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Purpose: To address the issue of computational complexity in
generalized autocalibrating partially parallel acquisition

(GRAPPA) when several calibration data are used.
Method: GRAPPA requires fully sampled data for accurate
calibration with increasing data needed for higher reduction

factors to maintain accuracy, which leads to longer computa-
tional time, especially in a three-dimensional (3D) setting and
with higher channel count coils. Channel reduction methods

have been developed to address this issue when massive
array coils are used. In this study, the complexity problem was

addressed from a different prospective. Instead of compress-
ing to fewer channels, we propose the use of random projec-
tions to reduce the dimension of the linear equation in the

calibration phase. The equivalence before and after the reduc-
tion is supported by the Johnson-Lindenstrauss lemma. The

proposed random projection method can be integrated with
channel reduction sequentially for even higher computational
efficiency.

Results: Experimental results show that GRAPPA with random
projection can achieve comparable image quality with much

less computational time when compared with conventional
GRAPPA without random projection.
Conclusion: The proposed random projection method is able

to reduce the computational time of GRAPPA, especially in a
3D setting, without compromising the image quality, or to
improve the reconstruction quality by allowing more data for

calibration when the computational time is a limiting factor.
Magn Reson Med 000:000–000, 2014. VC 2014 Wiley Periodi-
cals, Inc.
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INTRODUCTION

Parallel imaging using phased array coils has been
used widely in the clinical setting to accelerate the MR
data acquisition speed (1–4). Generalized autocalibrat-
ing partially parallel acquisition (GRAPPA) is a popu-
lar commercial reconstruction method (3). It

reconstructs the missing k-space data for each channel
(known as the target channel) by a linear combination
of some acquired data from all channels (source chan-
nel), where the coefficients for combination are
estimated using some additionally acquired autocali-
bration signal (ACS) lines. Massive array coils with a
large number of channels have been studied and devel-
oped for higher signal-to-noise ratios (SNR) and/or
higher accelerations (5). As massive array coils become
commercially available, the greatly increased computa-
tional time has become a concern for GRAPPA recon-
struction, because the reconstruction time increases
almost quadratically with the number of channels (6).
Such a long reconstruction time using massive array
coils leads to difficulties in online high-throughput
display.

A few works have attempted to address this issue
using hardware- or software-based approaches to
reduce the effective number of channels. In the
hardware-based approach (7), a hardware radiofre-
quency signal combiner was placed between preampli-
fication and the receiver system to construct an
eigencoil array based on the noise covariance of the
receiver array. With such a channel reduction method,
optimal SNR and similar reconstruction quality can be
achieved. However, the requirement of additional hard-
ware can be cumbersome. In contrast, it is more flexi-
ble to use the software-based channel reduction
methods. The coil compression process generates a
new set of fewer virtual channels that can be expressed
as linear combinations of the physical channels. These
methods aim at reducing the effective number of chan-
nels for reconstruction by combining the physically
acquired data from a large number of channels before
image reconstruction. For example, principal compo-
nent analysis (PCA) has been used to find the correla-
tion among physical channels and reduce the number
of channels to fewer effective ones by linearly combin-
ing the data from physical channels (8–15). These
fewer combined channels are used for reconstruction,
which leads to reduced reconstruction time. With
channel reduction, both the numbers of target channels
and source channels can be reduced. Because the ulti-
mate goal is the reconstruction of a single-channel
image, several studies (16–19) have investigated the
synthesization of a single target channel for k-space–
based reconstruction techniques. These methods com-
press multiple channels to a single channel prior to
reconstruction so that the convolution-based calibra-
tion and synthesis need only be performed once
(instead of performing it for each channel), thereby
achieving significant computation reduction. A method
has also been proposed to reduce the computations for
matrix multiplications during the calibration by remov-
ing overlapping computations (20).

1Department of Biomedical Engineering, Department of Electrical Engineer-
ing, The State University of New York at Buffalo, Buffalo, New York, USA.
2Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona,
USA.

Grant sponsor: National Science Foundation; Grant number: CBET-
1265612; Grant sponsor: State University of New York at Buffalo.

*Correspondence to: Leslie Ying, PhD, Department of Biomedical Engineering,
Department of Electrical Engineering, School of Engineering and Applied
Science, University at Buffalo, State University of New York, 223 Davis
Hall, Buffalo, NY 14260. leiying@buffalo.edu

Additional Supporting Information may be found in the online version of
this article.

