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Abstract—Phase unwrapping is an important problem in many
magnetic resonance imaging applications, such as field mapping
and flow imaging. The challenge in two-dimensional phase un-
wrapping lies in distinguishing jumps due to phase wrapping from
those due to noise and/or abrupt variations in the actual function.
This paper addresses this problem using a Markov random field to
model the true phase function, whose parameters are determined
by maximizing the a posteriori probability. To reduce the com-
putational complexity of the optimization procedure, an efficient
algorithm is also proposed for parameter estimation using a series
of dynamic programming connected by the iterated conditional
modes. The proposed method has been tested with both simulated
and experimental data, yielding better results than some of the
state-of-the-art method (e.g., the popular least-squares method) in
handling noisy phase images with rapid phase variations.

Index Terms—Bayesian estimation, field mapping, magnetic res-
onance imaging, Markov random field, phase unwrapping.

I. INTRODUCTION

A. Background

Magnetic resonance (MR) phase images often contain useful
information, such as spatial inhomogeneities in the polarizing
magnetic field and the velocity of blood flow [1], [2]. Extracting
the phase image from its measured complex MR image

is nontrivial because is uniquely defined only in the
principal value range of . Any value outside this interval
will be folded back into the principal value range to produce the
so-called wrapped phase , which differs from by an unknown
integer multiple of . Formally, the phase unwrapping problem
is defined as: given the wrapped phase , find the
“true” phase , which is related to by

(1)
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where is called the wrapping operator, and rounds its ar-
gument to the closest integer. The phase unwrapping problem
is mathematically ill-posed because is a surjective mapping.
A common approach to addressing the problem is to use spa-
tial and/or temporal constraints (e.g., the continuity/smoothness
constraint).

In the one-dimensional (1-D) case, for example, phase un-
wrapping can be done relatively easily if phase continuity can be
assumed. In 1982, Itoh showed that the wrapped phase gradient
modulo is the same as the corresponding true phase gradient
if the latter is less than everywhere [3], as summarized in the
following lemma with respect to sampled phase values.

Lemma 1.1: Let

(2)

where and represent the true and wrapped phase value at
location , respectively. If the “smoothness condition”

(3)

is satisfied, then

(4)

The above Lemma suggests a simple phase unwrapping method,
that is, integrating the wrapped phase gradient.

Lemma 1.1 can also be extended to higher dimensions. For
example, for two-dimensional (2-D) phase functions, we have
the following result.

Lemma 1.2: Let and represent the true and
wrapped phase values at pixel , and

(5)

If the following inequalities hold:

(6)

then

(7)

Lemma 2 suggests that phase unwrapping in two dimensions
may also be accomplished by phase integration, provided that
the conditions in (6) are satisfied, which is rarely the case in
practice due to measurement noise and/or rapid phase varia-
tions. As a result, integration over the wrapped phase gradient
field can produce different results depending on the integration
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path taken [4]. This path-dependent problem, unique to multi-
dimensional phase unwrapping, presents many challenges [5].
Nonetheless, multidimensional data do provide additional infor-
mation that can make phase unwrapping more robust than 1-D
data. For example, in the 1-D case, a phase unwrapping error at
a single point will propagate to the remainder of the unwrapped
phase function along the integration path, while this error may
be avoidable in multidimensional spaces because of the exis-
tence of multiple integration paths [6]–[8].

B. State-of-the-Art Algorithms

Phase unwrapping is a classic problem in signal processing
and much work has been done. This section provides a brief
summary of several key phase-unwrapping algorithms relevant
to the proposed work. For a comprehensive review of phase un-
wrapping, the reader is referred to [9].

