion to be used in the next iteration. Experimental results demon-

strate that the proposed k-t ISD method improves the

reconstruction quality of dynamic cardiac MRI over the basic CS

method in which support information is not exploited. Magn

Reson Med 68:41–53, 2012.VC 2011 Wiley Periodicals, Inc.
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Dynamic cardiac cine MRI is a technique to acquire a time

series of images from cardiac motion at a high frame rate.

The acquired data in dynamic cardiac MRI is in the spatial-

and temporal-frequency domain, the so-called k-t space.

The acquisition time is an important factor to minimize so

that cardiac function can be accurately evaluated in a clini-

cal workflow. Accelerating the acquisition speed by under-

sampling k-space may compromise spatial resolution, tem-

poral resolution, signal-to-noise ratio (SNR), or introduce

image artifacts. A range of techniques have been developed

to reconstruct a high-quality image series from the under-

sampled MRI data by exploiting spatial and/or temporal

correlations in the dynamic image series. Typical methods

for the reconstruction from undersampled single-coil meas-

urements include RIGR (1), keyhole (2), view-sharing (3),

UNFOLD (4), partially separable function (5–7), Kalman fil-

ter (8,9), patient-adapted reconstruction and acquisition

dynamic imaging method (10–12), and k-t BLAST (13).

Among many advanced techniques to reduce the

amount of measured data while preserving the quality of

the image sequence, the emerging theory of compressed

sensing (CS) (14,15) holds great potential for significant

data reduction. In most existing CS-based dynamic car-

diac MRI methods, the basic CS formulation is used

which mostly exploits only the prior that the dynamic

image series is sparse in the spatial- and temporal-fre-

quency domain (x-f space). As additional prior informa-

tion about the unknown MR images may be available for
certain applications, it is advantageous to incorporate

this information into the CS reconstruction.

In this article, based on a recent theory on CS with par-

tially known support (PKS), we study how to obtain and
exploit the support information to improve CS reconstruc-

tion in dynamic cardiac MRI applications. A new method,

named k-t iterative support detection (k-t ISD), is proposed.
The method alternates between image reconstruction and
support detection in x-f space iteratively. Within each iter-
ation, the dynamic image in x-f space is reconstructed
through a truncated ‘1 minimization implemented using a
focal underdetermined system solver (FOCUSS) algorithm.
Specifically, the truncated ‘1 minimization excludes the
signal at the known support (detected from the previous
iteration) from the cost function of the ‘1 minimization.
Once the image is reconstructed in this iteration, the sup-
port information is updated by thresholding the recon-
struction and used in the next iteration of image recon-
struction. Improvement of the proposed method over the
basic CS approaches is demonstrated using retrospectively
undersampled in vivo cardiac cine MR experiments.

THEORY

Summary on Dynamic MRI Using Compressed Sensing

The application of CS in dynamic MRI is made possible
by the fact that dynamic MRI satisfies the two conditions
of CS (16): the image series is sparse in a certain trans-
form domain due to the spatial and temporal correla-
tions, and the sampling in k-t space can be designed to
be incoherent. In the CS framework, a dynamic image se-
ries is reconstructed in the x-t domain by

min
m

Cmk k1 s:t: d ¼ Fxm; ½1�

where Fx is the Fourier transform matrix in the spatial
domain, m is a vector representing the signal in the x-t
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domain, d is the vector for the reduced data in k-t space,
and C denotes the sparsifying transform.

Several methods have been proposed to apply CS in
dynamic MRI (16–23). In terms of the sparsifying trans-
form used to make the image series sparse, these meth-
ods can be categorized as using (a) spatial correlation
only, (b) temporal correlation only, and (c) both spatial
and temporal correlations. When only the spatial correla-
tion is exploited, the image in each frame is recon-
structed individually using approaches similar to those
in Refs. 24 and 25, where the sparsifying transform such
as wavelet transform is applied along the spatial domain
only (17). Exploiting the temporal correlation is more
useful to take advantage of the dynamic characteristics.
One way to exploit the temporal correlation is to subtract
the image at each frame by that from a reference frame
(18–21). Because of the slow motion of dynamic features,
the difference image is usually sparse. Another way is to
apply Fourier transform along the temporal direction
(20–23). The slow motion suggests that the image series
is sparse in the temporal-frequency domain. Exploiting
both the spatial and temporal correlations is more
appealing to sparsify the image series. k-t SPARSE (16)
exploits the temporal correlation by Fourier transform in
time domain and the spatial correlation by wavelet trans-
form in spatial domain. Three-dimensional CS (17)
exploits the temporal and spatial correlations using a
three-dimensional wavelet transform.

Theory on Compressed Sensing with Partially Known
Support

Recently, an extension of CS—CS with PKS (CS-PKS)
has been studied in Refs. 26–30 to incorporate the partial
support information of a sparse signal into the CS recon-
struction, where support is defined as the locations of
nonzero elements in the sparse domain. It is shown
through theoretical analysis and numerical study that,
this new technique can effectively reduce the number of
measurements required by basic CS to achieve a given
reconstruction quality or improve the quality of CS
reconstruction given the same number of measurements.

