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INTRODUCTION: MR Parameter mapping provides useful quantitative biologic information for tissues property characterizations. However, the clinical application 
is usually limited by the relatively long acquisition time. Sparsity-based compressed sensing reconstruction methods have been proposed to accelerate the MR 
parameter mapping [1-6]. These methods usually use linear models which cannot characterize the nonlinearity in the relaxation curve. Recently nonlinear models have 
been proposed in the compressed sensing framework and shown success [7-9]. In this study, we propose a novel framework to utilize nonlinear models to sparsely 
represent the unknown image, named PRAIRIE. Different from the prior work with nonlinear models where the image series is reconstructed simultaneously, each 
image at a specific time point is assumed to lie in a low-dimensional manifold and is reconstructed individually. The low-dimensional manifold is learned from the 
training images generated by the parametric model. To reconstruct each image, among infinite number of solutions that satisfy the data consistent constraint, the one 
that is closest to the manifold is selected as the desired solution. The underlying optimization problem is solved using kernel trick [10] and split Bregman iteration 
algorithm. The proposed method was evaluated on a set of in-vivo brain T2 mapping data set and shown to superior to the conventional compressed sensing methods.  

METHODS: We define a nonlinear mapping : p qΦ ℜ →ℑ  that maps the original data space pℜ to a much higher dimensional feature space qℑ . Let x be the vectorized 
parameter-weighted image at the t-th echo time to be reconstructed. We assume that x is nonlinearly d-sparse, meaning it is can be represented by its first d largest 

coefficients in an orthonormal basis from the feature space qℑ , i.e. 
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the coefficients lα is obtained from L training images ,  1, ,i i L= …x using kernel PCA, λ=Kα α where ( ), ,  i j i j=K x xk and k is a kernel function.  
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Pre-Imaging with Data Consistency and Sparse Constraints: In the second step, we need to find desired image x, which is a pre-image of z, that is Φ(x) = z. To 
enforce that the pre-image satisfies the data consistency and transform-sparse constraints, we formulate the pre-imaging problem as finding x such that
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consistency, the second term exploits the sparsity constraint, and the third term enforces the solution to lie on the manifold spanned by the predefined feature space. The 
optimization problem is convex and is solved by split Bregman iteration algorithm.   

RESULTS: We evaluate the proposed method using T2 mapping, in which the signal is described by an exponential decay. However, the method can be generalized 
for any other parameter mapping models. A set of brain data was acquired on a 3T scanner (MAGNETOM Trio, SIEMENS, Germany) using a 12-channel head coil 
with a turbo spin echo sequence (matrix size = 192 × 192, FOV = 192 × 192 mm, slice thickness = 3.0 mm, ETL = 16, ΔTE = 8.8 ms, TR = 4000 ms, bandwidth = 362 
Hz/pixel). The k-space obtained at the first echo time was not used due to its hypointense. To simulate the reduced acquisition retrospectively, the k-space data was 
randomly undersampled along the phase encoding direction at each echo time with a reduction factor of 4 and 8, respectively. Different sampling patterns were used at 
different TEs. The k-space at the second echo time was fully sampled and used to form an image ρ . Similar to MR fingerprinting [11], the training images were 

generated by ( / 2)TE Te −ρ  with a number of possible T2 map based on the segmentation of different tissues. A total of 976 training images were generated for each echo 

time. The T2 map obtained by pixel-wise fitting 
using the Levenberg-Marquardt algorithm was used 
as the gold standard for comparison between the 
proposed method and the conventional compressed 
sensing method with principle component analysis 
as the sparsifying transform (CS-PCA). Fig. 1 shows 
the reconstructed T2 maps and their corresponding 
pixel-wise error maps. The overall percentage errors 
were shown on the left top corner of the error maps. 
The T2 map obtained by PRAIRIE is seen to be 
much more accurate than that by the CS-PCA both 
visually and quantitatively.   

CONCLUSION: In this study, a novel 
reconstruction method with nonlinear models is 
proposed to accelerate the MR parameter mapping. 
Our preliminary result demonstrated that the 
proposed method is able to accurately recover the T2 
map at high reduction factors when the conventional 
compressed sensing methods with linear models fail.     
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Figure 1.  Estimated T2 maps and pixel-wise error maps of the brain dataset using the reconstruction 
from fully sampled data, CS-PCA and the proposed PRAIRIE method with reduction factors of 4 and 8. 
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