There are two key components in a phase unwrapping
method: 1) a model for the true phase function, and 2) an algo-
rithm for phase recovery based on the model. Phase modeling is
undoubtedly the key to successful phase unwrapping; it allows
for prior information to be incorporated, making the phase
unwrapping problem solvable. There are deterministic and
statistical models. Existing deterministic models are usually
heuristic and can be viewed as a direct extension of the model
in Lemma 1.2. When (7) is not satisfied, an approximate model
is often constructed by minimizing the difference between the
left- and right-hand sides of (7) while ensuring path-indepen-
dence of the resulting phase gradients. A general objective
function used to measure phase difference is in the form of the

-norm [9]

(8)

The minimum-norm solution, , yields a smooth
phase map but may have large phase error in the presence of
noise and phase discontinuities [10]. In addition, the unwrapped
phase usually fails the congruence test, which requires that
rewrapping the unwrapped result reproduce the measured
phase. Improvements over the minimum-norm solution have
been made by incorporation of pixel-by-pixel weightings in (8)
to reduce the effects of background noise [2]. Models have also
been proposed to include phase discontinuities [6], [11]–[13].
Recently, statistical phase models have been proposed for
synthetic aperture radar applications [14], [15]. A desirable
feature about these models is their ability to take into account
both phase discontinuities and noise.

Determining the unwrapped phase values under a given phase
model entails solving an optimization problem, which is often
nontrivial. A popular algorithm to find the minimum-norm (or
weighted minimum-norm) solution is by solving a differential
equation. For (the least-squares case), the Poisson
equation results, which can be solved efficiently using fast
Fourier transform-based [16], discrete cosine transform-based
[17], or multigrid methods [18]. When , the partial
differential equation is usually solved iteratively, which is often
much slower than the least-squares method. Another class of

optimization methods, known as path-following methods, is
designed for models that include discontinuities. They integrate
the phase derivatives along some “optimal” paths that allow for
discontinuities [11] in the unwrapped phase function. In search
for an optimal integration path, several algorithms have been
proposed, which include the branch-cut algorithm [6], [19],
network-flow algorithms [5], [12], [13], and minimum and
maximum spanning tree algorithms [20]–[23]. Most of these
algorithms can be used with a statistical phase model when the
model is a simple function of the gradient field [15], [24],
although they cannot handle more complex phase models.

This paper proposes a new method to unwrap 2-D MR phase
images. Two novel features of the proposed method are: 1) use
of a Markov random field (MRF) to model the true phase image,
and 2) an efficient algorithm for phase estimation. The proposed
method is detailed in Section II. Experimental results to demon-
strate the performance of the proposed method are shown in
Section III, followed by some discussions in Section IV. The
paper is concluded in Section V.

II. PROPOSED METHOD

A. Phase Modeling

The proposed method is based on a statistical model, in which
both the true phase and the wrapped phase at each
pixel are treated as random variables, and their corresponding
images as random fields denoted as
and , where is the index set of
the image pixels. In this setting, phase unwrapping becomes an
estimation problem. Specifically, similar to other methods [15],
[25], [26], the phase is estimated using a maximum a posteriori
(MAP) estimator, which solves for the true phase image by

(9)

where and denote the posterior and prior probabil-
ities, is the likelihood function, and denotes
the maximizing value of within its domain. Equation (9) gen-
eralizes the MAP estimator used by Chen and Zebker [15], in
which is defined on a gradient field. To solve the
above MAP problem, we need to specify the likelihood func-
tion and the prior probability, which are discussed below.

1) Likelihood Function: We define the likelihood function,
based on the congruence constraint, as

(10)

where is the Dirac delta function. Given the above likelihood
function, the maximum likelihood (ML) estimate of the true
phase is not unique. Additional constraints on the desired true
phase are incorporated in the prior probability.

2) Prior Probability: We propose to use a Markov random
field (MRF) to model the desired “true” phase image. Specifi-
cally, based on the standard MRF theory, the elements of are
assumed to satisfy the following two conditions:

(11)

(12)

where is the entire set of pixels excluding pixel ,
and represents the set of ’s neighboring pixels. This
neighborhood system has the following properties.
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• A pixel is not a neighbor of itself: .
• The neighboring relationship is mutual:

.
The MRF model is selected based on three considerations.