In basic CS, the solution is the one with the minimum
number of nonzero among infinite data-consistency can-
didates, or equivalently the one satisfying data consis-
tency constraint among infinite enumeration of all possi-
ble combinations for the nonzero locations in the signal.
Now we consider the CS reconstruction of an s-sparse
signal x with PKS from measurements y. The support of
x, denoted as S, can be represented as S¼T [ D, where T
is the known part with size |T| and D is the unknown
part with size |D|. With PKS T, the candidates for the s-
sparse signal x are restricted in a signal space smaller
than that in basic CS. We use a simple example to dem-
onstrate the difference between CS-PKS and basic CS.
Suppose x is a three-dimensional signal (x1, x2, x3) with
a sparsity of two (i.e., two out of three dimensions are
nonzero). Basic CS needs to search for solutions in three
possible two-dimensional subspaces (x1, x2, 0), (x1, 0,
x3), and (0, x2, x3). If the support is partially known such
that x1 is known to be nonzero, we only need to search
for solutions in two possible two-dimensional subspaces

(x1, x2, 0) and (x1, 0, x3). Clearly, the search space is
reduced when the support is partially known. The
reduction is even more when the dimension of signal x
is higher and/or the more the support is known. As the
signal x is known to be nonzero at some locations
(denoted as support T), CS-PKS allows us to minimize
the number of nonzeros at other locations (outside the
support T) only when searching for a sparse solution to
Ux ¼ y. This procedure can be formulated as

min
x

xDk k0 s:t: Fx ¼ y; ½2�

or, more practically (considering computational com-
plexity and robustness)

min
x

xDk k1 s:t: Fx ¼ y; ½3�

where xD denotes the signal outside the known support.
This problem is referred to as the truncated minimization
because the cost function to be minimized is not related
to the entire signal but a truncated version of the signal
that leaves out the part with known support. This formu-
lation suggests that, to find a sparse solution that satisfies
the data consistency constraint, it is sufficient to consider
a much smaller signal space that always has nonzero ele-
ments at the known support. In other words, truncated
minimization favors a solution with more zeros outside T
(26), and thus it may recover the signal more accurately
than basic CS does for signals whose support includes T.
Once the nonzero locations outside the known support
are determined, the value of the entire signal can be
obtained from the data consistency term.

The sufficient conditions for CS-PKS have been stud-
ied theoretically and independently from the view of re-
stricted isometry property and null space property,
respectively (27,28). It follows from these conditions that
the number of measurements required for CS-PKS is less
than that for basic CS, and the more the support is
known, the fewer the measurements are needed. The
robustness of truncated ‘1 minimization under noisy
measurements has been demonstrated in Refs. 27–29
using an upper bound.

In practical conditions, the PKS may not be exactly a
subset of the true support. There may be some false loca-
tions (assumed nonzero but actually zero) in the known
support. In this case, we define the known support as T
¼ Tc þ Tf, where Tc is a subset of ‘‘true’’ support with
size |Tc|, and Tf is the set of false support with size
|Tf|. Numerical simulations in Refs. 26 and 28 show
that the truncated minimization with some false support
can still reconstruct the underlying signals provided the
size of correct support is larger than that of false support
(i.e., |Tc| > |Tf|). In addition, it has also been proved
in Ref. 28 that as long as |Tc| > |Tf|, CS-PKS requires
fewer measurements than basic CS. The more accurate
the support is, the fewer measurements are needed for
exact reconstruction.

Proposed k-t Iterative Support Detection Method

Based on the above theory, we propose a k-t ISD method
that adaptively and iteratively learns and uses the
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support information in CS for dynamic MRI such that
the images are reconstructed more accurately. The
method alternates between CS reconstruction with PKS
and adaptive learning of support knowledge, which are
elaborated below.

Compressed Sensing for Dynamic MRI with Partially
Known Support

Among the two methods to sparsify dynamic images, we
consider the Fourier transform along the temporal direc-
tion as the sparsifying transform (20–23,31). This is
based on a recent work (31) that demonstrates the tempo-
ral Fourier transform can achieve a higher degree of spar-
sity than that achieved by the temporal difference in car-
diac imaging. With signal representation in x-f domain,
the data consistency constraint becomes

Fr ¼ d; ½4�

where F denotes the two-dimensional Fourier transform
in both k-t directions and r is the signal vector in x-f do-
main. According to the theory on CS-PKS, reconstruction
of the signal r in x-f domain can be formulated as a trun-
cated ‘1 minimization problem

min
r

rDk k1; s:t: d� Frk k2� e; ½5�

when the support of the signal r in x-f domain has a
known part T and an unknown part D.

In our implementation, we rewrite Eq. 6 as a weighted
‘1 minimization problem and reconstruct the signal r by

min
r

Wrk k1 s:t: d� Frk k2� e; ½6�

where W is a diagonal weighting matrix whose diagonal
element equals 0 if the corresponding element in x-f
space belongs to the known support T, and 1 otherwise.
Here we apply the FOCUSS algorithm (32,33) to solve
Eq. 6, although many other algorithms are also applica-
ble. The solution to the weighted ‘1 minimization prob-
lem is computed by iteratively solving a reweighted ‘2
minimization problem defined as

find r ¼ Dq

such that q is the solution to

min
q

Wqk k2 s:t: d� FDqk k2� e; ½7�

and D is a diagonal weighting matrix that is updated itera-
tively. The above constrained l2 optimization problem can
be converted into an unconstrained optimization problem,

min
q

f d� FDqk k22þl Wqk k22g; ½8�

which has a closed-form solution:

q ¼ DHFH FDDHFH þ lWHW
� ��1

d: ½9�

Conjugate gradient (34) is used to solve Eq. 9 to avoid
direct inversion of a large matrix, and the regularization

parameter l is selected by solving Eq. 9 with different
values of l and choosing one so that d� FDqk k2� e.
Then the x-f space image is given by

r ¼ Dq ¼ DDHFH FDDHFH þ lWHW
� ��1

d : ½10�

In the lth iteration, the diagonal elements of the matrix
D(l) are the square root of the absolute value of the solu-
tion r(l�1) in the previous iteration. Specifically,

D lð Þ ¼

r l�1ð Þ
1
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where rðl�1Þ
n is the nth element of r(l�1).