Received 21 March 2014; revised 25 June 2014; accepted 26 June 2014

DOI 10.1002/mrm.25373
Published online 00 Month 2014 in Wiley Online Library (wileyonlinelibrary.
com).

Magnetic Resonance in Medicine 00:00–00 (2014)

VC 2014 Wiley Periodicals, Inc. 1



In this study, we investigated the use of random pro-
jection to reduce the computation in GRAPPA calibra-
tion. Random projection has been used for data
dimension reduction in machine learning (21,22). The
concept of random projection is related to compressed
sensing (23,24), a topic that has attracted much attention
recently. By projecting the data to lower dimensions
using some random matrices with certain properties
(e.g., the restricted isometry property), the useful infor-
mation is still preserved in the reduced data. When
applied to GRAPPA, random projection reduces the large
number of equations during the calibration phase by pro-
jecting the calibration equation onto a much lower
dimensional space using random matrices, such that the
computational time for solving the calibration equation
is reduced without compromising the calibration accu-
racy. This is quite different from existing methods
wherein the number of channels is compressed before
reconstruction. Our theoretical calculation and experi-
mental results here demonstrate that in a typical setting,
the proposed method can achieve the same reconstruc-
tion quality with much less computation time of the con-
ventional GRAPPA. In addition, the method can be
complemented by a channel reduction method for fur-
ther savings in computational time. Several two-
dimensional (2D) and three-dimensional (3D) reconstruc-
tion experiments with different numbers of physical
channels are used to demonstrate the significant
improvement in computational efficiency. The prelimi-
nary idea of this study was previously presented by Lyu
et al. (25,26).

THEORY

Complexity of 2D GRAPPA

There are two phases in GRAPPA reconstruction: the cal-
ibration phase and the synthesis phase. During the cali-
bration phase, the acquired ACS data are used to
calibrate the GRAPPA reconstruction coefficients in
k-space. Specifically, the k-space data point that should
be skipped during the accelerated scan is assumed to be
approximately equal to a linear combination of the
acquired undersampled data in the neighborhood from
all coils, which can be represented as

Sjðky þ rDky ;kx Þ

¼
XNc

c¼1

XB2

b¼B1

XH2

h¼H1

wj;r c;b;hð Þ � Sc ky þ bRDky ; kx þ hDkx

� �
;

[1]

where Sj on the left-hand side denotes the target data
that should be skipped but is acquired for the calibration
purpose, and Sc on the right-hand side is the source
k-space signals that should originally be acquired, both
in the ACS region. Here, w denotes the coefficient set; R
represents the reduction factor (ORF); j is the target coil;
r is the offset; c counts all coils; b and h transverse the
acquired neighboring k-space data in ky and kx direc-
tions, respectively; and the variables kx and ky represent
the coordinates along the frequency- and phase-encoding

directions, respectively. The GRAPPA calibration phase
can be simplified as a matrix equation

bm�l ¼ Am�nxn�l; [2]

where A represents the matrix comprised of the source
data, b ¼ ½b1;b2; � � � ;bl� denotes the target data for cali-
bration, x ¼ ½x1;x2; � � � ;xl� represents the linear combina-
tion coefficients, and l counts for all coils and all
possible offsets and is equal to (R� 1)Nc. A has NpNx

rows and Ncdxdy columns, where Np is the number of
phase-encoding lines that are possible fit locations, Nx is
the number of points along the frequency encoding
direction, Nc is the total number of all channels for the
original k-space data, and dx and dy are the convolution
size of GRAPPA along the frequency-encoding and
phase-encoding directions, respectively. The convolution
size along the phase-encoding direction is defined as the
block size. In general, the coefficients x depend on the
coil sensitivities and are not known a priori. In calibra-
tion, the goal is to find the unknown x based on the
matrix in Equation 2. The target data b and matrix A
include data at all locations of the ACS region to find
the best GRAPPA coefficients x. The formulation in
Equation 2 allows different coils and different target off-
sets to share the same A such that overlapping computa-
tions are avoided in solving the equation, as in Brau
et al. (6) and Beatty et al. (20). The least-squares method
is commonly used to calculate the coefficients

x̂ ¼ min
x

||b�Ax||2
F ; [3]

where the subscript F denotes the Frobenius norm.
Many ACS data points are usually acquired to set up
Equation 2, which means the problem is well overdeter-
mined. In this case, the solution is given by

x ¼ ðAH AÞ�1ðAH bÞ: [4]