First, because each individual pixel itself provides no informa-
tion for phase unwrapping, there is a need for incorporating spa-
tial constraints to specify how pixels or groups of pixels interact
[9]. A random field is an effective way to model this interac-
tion and the uncertainties within this interaction [27]. Second,
the Markovian assumption is based on the fact that the contex-
tual dependence in a natural image is primarily local [28], and
the true phase image has a close relationship to a natural image.
In fact, the “locality” assumption has been used implicitly in
other phase models (e.g., the minimum-norm model), which re-
quire the difference between adjacent pixels to be small. Com-
pared with these models, the MRF model provides a more gen-
eral mechanism for modeling local contextual dependence, with
the flexibility to handle effectively both smooth and nonsmooth
features [29], [30]. Third, the MRF model is computationally
appealing because the local nature of the associated energy func-
tions results in computationally efficient algorithms, as demon-
strated in this paper.

According to the Hammersley-Clifford theorem [28], an
MRF has an equivalent Gibbs distribution given by

(13)

where is a temperature parameter chosen to be unity in the
paper. The argument of the exponential function includes a
sum of clique potentials over all the possible cliques

, with denoting a vector composed of the set of phase
values within a clique . A clique defines a subset of pixels
in which every pair of distinct pixels is neighbors, except for
single-pixel cliques. For example, in the first-order neighbor-
hood system shown in Fig. 1, where the phase at the center
pixel is only dependent on its four adjacent neighbors, a clique
is a pair of two adjacent pixels that is either
or . For a given clique , the nonnegative
definite potential defines how the phase of the neigh-
boring pixels in the clique interact. MR phase images usually
contain two components: a spatially smooth component due
to inhomogeneities in the static field, and a nonsmooth
component due to sudden magnetic susceptibility changes from
one material to another (e.g., tissue/bone/air interface). A wide
range of potential functions have been studied in the image
restoration literature, which can handle effectively this type of
mixed image characteristics [28]. Focusing on the first-order
neighborhood system, we have

(14)

Taking the potential as the square of adjacent differences leads
to a Gauss-Markov prior

(15)

Fig. 1. The structure of the first-order neighborhood system. Pixel (m;n),
represented by a circle at the center, is conditioned only on its four adjacent
pixels.

which produces smooth images with very low probability of
sharp transitions in intensity [31]. To accommodate an in-
creased probability of sharp transitions, other convex potential
functions may be chosen, such as the generalized -Gaussian
model where ,

[29], the Huber prior in which the potential
function switches from quadratic to linear at user-specified
transition locations [32], [33], and

where is a user-specified
parameter [34]. Non-convex potential functions, such as

[35] with a constant , have been employed to allow for even
sharper intensity transitions. Higher-order neighborhood sys-
tems have also been used and proven to be able to capture
correlation structures having a greater spatial complexity [36].

All the above functions are applicable to phase unwrapping,
although one may be preferred over another in a specific ap-
plication. It is also worth mentioning that the true phase of an
MR image is not necessarily smooth, so the unwrapped results
based on the above smooth models are not necessarily the same
as the original true phase. However, the unsmooth portion of the
phase cannot be recovered since the information is already lost
in phase wrapping. Therefore, the smoothness is a practical op-
timality criterion, not a physical property of MRI, and is used in
all existing phase unwrapping methods. The difference here is
that it offers a more general mathematical definition for smooth-
ness by the use of an MRF model. In the following section,
we employ only the first-order MRF as an example to demon-
strate the proposed method. Generalization of the proposed un-
wrapping algorithm to higher-order MRF’s will be discussed in
Section IV.

Given the above specific likelihood and prior probabilities,
the MAP estimator in (9) becomes

(16)

The likelihood function that multiplies the exponential requires
that the unwrapped phase differ from the wrapped phase at each
pixel by an integer multiple of , where the integer is termed
the “wrap count” and is denoted by for pixel , and
for the matrix. As a result, solving (16) is equivalent to searching
for a set of integers such that satisfies the
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MRF requirement in the exponential of (16). Thereby, (16) can
be further reduced to minimizing an overall potential
over given the wrapped phase

(17)

where denotes the minimizing value of in its domain
of integer matrices.