It can be seen that the regularized term of ‘2 norm in

Eq. 8 is equivalent to WD lð Þ�1

r
���

���
2

2
, which has the follow-

ing asymptotic behavior

WD lð Þ�1

r
���

���
2

2
¼ Wrk k1 as l ! 1 ½12�

where the property WHW ¼ W is used. It implies that
the solution to Eq. 7 asymptotically approaches the solu-
tion to the truncated ‘1 minimization (5) with infinite
iterations. In practice, the iteration terminates when the
normalized difference between the consecutive solutions
is less than a threshold (e.g., 1 � 10�2).

Adaptive Learning of Support Knowledge

It is usually difficult to obtain the exact x-f support of
unknown cardiac images a priori because the signal sup-
port is patient and scan dependent (12). The support in-
formation in x-f space has been studied and used in
prior works outside the CS context. Aggarwal and Bresler
(10–12) have used the x-f support to develop a patient-
adapted reconstruction and acquisition dynamic imaging
method. They suggested that the support in x-f space for
cardiac imaging should have the following features (12).
(a) The highly dynamic region (e.g., the heart region)
should have a small support in the spatial domain x but
its exact location depends on the specific imaging
experiment. (b) Other regions of the body may also vary
temporally due to slow noncardiac motion but should
have narrow temporal bandwidth. (c) Because of the
approximately periodic heart motion, the highly
dynamic region should have a banded temporal spec-
trum with the bands located at the multiples of the heart
rate, but the width of each band is patient dependent. To
exploit accurate x-f support information in the design of
the time-sequential acquisition scheme, patient-adapted
reconstruction and acquisition dynamic imaging method
uses a prescan to obtain the support. Brinegar et al. (7)
also explores the x-f support obtained empirically to
improve the reconstruction using the partially separable
function model.
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Iterative support detection. To avoid prescan or empiri-
cal estimate, we propose to learn the support in x-f space
from the reconstructions iteratively. The idea of ISD is
based on a new CS algorithm by Wang and Yin (28). In
k-t ISD, we start with a basic CS reconstruction without
any support information. Because fewer k-t data are
acquired than those required for perfect recovery, the ini-
tial reconstruction using basic CS is poor. We then learn
the support in x-f space using the locations whose values
are above a predefined threshold. This support is held
fixed and used in truncated ‘1 minimization for an
updated reconstruction. The support detection and sig-
nal reconstruction steps are then repeated alternately
until convergence.

The above two steps can be mathematically repre-
sented as follows. In the reconstruction step of the ith
iteration in k-t ISD, the intermediate reconstruction r(i) is
obtained by solving a truncated ‘1 minimization problem

min
r

rD i�1ð Þ
�� ��

1
s:t: d� Frk k2� e; ½13�

with a known support T(i�1) (D(i�1) denotes the nonzero
locations outside the known support). As we introduced
above, r(i) is reconstructed by rewriting Eq. 13 as the
weighted ‘1 minimization problem

min
r

W i�1ð Þr
�� ��

1
s:t: d� Frk k2� e; ½14�

and solved using FOCUSS algorithm. In the support
detection step, the support is obtained by thresholding
the above reconstructed signal r(i) in x-f space

T ið Þ :¼ z : r ið Þ
z

�� �� > t ið Þ
n o

; ½15�

where rðiÞz is the zth element of r(i).

Choice of thresholds in k-t ISD. The threshold t(i) largely
affects the performance of k-t ISD. Small t(i) will result in
too many false locations in the detected support, which
may not be corrected in subsequent iterations of recon-
struction. On the other hand, large t(i) will result in too
few locations in the detected support and hence a large
number of iterations is required for converge. Strategies
on the choice of t(i) were discussed and applied in Ref.
28. One is to find the ‘‘first significant jump’’ in the
ascending sequence of the magnitude of the reconstructed
signal. However, another threshold to tell this ‘‘jump’’ is
different for different decay rate, which is difficult to
accurately estimate from undersampled measurements.
Another simple but quite effective one is to set
t ið Þ ¼ r ið Þ�� ��

1=d ið Þ with an increasing sequence of d(i) > 0.
We find this strategy works well for our study on many
cardiac datasets when d(i) is chosen as an exponential
function of the number of outer iteration i. The choice of
exponential function is based on the definition of com-
pressible signals that CS primarily deals with in practice.
Compressible signals are usually approximated by an ex-
ponential law ~xzj j ¼ ae�bz;b � 0;a > 0, or alternately by
a power law ~xzj j ¼ Cz�r ; r � 0;C > 0, where ~xzj j is the
magnitude of the sorted signal x, b and r can be regarded
as decay rates, with a and C being positive constant (31).

The complete k-t ISD algorithm is summarized in
Algorithm 1.