It is worth mentioning that there are other methods

(e.g., LU decomposition and iterative conjugate gradient)

to solve Equation 2. They may be more efficient than the

pseudo-inverse method in Equation 4, depending on the

scale of the equation. In this study, we focused on the

pseudo-inverse method to be consistent with the com-

plexity analysis described by Brau et al. (6).
During the synthesis phase, based on the shift-invariant

assumption, the same Equation 2 is used with the same x
obtained from Equation 4, but to obtain the unknown b
using the acquired k-space data outside the ACS region
for A. By this means, the missing data b are estimated by
the linear combination of the acquired data in A and the
full k-space data can be used to obtain the image of each
channel. The final image is reconstructed using the root
sum of squares of the images from all channels.

The computational expense of the calibration and syn-
thesis phases can be estimated using matrix multiplica-
tion and inversions (6). Several different modes can be
calculated individually and then combined using the
goodness of fit (3). For each mode, the calibration phase
requires mn2 þ nlðmþ nÞ þ n3ð Þ complex-valued multipli-
cations, where m¼NpNx, n¼dxdyNc, l ¼ ðR� 1ÞNc. It is
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seen that AHA dominates the calibration cost for m >> n,
which requires mn2complex-valued multiplications. Fur-
thermore, in the synthesis phase of GRAPPA, NuNxN2

c dx

dyðR� 1Þ complex-valued multiplications are needed for
each mode, where Nu is the number of phase-encoding
lines to be synthesized at a particular offset. The number
of modes is commonly chosen to be the same as the
number of blocks dy . The computation of the goodness of
fit itself is typically negligible compared with other
calculations. Therefore, the total computational expense
for GRAPPA reconstruction is approximately on the order
of NpNxðNcdxÞ2d3

y þNpNxN2
c dxd2

yðR� 1ÞþN3
c d2

xd3
yðR� 1Þ þ

ðNcdxÞ3d4
yþNuNxN2

c dxd2
y ðR� 1Þ. The analysis shows that

the computational complexity increases almost quadrati-
cally with the number of channels. Therefore, channel
reduction methods are able to reduce the total reconstruc-
tion time significantly. On the other hand, the calibration
phase is seen to involve high computational cost due to
solving inverse equations. If we adopt the commonly used
reconstruction parameters Nacs¼ 30, Nx¼ 256, dx¼ 13,
dy¼ 4, R¼ 3, Nu¼ 75, Nc¼ 8, block size¼ 4, and Np ¼24,
the ratio between the calibration and synthesis phases is
9.3. This confirms that the calibration phase dominates
the total computational time. It is worthwhile to reduce
the computational cost of the calibration phase as done in
the proposed method.

PCA-Based Dimension Reduction Method for Channel
Compression

Dimensionality reduction has been well studied in the
machine learning community. It involves projecting data
from a high-dimensional space to a lower-dimensional
one without a significant loss of information. The new
data with reduced dimensions are expected to maintain
most of the important information. Among the existing
linear approaches that use linear mapping for dimen-
sionality reduction, PCA is a classical method to remove
redundant information from statistically correlated data
and reduce the dimensions. It performs the eigen decom-
position on the covariance matrix of the data and
removes the components that correspond to the smallest
eigenvalues. Among all linear approaches, PCA mini-
mizes the projection residuals and maximizes the var-
iance between the combined variables (27–29). A major
limitation of PCA is its computational complexity. Per-
forming a PCA requires an order of N3 multiplications,
with N being the original dimension, which becomes
prohibitive when dealing with a large dataset.

In parallel imaging, PCA has been successfully used to
compress the channels in large array coils (8–11). The
resulting fewer combined channels corresponding to the
largest eigenvalues are used for reconstruction such that
the reconstruction time is reduced. Because the number
of channels is not a large number in general, the compu-
tational saving from channel reduction overrides the
additional computational cost of PCA.

Random Projection for GRAPPA Calibration

Dimensionality reduction is concerned with the problem
of projecting a set of n points in <m, with m typically
large into a lower dimensional Euclidean space <kwhile

approximately preserving the relative distance between
any two of these points. We need to know how small k
could become and what type of projections would work.
The Johnson-Lindenstrauss lemma (30–34) deals with
such a problem.