B. Optimization Algorithm

In solving the optimization problem in (17), enumeration of
all possible solutions is computationally infeasible for realistic
image sizes. Although simulated annealing [37] is widely used,
it still is computationally very intensive [38]. We propose a
novel, efficient approach to the optimization in (17). The ap-
proach breaks a phase image into a number of blocks, which,
when following a certain raster scan, span the entire image. As
a result, the 2-D optimization problem is simplified to a series
of 1-D ones with each being solved by dynamic programming
[39]. The approach also employs an iterated conditional modes
(ICMs) algorithm [40] to guarantee the sequential block-wise
optimizations result in a global one over the entire image.

We show first how the dynamic programming can be applied
to find the minimizing wrap counts for a certain block given the
criterion in (17). Given an image block, dynamic programming
searches for an optimal sequence, with each element of the se-
quence consisting of the wrap counts for a column of the phase
image. For an by block, there are elements in the se-
quence, denoted by column vectors , . Each
vector is -dimensional, corresponding to the wrap counts of

pixels in a single column, i.e., .
The optimum of the sequence is defined by the overall potential

, defined in (17). To minimize this potential, we decom-
pose into a summation of potentials

and

(18)

for . Note that the first potential depends only on
column one, and the th depends only on columns and

. Dynamic programming takes advantage of this local depen-
dence and searches for the best wrap counts for one column at
a time. Specifically, the algorithm first searches for the wrap-
count vector of the first column that minimizes the accumu-
lated potential . Only these minimized values (a function
of ) are passed to the next step and added to to update the
accumulated potential; the accumulated potential is then used
as the objects for minimization with respect to . This proce-
dure is repeated until the last column of the image is reached, at

which point the final accumulated potential is minimized. The
procedure can be summarized mathematically as follows:

...

(19)

At each step, the optimal values are determined and recorded
as

...

(20)

These minimizing wrap counts comprise the surviving history
, which keeps track of the best sequence at each stage. Specif-

ically, the surviving history is initialized by setting to
be a list of all possible realizations of , and then updated by

(21)

for all possible realizations of . For the last column, the op-
timal sequence is obtained by tracing back the surviving his-
tory of . Upon conclusion of the minimization step,
the wrapped phase is adjusted appropriately using the corre-
sponding wrap counts to obtain the desired unwrapped phase.

The proposed dynamic programming procedure is illus-
trated in Fig. 2, where each unit in the th column of the
figure represents a possible for the th column of the
image. Each transition from one unit to another

represents an increment of the accumulated potential
. Among all the possible combi-

nations of transitions interconnecting units, only one is chosen,
which minimizes (19). The highlighted path is obtained by
tracing back the surviving history, and the units along the path
give the optimal wrap counts.

Compared with exhaustive search, this dynamic program-
ming method reduces the computational complexity from

down to , where is the maximum wrap
count. Block size is an important factor for the algorithm.
Clearly, in the extreme case that no block decomposition is
done, the final phase image is obtained after the above optimiza-
tion procedure. However, this procedure is computationally
expensive for a realistic image size (e.g., 256 256). On
the other hand, if an image is divided into very small blocks
(e.g., block size is 2 ), the optimization becomes easy and
efficient within each block, but can be challenging to achieve
a unified optimum when the blocks are combined to yield the
final image. To address this issue, we employ the idea of ICMs
[40]. The ICM algorithm uses a “greedy,” iterative strategy in
optimization. To maximize the posterior probability ,
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Fig. 2. Illustration of dynamic programming which searches for an optimal sequence of k ; k ; . . . ; k . Each unit in the nth column denotes a realization of
k . The connections between units represent accumulations of potentials. The minimum of these accumulated potentials gives the optimal sequence, shown as the
highlighted path of connections.

the algorithm sequentially updates each block into

by maximizing the conditional probability, given the
wrapped phase and the provisional estimate at the rest blocks

. Specifically

(22)

where denotes the set of pixels outside the block under
evaluation. Invoking the assumption that the likelihood func-
tions are independently and identically distributed (i.i.d) pixel-
wise and the prior probability is Markovian, we can rewrite the
above conditional probability as

(23)
where denotes the neighboring blocks. Following the
same derivation from (16) to (17), maximizing the right-hand
side of (23), which is an exponential function defined by the
MRF model, is equivalent to minimizing the corresponding po-
tential using