Algorithm 1. Pseudocode for k-t ISD

1. Initialize W0

2. For i ¼ 1;2; � � � ; do following until convergence
[1] Reconstruct q(i) based on W(i�1) using [14], which

is implemented by the following steps of
FOCUSS:
a. Initialize D(0)

b. For l ¼ 1; 2; � � � ; do the following until
convergence
i. Reconstruct q(i) using ‘1 minimization in [10]
ii. Update D(l) using [11]

c. Use q(l) for q(i) after convergence
[2] Update detected support T(i) and W(i) based on q(i)

using thresholding in [15]

Applicability of k-t ISD

Numerical studies in (28) showed that ISD is applicable
to signals with a fast decaying rate. The nonzero compo-
nents of such signals have relatively large magnitude.
This property ensures that even when the initial recon-
struction is poor (due to insufficient measurements), the
signal magnitude at the nonzero locations within the true
support is likely to remain large, and thus these locations
can be detected correctly by thresholding. In subsequent
iterations, the magnitude at the detected nonzero loca-
tions will be corrected with the aid of improved support
information through ISD. In the event that some of the
zero locations outside the true support also present large
magnitude in the initial reconstruction, resulting in false
locations to be included in the detected support, we have
claimed in previous section that the ISD still converges as
long as the number of false locations is less than the num-
ber of correct locations by a certain amount (28).

The development of k-t ISD for cardiac cine MRI is
made possible by the fact that signals in x-f space rap-
idly decay in magnitude. This characteristic has been
claimed in Ref. 31 and demonstrated in Fig. 1 using five
cardiac cine datasets.

METHODS

The feasibility of k-t ISD was validated on five fully
sampled sets of dynamic cardiac cine data, each covering
an entire cardiac cycle. The imaging parameters are pro-
vided in Table 1. The steady-state free precession (SSFP)
sequence was used for all experiments. The five-coil
dataset was generated from the circularly polarized
mode of a 15-coil acquisition (35). Informed consent was
obtained from all volunteers in accordance with the
institutional review board policy. The fully sampled data
were undersampled retrospectively and used to compare
the proposed k-t ISD method with other reconstruction
methods. Similar to existing methods that apply CS to
dynamic MRI, the phase encoding direction is under-
sampled and an incoherence undersampling pattern is
used to acquire the signal in k-t space. In our work, we
generate a random sampling pattern using a zero-mean
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gaussian distribution whose density tapers off toward
the outer k-space. Other incoherent sampling schemes
(22,36) that impose additional constraints on the sam-
pling patterns can also be applied to the proposed k-t
ISD. The central eight phase encoding (PE) lines were
fully sampled to obtain a low-resolution image for
FOCUSS algorithm. The matrix W, representing the
detected support information, was initialized to an iden-
tity matrix before the first reconstruction when no sup-
port knowledge was available. For all datasets, the

threshold follows t ið Þ ¼ r ið Þ�� ��
1=d ið Þ, where we empiri-

cally setd ið Þ ¼ 5 � 8ð Þiþ1 based on our experiments. Note
the threshold only depends on the image reconstructed
in the previous iteration and its selection does not need
knowledge of fully sampled original image.

The proposed k-t ISD, k-t FOCUSS (20), and the two-
step OMP methods (22) were used to reconstruct the
desired image series. The same sampling pattern was
used for all methods when the reduction factor and data-
set are fixed. All methods were implemented in MAT-
LAB and the code for k-t FOCUSS was obtained from
http://bisp.kaist.ac.kr. For the dataset acquired using
multiple coils, we reconstructed images for each coil
separately and then combined them using square-root of

sum-of-squares. The image series reconstructed from the
full k-t data were used as the reference for comparison.
The top row of Fig. 1 shows a single frame reconstructed
from fully sampled measurements of the first to the fifth
datasets (from left to right) for reference. The bottom row
shows the corresponding normalized and sorted signals
in x-f space for a given position in the frequency-encod-
ing (FE) direction. It is seen that all of these signals in x-
f space are compressible with a fast decaying rate.

RESULTS

Reconstruction Quality of k-t ISD

The reconstructions with a net reduction factor of R ¼ 3
and the corresponding difference images with the refer-
ence at the sixth frame of the five-coil dataset are shown
in Fig. 2. The difference images were scaled appropri-
ately to better reveal the distinctions between reconstruc-
tions. Rows show different methods with the first row
for two-step OMP, the second for k-t FOCUSS, and the
third for k-t ISD. The result of the k-t ISD method is after
two iterations of support detection. It is seen in Fig. 2
that compared to k-t ISD, the k-t FOCUSS presents more
undersampling artifacts along the phase encoding

FIG. 1. Top row shows a single frame reconstructed from the fully sampled data. The bottom row shows plots of the magnitude of the
normalized and sorted signals in x-f space for a given position in the frequency-encoding direction. Three different datasets with five

coils (left), a single coil (middle), and four coils (right) were used.