LEMMA

(Johnson and Lindenstrauss, 1984) Suppose we have an
arbitrary matrix A 2 <n�m. Given any e > 0, there is a

mapping f : <m ! <k, for any k � 12
log n

e2 , such that for

any two rows u; v 2 A, we have

ð1� eÞ||f ðuÞ � f ðvÞ||2 � ||u� v||2 � ð1þ eÞ||f ðuÞ � f ðvÞ||2:

[5]

The theorem states that we can find such a projection
f for the set of points that preserves pairwise distances
up to a factor of (1 6 e), but does not state how to find
such an f. More recently, there are simple proofs of the
lemma that show that f can be taken as a linear mapping
represented by a k � m matrix R whose entries are ran-
domly drawn from certain probability distributions
(31,35). Apparently, the Johnson-Lindenstrauss lemma
shares similarity with the well-known restricted isometry
property in compressed sensing (23). In fact, the same
proof used for Johnson-Lindenstrauss lemma can be used
to prove the restricted isometry property of any random
matrices (34,36). Based on the Johnson-Lindenstrauss
lemma, random matrices with each element independ-
ently drawn from a certain distribution will satisfy the
condition for f in Equation 5 with high probability, pro-
vided k satisfied the conditions of the lemma.

Where preservation of the relative distance between
any two points is concerned, projections with random
matrices (i.e., random projections) can be used for
dimensionality reduction, which has been well studied
in machine learning (21,22). Here, we propose to reduce
the dimension of the GRAPPA calibration equation using
random projection. In the GRAPPA calibration given by
Equations 1 and 2, our objective is to reduce the
dimension of Ax and b such that their relative distance
||Ax-b||F is preserved. The random projection is exactly
able to serve the purpose based on the Johnson-
Lindenstrauss lemma. Specifically, we define a random
matrix R of k � m to project the original m-dimensional
data onto a k-dimensional (k � m) subspace with a
dimension reduction factor m/k. We then multiply the
random matrix on both sides of the calibration in Equa-
tion 2:

Rk�mbm�l ¼ Rk�mAm�nxn�l; [6]

where k is the reduced dimension. Applying the random
projection using Equation 6 is equivalent to linearly
combining a subset of equations in a random fashion to
form a new reduced set of equations. With such a ran-
dom projection, we have a high probability to maintain
the important information in the lower dimensional
space after the projection. The solution to the reduced
set of equations is approximately the same as the original
one because for any xn�l,
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||Rk�mAm�nxn�l � Rk�mbm�l||F 	 ||Am�nxn�l � bm�l||F

[7]

provided k is not too small.

Choice of R

In contrast to PCA, the computational complexity of ran-
dom projection is rather low, requiring km multiplica-
tions in general. The complexity can be further reduced
by carefully choosing the distribution. Although most
random matrices would be applicable, here we use a
matrix R whose elements are drawn independently from
identical distribution with the following density (31):

Rði; jÞ ¼ 1ffiffiffi
p
p

1 p=2

0 with probability of 1� p

�1 p=2

:

8>><
>>:

[8]

This random projection has been proved to satisfy the
Johnson-Lindenstrauss lemma, where p is usually equal
to 1, 1/3 (31), and 1=

ffiffiffiffiffi
m
p

(33). Such a simple and sparse
construction in Equation 8 incurs a large saving in com-
putational cost, because only a single multiplication and
very few additions are needed when computing the pro-
jection. As p goes smaller, the matrix R becomes sparser
and thus the computation is faster. The effect of p on
reconstruction accuracy is described in the Results. The
extreme case of the sparsest R with full rank is that it
has only one element in each of the k rows being non-
zero. In that case, random projection with the sparsest R
is equivalent to randomly selecting k rows of the calibra-
tion matrix, which minimizes the computational cost of
the random projection process. Such a strategy of ran-
domly selecting equations has been used in solving large
scale over determined systems and shown to improve
convergence of the projection onto convex set (37). We
use such a sparsest random projection for this study. An
example of the sparsest random projection matrix is pro-
vided online in the Supporting Information.