(24)

where is the accumulated potentials of the
target block. Compared with the objective function in
(17), the only difference in (24) is the additional boundary con-
straints introduced by the neighboring blocks. Therefore, the
same dynamic programming procedure described above can be
used to solve the minimization problem in (24) to obtain the
wrap counts within each block. For example, if a block com-
posed of two complete rows is chosen, the potential to be min-
imized in (17) becomes

in (24), which can be decomposed into summation of partial po-
tentials that are

(25)

where “ ” denotes the provisional estimates assumed to be fixed
in the current iteration. The above decomposition can be readily
generalized to different block shapes (e.g., two columns) and
block sizes (e.g., three or four rows or columns). When applied
to each block in turn, the above procedure is repeated according
to a well-defined raster scan scheme (e.g., top-to-bottom, left-to-
right), which defines an updating cycle of ICM. The iteration
continues until convergence. The convergence is guaranteed for
the serial updating and is rapid [40]. We term this optimiza-
tion approach “structured iterated conditional modes” (SICMs).
We have heuristically found that alternation of the raster scan
scheme from one iteration to another results in convergence to
an extreme closer to the true value. In addition, the result ob-
tained by ICM depends on the initial provisional estimate [28],
and it is currently not known how to set the initialization prop-
erly to obtain a good solution. In our implementation, we used
the same block-by-block optimization in (24), except that the
conditional probability depends only on the blocks that are al-
ready estimated.

The computational complexity of this approach is the power
of the smaller dimension of the block; for example, if a block
of two complete rows is chosen, the complexity becomes

per iteration, which is linear to the image size.
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Fig. 3. (a) Simulated true phase image, which is a parabola in two dimensions
and (b) its corresponding wrapped phase.

III. RESULTS

We have tested our proposed algorithm on various MRF
models using various simulated and experimental data having
different noise levels. In this section, we present some results
based on a first-order Gaussian MRF statistical model. No
significant differences have been observed in the results com-
puted using other MRF models. For the first-order MRF, it is
sufficient to use a 2 by (or by 2) block in the optimization
step. All examples shown in this section were calculated using
a row-by-row and top-to-bottom raster scan (first iteration),
followed sequentially by a column-to-column/left-to-right
scan, a row-by-row/bottom-to-top scan, then a column-to-
column/right-to-left scan. This scheme is then repeated until
convergence.

A. Simulation Studies

We have tested the performance of our algorithm on synthetic
data, an example of which is shown in Fig. 3(a), where the true
phase function, , is a parabola located at the center of
the image. We compared the proposed algorithm with the least
squares (LS) algorithm—a representative of minimum-norm
methods—and the algorithm of Chen and Zebker [5], which is a
path-following approach. In the noise-free case, all algorithms
can perfectly recover the true phase from the wrapped phase
shown in Fig. 3(b).

In the presence of additive noise, the wrapped phase becomes
, where denotes the additive random noise.

In this case, phase unwrapping algorithms attempt to obtain
, without any attempt to remove noise. The re-

sulting may deviate considerably from the noise-free phase
values as noise increases, leading to errors much larger than
the noise level. To compare the robustness of our algorithms in
the present of noise, we plot the mean-squared-error (MSE) as
a function of the signal-to-noise ratio (SNR) in Fig. 4, where
the MSE is computed using the noise-free phase as a refer-
ence. Both the proposed algorithm and the algorithm of Chen
and Zebker have similar performance, while the MSE of the LS
method increases at a faster rate than the others, as noise in-
creases. In particular, we show in Fig. 5(a) and (b) the error im-
ages for both the LS and the proposed algorithms

Fig. 4. MSE of the unwrapped results as a function of SNR. Solid line, dotted
line, and dashed line represent, respectively, the proposed method, the algorithm
of Chen and Zebker, and the LS method.