Table 1

Data Acquisition Parameters for Imaging Experiments

Data 1 Data 2 Data 3 Data 4 Data 5

Scanner 3T Siemens 1.5T Philips 3T Siemens 3T Siemens 3T Siemens
Sequence SSFP SSFP SSFP SSFP SSFP

Flip angle (	) 44 50 50 44 50
Echo time/repetition

time (ms)
1.5/3.0 1.7/3.45 1.7/3.45 1.22/42.5 1.89/56.6

Matrix size (FE �
PE � frame � coil)

160 � 133 �
15 � 5

256 � 220 � 25 256 � 150 �
17 � 4

304 � 165 �
26 � 12

256 � 225 �
17 � 15

FOV (mm � mm) 350 � 262 345 � 270 340 � 277 340 � 276 340 � 287
Slice thickness (mm) 7 10 8 6 6
Heart beats (bpm) 54 66 60 62 61

k-t Iterative Support Detection 45



direction and the two-step OMP presents more noise as
indicated by arrowheads. The superiority of k-t ISD is
clearly seen in the difference images. Figure 3 shows the
reconstructions of the 11th frame at R ¼ 4 as well as the
corresponding difference images for the single-coil data-
set. Three iterations of support detection were used in k-
t ISD. The results of the single-coil data lead to the same
conclusion that the k-t ISD is able to suppress more arti-
facts and preserve more details than k-t FOCUSS. To
quantify the improvement of k-t ISD over k-t FOCUSS
and two-step OMP, the normalized mean-squared error
(MSE) (24) between the reconstruction and the reference
were calculated for four datasets and plotted as a func-
tion of time frame in Fig. 4a–d, respectively. The solid
lines are for k-t ISD, dotted lines for k-t FOCUSS, and
dashed lines for two-step OMP, respectively. The k-t ISD
is seen to have a lower MSE than the other two methods
for all frames.

Because of its importance in clinical diagnosis, the
heart region with highly dynamic motion is considered
as the region of interest to further evaluate the proposed
method. Figure 5 shows the region of interest reconstruc-
tions for the five-coil dataset with R ¼ 3, the four-coil
dataset with R ¼ 4, the 12-coil dataset with R ¼ 8, and
the 15-coil with R ¼ 8 from left column to right column.
Rows show the reference, k-t FOCUSS, and k-t ISD from
top to bottom. It is evident that k-t FOCUSS presents
larger aliasing artifacts than k-t ISD in the heart region.

We note that the success of k-t ISD is based on the fast-
decaying property of dynamic cardiac images in the x-f
space and the ability of ISD to learn the true support
from poor reconstructions for such images.

The ability to catch the dynamic motion along tempo-
ral direction is very important for dynamic reconstruc-
tion methods. To evaluate the temporal fidelity in k-t
ISD, for a fixed position in the frequency-encoding direc-
tion, we show in Fig. 6 the reconstructions in x-t plane
for the five-coil dataset with R ¼ 3 and 12-coil dataset
with R ¼ 8. It is seen that the two-step OMP smoothes
out the rapid temporal variations and k-t FOCUSS shows
some loss of contrast. In comparison, the proposed k-t
ISD preserves more temporal variations than other meth-
ods especially in regions indicated by arrows.

Support-Detection Fidelity of k-t ISD

To evaluate the fidelity of the detected support in k-t
ISD, Fig. 7 compares the support maps detected after dif-
ferent iterations of k-t ISD, with the true support maps of
the fully sampled reference signal in x-f space (with a
fixed position in the frequency-encoding direction). In
addition, the false detection maps are also shown.
Although the true support is not available when the fully
sampled original image is unknown in practice, it is
used here only to verify that our threshold-selection
method can detect the support rather accurately. The
single-coil dataset with a reduction factor of 4 was used
as an example. Because the reference signal is compress-
ible but not exactly sparse in x-f space, the true support
here refers to locations with relatively large magnitude
(i.e., above a threshold). To facilitate the comparison

FIG. 2. Reconstructions (left) of the sixth frame using two-step

OMP (top), k-t FOCUSS (middle), and k-t ISD (bottom), and the
corresponding difference images (right) with a reduction factor of

3 from the five-coil dataset.

FIG. 3. Reconstructions (left) at the 11th frame using k-t FOCUSS
(top) and k-t ISD (bottom), and their corresponding difference

images (right) with a reduction factor of 4 for the single-coil
dataset.
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with k-t ISD, an iterative approach is also used to choose
a decreasing sequence of thresholds from which a
sequence of true support maps are obtained by thresh-
olding the x-f space of the fully sampled reference. The
largest threshold used for the first iteration is set to be
the signal value at the corner of the sorted reference sig-
nal (shown on the lower left of Fig. 1). This curve is
then truncated by excluding the portion above the
threshold, and then the corner of the truncated curve is

identified and set to be the threshold for the next itera-
tion. This procedure is repeated so that the corners of
each truncated curve of the sorted reference are used to
determine the sequence of decreasing thresholds for the
generation of the true support maps in Fig. 7. It is worth
noting that these thresholds are (and should be) different
from those in k-t ISD because the latter are selected to
detect the support from imperfect reconstructions
instead of from the reference signal. The true support

FIG. 4. Frame-by-frame plots of

MSE for two-step OMP, k-t
FOCUSS, and k-t ISD with R ¼ 3

for the five-coil dataset (top left),
R ¼ 4 for the single-coil dataset
(top right), R ¼ 8 for the 12-coil

dataset (bottom left), and R ¼ 8
for the 15-coil dataset (bottom
right). The solid lines are for k-t

ISD, dotted lines for k-t FOCUSS,
and dashed lines for two-step

OMP. [Color figure can be viewed
in the online issue, which is avail-
able at wileyonlinelibrary.com.]

FIG. 5. Region of interest of reference
(top), k-t FOCUSS (middle), and k-t ISD

(bottom) for the five-coil dataset with R ¼
3 (first column), the four-coil dataset with

R ¼ 4 (second column), the 12-coil dataset
with R ¼ 8 (third column), and the 15-coil
dataset with R ¼ 8 (fourth column).
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map after the first iteration shows that the most signifi-
cant elements dominate the low temporal-frequency
region. As the threshold decreases over iterations, the
support begins to include locations of smaller elements
and thus spreads from the low temporal-frequency region
to other regions.