Choice of k

The reduced dimension k directly affects the computa-
tional complexity of calibration. With random projection,
the computational cost of the calibration phase is greatly
reduced. Instead of solving an m � n equation, we
solve a k � n equation, where k � m. We define a factor
l ¼ k=n >1, which represents how much the new equa-
tion is overdetermined after dimensionality reduction.
Here we heuristically find the optimal k to be in the

range of 2
4. That is, for the same number of unknowns
n, the number of equations is reduced to be about 2
4
times that of unknowns. This optimal range is found to
be independent of the parameters in GRAPPA. Further
studies on the effect of k are described in the Results.
The exact computational savings depend on the specific
problem using GRAPPA. For example, if we assume
k¼ 2n and the commonly used parameters for 2D
GRAPPA (e.g., 30 ACS, eight channels with ORF of 3),
then the size of the equation is reduced from 6144 � 416
in Equation 3 to 832 � 416 in Equation 6. The calibra-
tion phase has a saving of approximately 5.3 times. With
such a saving, the ratio between the computation time of
the calibration and synthesis phases is reduced from 9.3
to 1.7. Compared with the conventional GRAPPA, the
random projection brings in a total saving of 3.8 times in
computational cost. If more data are involved in
GRAPPA, as in the cases of 3D reconstruction and mas-
sive array coils, much more savings are expected.

Integrating Channel Reduction with Random Projection

Although PCA and random projection are both linear
dimensionality reduction methods, they have different
objectives and properties after the reduction. In PCA, the
variance is to be maximized, which is ideal for channel
reduction. While in random projection, the data distance
needs to be maintained, which is ideal for reducing lin-
ear equations without changing the least squares solu-
tions. In addition, the two methods are exploited at
different stages of GRAPPA. PCA is performed before the
reconstruction, and random projection is done during
the calibration phase of reconstruction. The relationship
is illustrated in Figure 1. Therefore, both methods can be
integrated for a significant reduction in computational
cost of GRAPPA.

METHODS

The computational benefit of the proposed random projec-
tion method for GRAPPA is evaluated on three scanned
datasets. The first axial brain dataset was acquired on a GE
3T scanner (GE Healthcare, Waukesha, Wisconsin, USA)
with an eight-channel head coil using a 2D spin echo
sequence (echo time [TE]/pulse repetition time [TR]¼
11/700 ms; matrix size¼256 � 256; field of view
[FOV]¼220 � 220 mm2). The second dataset was acquired
on a Philips Ingenia 3T scanner (Philips Healthcare, Best,
Netherlands) with 12-channel head coil using a 3D Fast
Field Echo sequence (TE/TR¼4.6/25 ms; matrix size¼
239� 239 � 83; FOV¼ 240 � 240 � 130 mm3. In the third
dataset, a set of axial brain data was acquired on a Siemens
3T scanner (Siemens Healthcare, Erlangen, Germany) with
a 32-channel head coil using a 2D gradient echo sequence
(TE/TR¼ 2.29/100 ms; flip angle¼ 25�; matrix size¼256 �
256; slice thickness¼3 mm; FOV¼ 240 � 240 mm2).

These datasets were acquired in full and the square-
root of sum-of-squares of the images from fully sampled
data of all coils was used as a reference. The full k-space
data were then manually undersampled retrospectively
to simulate the accelerated acquisition for GRAPPA. We
compared the GRAPPA reconstructions with and without
random projection to demonstrate the computational

FIG. 1. Diagram of GRAPPA, RP-GRAPPA, CR-GRAPPA, and CR-
RP-GRAPPA.
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savings of the proposed random projection method over
the conventional GRAPPA. In particular, we compared
the two approaches when the same amount of ACS data
was used as well as when both had the same computa-
tional complexity but with reduced ACS data for conven-
tional GRAPPA. The reconstruction quality was
evaluated both visually and quantitatively using the nor-
malized mean squared error (NMSE) with the reference
image as the gold standard. The computational savings
are measured in terms of both the computational com-
plexity calculated analytically as the total number of
multiplications and the computational time measured in
CPU time. Due to the random nature of the proposed
method, the NMSE and CPU time were both obtained
from the average results of 50 executions. For the pro-
posed random projection method, we varied the parame-
ter l ¼ k=n. The smaller the k was, the less the equation
was overdetermined and the less the computation was
needed. For the 32-channel dataset, we also combined
random projection with channel reduction methods. Spe-
cifically, we used the PCA channel reduction method to
compress the 32 channels to fewer source channels and
target channels (8–11), then applied the proposed ran-
dom projection method to GRAPPA reconstruction.