Fig. 5. Difference images between the true phase and the unwrapped phase
based on (a) the LS method and (b) the proposed method at SNR = 12 dB.

when dB. The result using the algorithm of Chen and
Zebker is not shown as it is quite close to Fig. 5(b). The results
suggest that even with low SNR, the proposed algorithm is able
to accurately estimate the wrap counts so that the error appears
only as random noise. The LS solutions usually underestimate
the local-average phase gradient when noise is large. This be-
havior is analogous to least-squares curve fitting, in which the
fitted curve is always smoother than the measurements. Com-
pared with the LS method, the proposed method is significantly
more robust.

B. Experimental Studies

The algorithms have been tested using several MR data sets.
A set of representative results from a phantom experiment is
shown in Fig. 6. The phantom image was acquired on a 1.5T
MRI using a fat imaging with steady-state precession sequence,
with and . The magnitude image
was segmented to generate a mask having unity value inside
the object and zero for the background. The wrapped phase
image, weighted by the mask, was then unwrapped by the three
algorithms. Fig. 6(a)–(d) shows the wrapped phase image, the
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Fig. 6. MR phase images of a phantom: (a) wrapped phase image, and phase
images unwrapped by (b) the proposed method, (c) the LS method, and (d) the
algorithm of Chen and Zebker.

unwrapped phase image by the proposed algorithm, the LS
method, and the algorithm of Chen and Zebker, respectively.
All methods yield a slowly varying unwrapped phase within
the big circle. The noise within the small circles is seen to be
large and is problematic. The error due to the noise in the LS
method is not limited to the boundaries of the small circles,
but in fact propagates and affects other regions in the larger
circle. This introduces additional error in the unwrapped phase.
Compared with Fig. 6(c), the errors of Fig. 6(b) and (d) are
more localized to the small circles and do not affect the larger
region as significantly. The proposed method and the algorithm
of Chen and Zebker, thus, have better performance than does
the LS method.

Another set of representative results for MR head data is
shown in Fig. 7. The data set was obtained in vivo from a 1.5T
MRI using a gradient-echo sequence with and

. Fig. 7(a) shows the wrapped phase image. It can
be seen that the phase variation inside the brain is slow, but be-
comes rapid at the nasal, ear, and oral regions due to magnetic
susceptibility changes. In unwrapping the phase, similar to the
procedure for the phantom, a mask generated by segmenting the
magnitude image is applied prior to unwrapping. To compare
their performance, we show the unwrapped phase computed by
the proposed method, the LS method, and the algorithm of Chen
and Zebker in Fig. 7(b)-(d), respectively. As can be seen, the
proposed algorithm performed quite well in removing the
phase jumps of Fig. 7(a). The phase image produced by the LS
method appears more blurred, while artifacts appear in the phase

Fig. 7. MR phase images of a human head: (a) wrapped phase image, and
unwrapped phase images by (b) the proposed method, (c) the LS method, and
(d) the algorithm of Chen and Zebker.

image reconstructed using the algorithm of Chen and Zebker,
above the neck and about the skull.

IV. DISCUSSION

The proposed method has a number of appealing properties.
First, as in the LS method and the algorithm of Chen and Zebker,
the proposed method yields an exact solution if the smoothness
condition in (6) is satisfied. This can be shown using the fol-
lowing inequality:

where the left-hand side of the inequality corresponds to the
proposed algorithm. When the potential is a nonnegative func-
tion of the difference between its two arguments, the right-hand
side gives the solution , and

, which is the same as the so-
lution in Lemma 1.2. The equality holds if is a gradient
field, which is satisfied when (6) holds. Therefore, when the
true phase is sufficiently smooth, the solution of the proposed
method yields exactly the same solution as in Lemma 1.2.
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Fig. 8. (a) MR magnitude image of the human head. (b) The unwrapped phase
image by the proposed method weighted by the magnitude.

Second, it is easy to incorporate a quality map into the pro-
posed method to further improve its robustness. In MR phase
unwrapping, the magnitude image, , serves as a natural
quality map that assigns greater weights to pixels having large
magnitude values. To do so, we can simply modify the cost func-
tion as follows:

(26)

Fig. 8 shows how the magnitude-weighting helps to improve the
phase unwrapping results in the nasal region.