Recall that the detected support maps for k-t ISD are
also generated by thresholding each reconstruction using
a threshold that decreases over iterations. For the first
two iterations, the detected support maps (size of 204
and 611, respectively) are very similar to the first two
true support maps, and the false support maps are very
sparse (only 2 and 107, respectively). This suggests that
k-t ISD is able to accurately detect the low temporal-fre-
quency locations with significant elements. Because the
number of correct detections is significantly more than
that of the false ones, CS-PKS should perform better than
CS. As the iterations proceed, even if the number of false
detections increases (582, 743, 626 for the third, fourth,
and fifth iterations, respectively) due to the difficulty to
detect small elements using k-t ISD, the number of cor-
rect detections also increases (1242, 2612, 4028 for the
third, fourth, and fifth iterations, respectively) and
always takes a larger part in detected supports. Accord-
ing to Ref. 28, as long as the numbers of correct detec-
tions is sufficiently more than those of false detections,
further iterations using CS-PKS still improve the recon-

struction quality. It has been noted that the detected sup-
port is not necessarily always increasing. This is demon-
strated by the decrease in the number of false detection
from the fourth to fifth iterations.

Convergence of k-t ISD and Effect of Threshold

The convergence behavior is an important factor in eval-
uating the performance of k-t ISD. Although ISD is
known to converge under certain conditions (28), these
conditions are difficult to verify in practice. In addition,
the convergence behavior is largely affected by the pa-
rameter d(i) in k-t ISD. Hence, we opt to study the con-
vergence of k-t ISD and its dependence on d(i) using
MSE-iteration curves. Three different values d(i) ¼ 15iþ1,
8iþ1 and 2iþ1 were used where i is the iteration number.
The corresponding MSE-iteration plots are shown in Fig.
8 when R ¼ 3 for the five-coil dataset. The plots for other
reduction factors and other datasets have the same
behavior. As strict convergence is not observed, a stop-
ping criterion is needed to terminate iterations. We cal-
culate the normalized difference between the adjacent
iterations and terminate iterations once its value is below
a threshold (10�2 used here).

It can be seen that when threshold changes fast with
iterations, the MSE initially decreases but then increases
with more iterations. The initial decrease is because the

FIG. 6. The temporal profiles in x-

t plane of different reconstruction
methods for the 5-coil dataset
with R ¼ 3 (top row) and the 15-

coil dataset with R ¼ 6 (bottom
row). [Color figure can be viewed

in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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detected support improves over iterations and so does
the reconstruction quality. The subsequent increase with
more iterations is due to the increased number of false
locations in support detection as d gets too large. For d(i)

¼ 15iþ1, k-t ISD stops after four iterations to an MSE
value that is greater than the lowest MSE. On the other
hand, slowly changing d will result in too few locations
detected in support and thus slow convergence. For d(i)

¼ 2iþ1, k-t ISD does not terminate even after five itera-
tions. A moderate changing rate with d(i) ¼ 8iþ1 needs
only three iterations to stop which corresponds to the
lowest MSE.

To demonstrate the improvement of k-t ISD on image
quality over iterations, we show in Fig. 9 the intermedi-
ate reconstructions, the corresponding difference images,
and the temporal profiles for the first, second, and fourth
iterations (from top to bottom) using the 12-coil datasets
with R ¼ 8. The first iteration has no knowledge on sup-

port and the reconstruction shows some smoothing and
artifacts due to insufficient measurements. As the num-
ber of iterations increases, the resolution improves and
fine details become clearer. The improvement is better
demonstrated in the regions indicated by arrows and in
the difference images.

Robustness of k-t ISD to Noise

All datasets tested here contain noise. To demonstrate
the robustness of k-t ISD to even noisier measurements,
different levels of white gaussian noise were simulated
and added to the acquired data, and the undersampled
noisy data were used to reconstruct the dynamic images.
The amount of noise added was qualified by an SNR
index that was calculated as the ratio between the aver-
age intensity of selected signal region and the standard
deviation of the background region in the sum-of-squares
reconstruction from full measurements.

Figure 10 shows the plots of frame-by-frame MSE on
region of interest with different reduction factors R for
the four-coil dataset when the SNR are 30 and 15. The
solid lines are for k-t ISD and dotted lines for k-t
FOCUSS. Compared to the scanned data with SNR of 30,
the MSE curve of SNR ¼ 15 preserves a similar shape
but with larger values. A similar trend was also observed
for other SNRs and other datasets. It suggests that the
reconstruction quality degrades gracefully with reduced
SNR for both methods, and k-t ISD still outperforms k-t
FOCUSS at low SNRs. This agrees with the theoretical
results for CS and CS-PKS that the reconstruction error
is upper bounded by a linear function of measurement
noise level.

In addition, we also observed that fewer iterations
should be used in k-t ISD at low SNRs to prevent the
threshold from being too small. This is because a higher

FIG. 7. The true (top), detected (middle), and false (bottom) sup-
port maps (support shown in white) in x-f space. The true maps

are obtained with decreasing thresholds and the detected maps
are obtained from different iterations of support detections (shown
on the bottom). The single-coil dataset with a reduction factor of

4 was used.

FIG. 8. The plots of MSE (averaged over all frames) versus the
number of iterations for different choices of d with R ¼ 3 for the

five-coil data. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

k-t Iterative Support Detection 49



threshold is less sensitive to noise and thus reduces false
support detections for noisier data.