All methods were implemented in MATLAB (Math-
works, Natick, Massachusetts, USA) and run on a PC
with an Intel i7-3700 3.4GHz 8-core CPU with a 16-GB
memory, except that the 3D data set was processed on a

workstation with an Intel Xeon X5492 3.4GHz dual
4-core CPU with a 32-GB memory. To reduce the CPU
time in 3D GRAPPA, parallel computing was imple-
mented in the synthesis phase using the MATLAB Paral-
lel Computing Toolbox.

RESULTS

Random Projection for 2D GRAPPA

We evaluated the computational savings of random pro-
jection on GRAPPA (RP-GRAPPA) for 2D reconstruction
using the first dataset. The data were undersampled
along the phase encoding direction with an ORF of 3
with 30 ACS lines. Both GRAPPA and RP-GRAPPA were
used to reconstruct the final image, with the number of
blocks dy being 4 and the number of columns dx 13. The
CPU times of GRAPPA and RP-GRAPPA were 2.60 s and
0.51 s, respectively. The CPU time ratio between
GRAPPA and RP-GRAPPA was about 5. Such a saving in
computation time roughly agrees with our theoretical
analysis. In addition, we also reduced the number of col-
umns of ACS data in GRAPPA reconstruction to make
the computational time to be about the same as that of
RP-GRAPPA. The reconstructions, their corresponding
difference images with the reference, and the g-factor
maps are shown in Figure 2. The NMSE were 0.0666 for
GRAPPA, 0.0657 for RP-GRAPPA (k¼3), and 0.0877 for
ACS-reduced GRAPPA. The proposed random projection

FIG. 2. Axial brain images reconstructed from a set of eight-channel data with an ORF of 3 and 30 ACS lines using GRAPPA and RP-

GRAPPA. The corresponding difference images are shown in the middle column (3� amplification) and g-factor maps are shown in the
right column. The proposed RP-GRAPPA can achieve a similar reconstruction quality to GRAPPA with much less CPU time or take
about the same CPU time as GRAPPA but with better SNR.
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method was able to reduce the GRAPPA reconstruction
time by a factor of 5 without compromising the image
quality. Equivalently, the proposed method was able to
improve the GRAPPA reconstruction quality with the
same computational time.

We also studied how the parameters of p and k in ran-
dom projection affected the reconstruction accuracy.
Specifically, we first changed the value for the parameter
p from 0.01 to 0.5, which controlled the sparsity of the
random projection matrix R. We also used the sparsest
R, which randomly selects rows of the calibration equa-
tion. The corresponding reconstruction errors are plotted
in Figure 3 when k was fixed to 3, which controlled the
level of overdeterminedness after projection. These
results show that the sparsity of the random projection
matrix barely affected the reconstruction accuracy. Simi-
lar reconstruction errors were achieved with both non-
sparse (p¼0.5) and the sparsest random projections. For
these two extreme cases, we also compared the recon-
struction errors as well as the CPU time in Figure 4
when k went from 1.1 to 4. The nonsparse random pro-
jection was more accurate for small k, but the sparest
projection became more accurate when k was >2.2. On
the other hand, the sparsest random projection had a sig-
nificant benefit in computational efficiency, especially at
a large k. These results suggest that the projection with
randomly selected rows is a good choice in practice.

With random row selection, we also calculated the
overall (both calibration and synthesis) computation
complexity as well as the NMSE of RP-GRAPPA as k
increased from 1.1 to 4, with a step size of 0.05. The
CPU time was also recorded. The results of NMSE, com-
plexity, and CPU time are shown on the same plot in
Figure 5. The NMSE decreased rapidly (approximately
exponentially) as k increased and became sufficiently
low and remained steady for k> 2.2. On the other hand,
the computation complexity increased linearly as k
increased. The almost linear trend of CPU time with
respect to k was consistent with that of the computation
complexity. Figure 5 suggests that k has to be sufficiently
large to maintain the reconstruction quality. When k
increased, reconstruction error was suppressed exponen-
tially, while the CPU time increased only linearly. For
k� 3, the NMSE varied slowly. The optimal value for k
to balance the tradeoff between NMSE and CPU time is
seen to be 3.