Third, as with all other path-following methods, the proposed
algorithm satisfies the congruence constraint. The complex
image with unwrapped phase is exactly the same as the mea-
sured complex image with true phase, a result desirable in most
applications. This is in contrast to the LS method, where this
property does not hold in general, unless (6) is true.

A drawback of the SICM algorithm, common to most other
path-following methods, is that the search for the optimal path
always starts from a reference pixel, whose phase value is as-
sumed to be free from wrapping ambiguity. If this assumption
fails, the resulting unwrapped phase map may have a constant
offset. In most applications, however, this constant offset is not
problematic—for example, in correction of artifacts due to field
inhomogeneities based on field map measurements.

In addition to the above properties common to most existing
methods, the proposed algorithm has several unique properties
that may be advantageous in certain applications. Specifically,
it has been shown experimentally that the algorithm is robust to
noise and is able to better handle abrupt phase variations; this
may be a result of using the MRF model and the SICM opti-
mization method. More importantly, the SICM algorithm and
related higher-order derivatives are able to efficiently handle
any model based on local interactions. As an example, Fig. 9
illustrates how the SICM algorithm may be generalized to fit
a third-order MRF. This flexibility offers an advantage over
the existing methods (e.g., the algorithm of Chen and Zebker)
which are based on models having interactions between ad-
jacent pixels only. The efficiency and generality of the SICM
algorithm may make it possible to use data-dependent and

Fig. 9. (a) Structure of a third-order MRF and (b) the corresponding
dynamic programming realization. In searching for the optimal sequence
of k ; k ; . . . ; k , each unit in the nth column denotes a realization of a
k ; k pair.

spatially varying MRF models to solve more challenging phase
unwrapping problems, where existing algorithms fail because
of inadequacy of the phase model used. It is also worth noting
that although higher-order MRF’s may be more accurate, the
increased capability comes at the expense of computational
complexity, which increases exponentially with the order of
the model. Further investigations into the trade-offs associated
with more complex MRF models are needed and would be a
direction of our future work.

In general, the SICM algorithm is efficient in computation
and memory usage. The high computational efficiency results
primarily from the fact that ICM reduces a 2-D problem to a se-
ries of 1-D problems to which dynamic programming can be ap-
plied. The high efficiency in memory usage is due to its repeated
use of the same memory at each step of dynamic programming
[41], making the method especially attractive for hardware im-
plementation. The proposed algorithm is not as fast as the LS
method (same speed for a fixed image size). However, it is dif-
ficult to make a fair comparison with the algorithm of Chen and
Zebker, because its computational complexity has not yet been
quantified. The speeds of both the proposed method and the al-
gorithm of Chen and Zebker depend on the number of wraps, as
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well as the content of the image. For the MR phase images we
have evaluated, the proposed method converged faster than the
algorithm of Chen and Zebker. But the algorithm of Chen and
Zebker may be faster for unwrapping synthetic aperture radar
phase images with hundreds of wraps, since the complexity of
the proposed method increases exponentially with the number
of wrap counts. To overcome this problem, we may modify the
proposed method by restricting the wrap count at each pixel to
be 1, 0 or 1 at each iteration, and then improve the results it-
eratively. However, this reduction in computational complexity
is at the expense of performance (associated with the suboptimal
search strategy used).

V. CONCLUSION

Two-dimensional phase unwrapping is a very challenging
problem; the challenges lie in both modeling the true phase and
solving the underlying optimization problem efficiently. In this
paper, we propose a novel algorithm for unwrapping MR phase
images. Based on the phase characteristics of MR images, we
use a flexible MRF for modeling the phase, accommodating
the smooth characteristics of the true phase of an MR image,
while also permitting abrupt phase changes. Using this statis-
tical model, we also propose an efficient optimization method
based on ICM along with a dynamic programming approach for
fitting the unwrapped phase to the model. Experimental results
demonstrate that the proposed algorithm is robust in the presence
of noise, and able to effectively handle rapid, large phase vari-
ations encountered in gradient-echo imaging. It will hopefully
prove useful for a variety of practical applications, such as field
mapping, flow imaging, and temperature mapping, applications
which depend on an accurate unwrapping of phase images.
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