DISCUSSION

Relationship to Other Methods

Both k-t FOCUSS and the two-step OMP also use sup-

port information but in different ways. In k-t FOCUSS,

the temporal DC (f ¼ 0) component is predicted as �r and
subtracted during reconstruction (20). If the temporal DC
is considered as the known support in x-f space at f ¼ 0
and excluded from the cost function, then k-t FOCUSS is
equivalent to a single iteration of truncated ‘1 minimiza-
tion with partially known support. In essence, the first

iteration of the proposed k-t ISD is equivalent to k-t
FOCUSS without DC subtraction. Although we find that
k-t FOCUSS without DC subtraction can perform better
than that with DC subtraction (e.g., first iteration of k-t
ISD in Fig. 9 is seen to be better than k-t FOCUSS with
DC subtraction in Fig. 5), further iterations in the pro-
posed k-t ISD still improves the reconstruction. It sug-
gests that the improvement of the proposed k-t ISD over
k-t FOCUSS is not simply due to the lack of DC subtrac-
tion, but the multiple iterations of truncated ‘1 minimi-
zations in which the known support is iteratively
updated.

In the two-step OMP (22), the OMP algorithm is used
twice for the reconstruction of the signal in x-f space

FIG. 9. The reconstructions (top),
corresponding difference images
(middle), and temporal profiles

(bottom) at the first, second, and
fourth iteration of k-t ISD for the

12-coil dataset with R ¼ 8. [Color
figure can be viewed in the online
issue, which is available at

wileyonlinelibrary.com.]
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and the support is detected iteratively within each OMP
step, as well as after the first of the two steps. However,
the detected support sets obtained within each OMP
step always increase over iterations, which is not neces-
sarily true for the k-t ISD. This explains why k-t ISD is
robust to false detections in x-f space and has a strong
self-correcting capability (28). In addition, for the two-
step OMP, although the support in x-f space is updated
again after the first step by finding the significant com-
ponents, method excludes the elements that are known
to be insignificant/zero in the second iteration of mini-
mization. This is in contrast to the proposed k-t ISD,
which follows the theoretical principle of CS with PKS
to perform signal reconstruction by excluding the ele-
ments that are known to be significant/nonzero in mini-
mization. These differences contribute to the superior
performance of k-t ISD over the two-step OMP in
dynamic cardiac cine MRI.

Computational Complexity

The proposed k-t ISD typically requires two nested itera-
tion loops. The outer loop (step 2 in Algorithm 1) is for
support detection based on the outcome of truncated ‘1
minimization. An inner loop is within the FOCUSS algo-
rithm (step b in Algorithm 1) to approximate the solution
to the ‘1 minimization through iteratively reweighted ‘2
minimization. In general, at most four iterations for the
outer loop and three iterations for the inner loop are suf-
ficient to achieve good performance empirically. When
we ran our MATLAB programs on a Hewlett-Packard
workstation with Xeon 2.33GHz CPU and 2GB RAM,
each outer iteration took about 154 s to reconstruct a se-
ries of 256 � 220 � 25 dynamic complex MR images.
This execution time of a single outer iteration is compa-
rable to the time of 143 s for k-t FOCUSS for the same
dataset. Although the computational complexity of k-t
ISD is higher than that of the basic CS algorithms such
as k-t FOCUSS, due to solving a truncated ‘1 minimiza-
tion problem repeatedly, the number of iterations is usu-
ally small (�4).

Empirical Support Knowledge

The k-t ISD is more effective when the signal in x-f space
has a fast decaying rate. Otherwise, a rectangle window
at the center of x-f space (entire field of view but low
temporal-frequency locations) can be assumed as the
known support (9,37). This is based on the fact that the
low temporal-frequency region usually has significant
values in dynamic MRI, as observed in the true support
map in Fig. 7. The quality of signal reconstruction
largely depends on the width of the support window. A
small width guarantees inclusion of the true support but
may also miss a good portion of the true support. On the
other hand, a large width would include locations out-
side the true support. Both can lead to degraded recon-
structions. The choice of width was studied in Ref. 37
and performance comparable to that of k-t ISD can be
achieved when the width is selected properly.

Extensions

Although in this work we have tested k-t ISD using only
dynamic cine MRI data, the framework is expected to be
useful in other dynamic imaging applications, such as
dynamic contrast-enhanced MRI (17,18,38), dynamic MR
angiography, and functional MRI to improve the spatio-
temporal resolution. The specific procedure should be
application dependent to accommodate the unique char-
acteristics of the signals in each application. For
instance, to use ISD, the requirement of a large decay
rate needs to be satisfied for the signal in the domain of
sparse representation. However, the x-f space of the fMRI
images might not have a large decay rate. In this case,
Karhunen-Loeve transform or principal component anal-
ysis (39) may be preferred as the sparsifying transform
(20) to meet the fast-decay requirement.

It is also applicable to non-Cartesian trajectories such
as radial trajectory by incorporating regridding (40,41) or
nonuniform FFT (42). An interesting direction for future
work is to investigate truncated ‘p(p < 1) minimization
for CS-PKS to further reduce sampling requirements in
dynamic MRI. In addition, optimization of sampling pat-
tern as a function of cardiac phase is interesting and
may be investigated in our future study.