Random Projection for 3D GRAPPA

In 3D reconstruction, the calibration phase becomes even
more time consuming due to the larger amount of data
involved in the equation. We use the second dataset to
evaluate the computational savings in 3D GRAPPA recon-
struction. For this 12-channel dataset with a matrix size
of 239 � 239 � 83, an ORF of 2 � 2 with 35 � 33 ACS
lines was used. The number of blocks dy and dz were
both 4, and the number of columns dx was 13. The central
101 columns (frequency encodings) of these ACS lines
were initially used for calibration because the high com-
putation complexity involved such a large set of 3D cali-
bration data. The CPU times for 3D RP-GRAPPA (k¼ 2)
and 3D GRAPPA were 1540 s and 13743 s, respectively,
and the computational complexities were 4.59 and 32.45

FIG. 3. NMSE of RP-GRAPPA versus the sparsity-control parame-
ter p of the random projection matrix (eight-channel dataset;

ACS¼30, ORF¼3, k¼3) suggests that the sparsity of random
projection barely affects the reconstruction accuracy.

FIG. 4. NMSE and CPU time of RP-GRAPPA versus k with spars-

est and nonsparse random projection matrices (eight-channel
dataset; ACS¼30, ORF¼3). All curves were acquired by averag-
ing the results from 50� experiments. The error bars represent

the standard deviation.

FIG. 5. NMSE and CPU time of RP-GRAPPA versus k (eight-chan-

nel dataset; ACS¼30, ORF¼3). The CPU time curve is approxi-
mately linear, which agrees with the theoretical curve of

computation complexity.
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trillion multiplications, respectively. These findings indi-
cate that the proposed random projection brings a saving
of about 8.9 times in 3D GRAPPA reconstruction time.
Due to such inhibiting time for 3D GRAPPA without ran-
dom projection, much fewer ACS data are usually used in
practice. We repeated GRAPPA with only eight columns
of ACS data such that the resulting calibration time
(1866 s CPU time and 4.73 trillion multiplications) was
approximately the same as that of RP-GRAPPA with 101
columns. We compared the 3D GRAPPA and 3D RP-
GRAPPA reconstructions with their corresponding refer-
ences in Figure 6. The results suggest that directly reduc-
ing ACS columns for fast 3D GRAPPA reconstruction
leads to poorer SNR, while 3D RP-GRAPPA achieves fast
reconstruction without compromising SNR.

Random Projection with Channel Reduction

We used the third dataset with 32 channels to demon-
strate the benefit of integrating channel reduction (CR)

with random projection for GRAPPA reconstruction

(CR-RP-GRAPPA), where PCA was used for channel

reduction (10). The data were manually undersampled

with ACS¼ 48 and ORF¼ 5 (net acceleration of 2.84).

The number of columns dx was 15. For PCA-based

channel reduction, the source channel number and tar-

get channel number were chosen to be Nc-s¼ 24 and

Nc-t¼ 8, respectively. In Figure 7, the results of CR-

RP-GRAPPA are compared with those of RP-GRAPPA,

CR-GRAPPA, and conventional GRAPPA in terms of

visual quality, NMSE, and reconstruction time. These

findings indicate that random projection alone is more

effective than channel reduction alone in reducing CPU

time without compromising image quality. When the

random projection and channel reduction are combined,

the reconstruction time can be significantly reduced. In

this particular case with k¼2.5, a factor of up to 11 in

savings can be achieved for the GRAPPA reconstruction

time.

FIG. 6. 3D reconstruction using RP-GRAPPA (101 ACS columns) and GRAPPA (101 and 8 ACS columns) with 2D undersampling (12-
channel dataset; ACS¼35 � 33, ORF¼2 � 2). The proposed 3D RP-GRAPPA with 101 ACS columns takes about the same CPU time

as 3D GRAPPA with eight ACS columns, but achieves better SNR.
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DISCUSSION

There are three ways to reduce the number of calibration
equations in order to reduce the computational complex-
ity. The most straightforward way is to reduce the
amount of ACS data. In this study, we show that a large
reduction usually leads to degradation in reconstruction
quality. The other two approaches are channel reduction
and random projection. The current study shows that the
channel reduction method is very effective when there
are a large number of channels. However, very little sav-
ings can be achieved when only a few physical channels
are used. This is because the channel reduction method
only reduces the data redundancy cross channels. To
this end, the proposed random projection method com-
plements the channel reduction method perfectly for a
large savings in computation because it reduces the
redundancy among the calibration equations. It is worth
noting that both PCA, which is used for channel reduc-
tion, and random projection are widely used dimension
reduction methods. The reason that PCA is appropriate
only for channel reduction is that its own computational
complexity is large when the size of the data becomes
large. On the other hand, random projection is effective
only when the dimension of the data is very high, and is
thereby not effective in channel reduction.