FIG. 10. The frame-by-frame MSE plots of k-t ISD and k-t FOCUSS at SNR ¼ 30 (scanned data), and 15 (noise added manually) for the
four-coil dataset. The solid lines are for k-t ISD and dotted lines for k-t FOCUSS.
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The proposed k-t ISD can be easily integrated with
parallel imaging using sensitivity encoding to further
reduce data acquisition (43). There are two ways to con-
duct this integration. One commonly used way is to sim-
ply replace Fourier encoding matrix F in Eq. 5 with sen-
sitivity encoding matrix F̂ which consists of both Fourier
encoding and sensitivity weighting (22).

min
r

rDk k1 s:t: d̂� F̂r
���

���
2
� e ½16�

where d̂ is the undersampled data from all channels.
This kind of integration can deal with any trajectory.
However, the major issue is that the incoherence
between the sensitivity encoding matrix and any sparsi-
fying basis such as the identity or wavelet has not yet
been explored. In our previous work (26), we have inte-
grated Cartesian SENSE and CS in a cascade manner
without compromising the incoherence requirement.
This method can be easily incorporated in k-t ISD with
Cartesian trajectory. In this case, Eq. 5 is used to recon-
struct the aliased images in x-f domain for each channel
and Cartesian SENSE is applied to get the image with
full field of view:

min
rA
j

rAj

� �
D

���
���
1
s:t: dj � FrAj

���
���
2
� e; ½17�

where rAj is the aliased image in x-f domain at jth coil
and dj is the undersampled data at jth coil.

CONCLUSION

In this article, we have demonstrated the support infor-
mation improves the CS reconstruction in dynamic car-
diac cine imaging. A method named k-t ISD is devel-
oped. This method iteratively learns and exploits the
support knowledge in x-f space to improve CS recon-
struction. The learned support is incorporated in CS
reconstruction by excluding part of the signal at the
known support from the cost function in the constrained
minimization process. The method is shown to accu-
rately detect the support in the x-f space through itera-
tions and also converge fast. Experiments using dynamic
cardiac cine data show that the proposed method is able
to suppress more artifacts and preserve more details of
dynamic images and more temporal variations than exist-
ing CS methods such as OMP and k-t FOCUSS.
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9. Sümbül U, Santos JM, Pauly JM. A practical acceleration algorithm

for real-time imaging.IEEE Trans Med Imaging 2009;28:2042–2051.

10. Aggarwal N, Zhao Q, Bresler Y. Spatio-temporal modeling and mini-

mum redundancy adaptive acquisition in dynamic MRI. In: Proceed-

ings of 1st IEEE international symposium on biomedical imaging:

from nano to macro, Washington, DC,2002. pp 737–740.

11. Aggarwal N, Bandyopadhyay S, Bresler Y. Spatio-temporal modeling

and adaptive acquisition for cardiac MRI. In: Proceedings of 2nd

IEEE international symposium on biomedical imaging: from nano to

macro, Arlington, VA,2004. pp 628–631.

12. Aggarwal N, Bresler Y. Patient-adapted reconstruction and acquisi-

tion dynamic imaging method (PARADIGM) for MRI.Inverse Prob-

lems 2008;24:045015-1–045015-29.

13. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE:

dynamic MRI with high frame rate exploiting spatiotemporal correla-

tions.Magn Reson Med 2003;50:1031–1042.

14. Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency informatio-

n.IEEE Trans Inf Theory 2006;52:489–509.

15. Donoho D. Compressed sensing.IEEE Trans Inf Theory 2006;52:

1289–1306.

16. Lustig M, Santos JM, Donoho DL, Pauly JM. k-t SPARSE: high frame

rate dynamic MRI exploiting spatio-temporal sparsity. In: Proceed-

ings of the 14th annual meeting of ISMRM, Seattle, WA,2006. p

2420.

17. Bilgin A, Trouard TP, Altbach MI, Raghunand N. Three-dimensional

compressed sensing for dynamic MRI. In: Proceedings of the 16th an-

nual meeting of ISMRM, Toronto, Canada,2008. p 337.

18. Lang T, Ji J. Accelerating dynamic contrast-enhanced MRI using com-

pressed sensing. In: Proceedings of the 16th annual meeting of

ISMRM, Toronto, Canada,2008. p 1481.

19. Fischer A, Breuer F, Blaimer M, Seiberlich N, Jakob PM. Accelerated

dynamic imaging by reconstructing sparse differences using com-

pressed sensing. In: Proceedings of the 16th annual meeting of

ISMRM, Toronto, Canada,2008. p 341.

20. Jung H, Ye JC, Kim EY. Improved k-t BLAST and k-t SENSE using

FOCUSS.Phys Med Biol 2007;52:3201–3226.

21. Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t FOCUSS: a general

compressed sensing framework for high resolution dynamic MRI.-

Magn Reson Med 2009;61:103–116.

22. Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic

MRI.Magn Reson Med 2008;59:365–373.

23. Vitanis V, Manka R, Gamper U, Boesiger P, Kozerke S. Compressed

sensing cardiac perfusion imaging. In: Proceedings of the 16th an-

nual meeting of ISMRM, Toronto, Canada,2008. p 2937.

24. Lustig M, Donoho DL, Pauly JM. Sparse MRI: the application of com-

pressed sensing for rapid MR imaging.Magn Reson Med 2007;58:

1182–1195.

52 Liang et al.



25. Liang D, Liu B, Wang JJ, Ying L. Accelerating SENSE using com-

pressed sensing.Magn Reson Med 2009;62:1574–1584.
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