Interestingly, Figures 2, 6, and 7 show that the NMSE
of the GRAPPA reconstructions with random projection
are usually lower than those without. This is possibly

because random projection has denoising capability at a

certain level. When the error primarily comes from the

noise in b of Equation 3, random projection is able to

reduce the error. In order to understand the observation

more comprehensively, we compare in Figure 8 the

NMSE of GRAPPA and RP-GRAPPA at different levels of

SNR, where white Gaussian noise is added onto the

acquired k-space data (assumed to be noise-free) of the

first dataset to simulate different SNR. To avoid aliasing

artifacts at low SNR, we choose 48 ACS lines. Other

parameters remain the same as those used in Figure 2. It

is seen that when the SNR is low (e.g., below 30 dB), the

proposed random projection method results in poorer

NMSE. As SNR increases, random projection is able to

improve the NMSE. This is because at high SNR, the

noise reduction from Rb overweights the system error

caused by RA in Equation 6. When the SNR is low, the

calibration matrix A is affected by larger noise, and con-

sequently, the system error due to RA becomes domi-

nant. Nevertheless, the NMSE difference is so small that

GRAPPA and RP-GRAPPA can be regarded to have the

same reconstruction quality.
We have also studied the effect of different random

selections (i.e., different R matrices) on the reconstruc-
tion quality in terms of NMSE. Table 1 shows the means
and standard deviations of 50 executions for two differ-
ent random selections. One is pure random used in our
study, and the other is variable density random which

FIG. 7. Brain images reconstructed from a set of 32-channel data with an ORF of 5 and 48 ACS lines using GRAPPA, RP-GRAPPA, CR-
GRAPPA, and CR-RP-GRAPPA. PCA was used in channel reduction to reduce to eight target channels. The random projection method

when integrated with existing channel reduction method shows even lower CPU time.
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selects more equations from the center ACS. The same
2D dataset and parameters were used as in Figure 2. The
worst case NMSE of pure random selection was 0.0729,
which is even lower than the mean NMSE of the other
case. It is evident that the pure random selection is supe-
rior to the variable density random selection. The results
are also consistent with those in Figure 2, where
GRAPPA calibration using the center ACS is inferior
only to that using randomly selected ACS.

The proposed method can be integrated with any lin-
ear equation solvers (e.g., LU decomposition) in addition
to the pseudo-inverse used here to improve the computa-
tional efficiency of GRAPPA calibration, because the
number of rows of A affects the complexity of all solvers.
In addition to GRAPPA, the proposed random projection
method is also applicable to any algorithm that involves
solving a large, overdetermined linear equation. For
example, it can be applied to most of the GRAPPA exten-
sions (e.g., refs. 38–41). However, if the calibration phase
does not dominate the total reconstruction time as in
SPIRiT (39), the computational savings are limited. On
the other hand, when calibration is time consuming, the
benefit is prominent. For example, robust GRAPPA (41)
is known to be robust to outliers but has lengthy calibra-
tion times. When the proposed random projection
method is applied to robust GRAPPA, there is a huge
time savings. Table 2 compares both NMSE and CPU
times of robust GRAPPA with and without random pro-
jections using the first dataset. The NMSE of robust
GRAPPA with random projection is nearly the same as
that without random projection, but the former saves a
significant amount of computation time (
34 times).

CONCLUSIONS

In this study, we propose a random projection method to
reduce the dimension of the overdetermined equations
in GRAPPA calibration and thus save computation time.
The proposed method is easily integrated with the exist-
ing channel reduction methods. Experimental results
demonstrate that random projection can reduce CPU
time by a factor of up to 5 for 2D GRAPPA and 8.9 for
3D GRAPPA without compromising the reconstruction
quality, and when combined with PCA channel reduc-
tion, a factor of up to 11. Equivalently, when the compu-
tation time is the same, random projection is able to
improve the GRAPPA reconstruction quality by taking
advantage of more ACS data.
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